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The paper deals with dynamic problems of discrete-continuous systems with local non-
linearities, the analysis of which is reduced to solving nonlinear differential equations
with a retarded argument. This concerns the discrete-continuous systems subject to tor-
sional, longitudinal, or shear deformations, where the equations of motion for elastic
elements are classical wave equations. It is assumed that the characteristics of local non-
linearities are of a soft-type and in the paper they are described by four nonlinear func-
tions. After a short general description of the approach used, the detailed considerations
and numerical results are presented for a multimass discrete-continuous system with a
local nonlinearity having the characteristics of a soft-type subject to shear deformations.

Copyright © 2007 Amalia Pielorz. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction and nonlinear forces

Equations with a retarded argument have a wide application in the theory of mathe-
matical control, in theory of optimal control, in mathematical biology, in mathemati-
cal economics, and so forth (Bainov and Mischev [1]; Hale [2]; Muszyñski and Myszkis
[3]). In such equations, the unknown functions and their derivatives have different ar-
guments. It appears that certain discrete-continuous systems can also be described by
ordinary differential equations with a retarded argument. Such systems consist of rigid
bodies connected with elastic elements. Among these systems, one can distinguish those
where elastic elements undergo torsional, longitudinal, or shear deformations. The equa-
tions of motion for these elements are classical wave equations. In torsionally deformed
systems, one may consider shafts which can be found, for example, in branched systems,
gear transmissions, internal combustion engines, and transport drive systems (Nadolski
and Pielorz [4, 5]; Pielorz [6–9], Szolc [10]). For longitudinally deformed systems, one
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may consider certain machine elements, truss members, railway cars, and river barges
(Pielorz [6, 11, 12]). Among systems subject to shear deformations, one may consider,
for example, string systems and low structures subject to transversal excitations (Bogacz
and Szolc [13], Pielorz [6, 14–16], Szolc [10]).

The paper deals with discrete-continuous systems having local nonlinearities. The
characteristics of these nonlinearities can be of a hard or of a soft-type. In the paper
by Pielorz [16], the discrete-continuous system with a local nonlinearity described by the
polynomial of a third degree is considered. There it was shown that such a nonlinear func-
tion can be used in both cases of the characteristic. Here the discussion is concentrated
only on the systems having nonlinearities with the characteristic of a soft-type; however,
they are described by the following four nonlinear functions:
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where yi is the displacement of a cross-section where a local nonlinearity is located. It
is assumed that all functions describe the same linear case, (1.1) is the expansion of the
sinusoidal function (1.2), and that the polynomial function and the functions (1.2)–(1.4)
have close maximum values. Thus, the constants A and B are connected with the con-
stants k1 and k3 by relations (Pielorz [15])

AB = k1, AB3 =−6k3. (1.5)

Four nonlinear functions are proposed for the description of the local nonlinearities in
order to avoid some inconveniences which appear when the function (1.1) is used, that
is, escape phenomena (Stewart et al. [17]).

The aim of the paper is to show that using a wave approach, the dynamical analysis
of the discrete-continuous systems with a local nonlinearity leads to solving nonlinear
ordinary differential equations with a retarded argument of the neutral type and that
four proposed nonlinear functions can be incorporated in the description of the local
nonlinearity. After a short general introduction to the approach used, the detailed con-
siderations are presented for a multimass discrete-continuous system subject to shear
deformations. Some numerical results are given for a four-mass system.

2. Wave approach

Consider the systems described by discrete-continuous models consisting of an arbitrary
number of homogeneous elastic elements connected by means of a suitable number of
rigid bodies. The cross-sections of elastic elements remain flat during the motion. Be-
sides, the elastic elements have finite lengths and constant cross-sections, so their motion
is described by the classical wave equation. The displacements yi and velocities of all
cross-sections of the elastic elements are assumed to be equal to zero at the time instant
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Figure 3.1. Nonlinear discrete-continuous system subject to shear deformations.

t = 0, and the system is loaded by the forces or is subjected to external excitation. In these
models, local nonlinearities represented by nonlinear discrete elements are introduced.
The inclusion of such types of nonlinearities is suggested by many engineering solutions
and here they are described by means of four nonlinear functions (1.1)–(1.4).

The equation of motion for the ith elastic element is a classical wave equation. Search-
ing solutions for specific problems, we must add to equations of motion the zero initial
conditions and appropriate boundary conditions. These are the conditions for the dis-
placements of the ith and the i+1th elastic elements of the system in the cross-sections
of the contact of these elements, or the conditions for forces acting either in the cross-
sections of the contact of the neighboring elastic elements or in the cross-sections in
which rigid bodies are attached.

The solutions of the equations of motion are sought in the form of the sum of two
functions (the solution of the d’Alembert type), representing waves propagating in the
elastic element of the systems under consideration. The more detailed considerations are
performed below for the multimass system subject to shear deformations.

3. The system subject to shear deformations

As an example, the system shown in Figure 3.1 is considered. The elastic elements of this
system have the transverse dimension, alongside of which shear forces act close to the
length of the element, that is, they have the low slenderness ratio. To such structures be-
long, for example, machine supports, bridge piers, and low columns in buildings, Pielorz
[14, 15].

The studied model consists of n elastic elements connected by rigid bodies. It is as-
sumed that all the elements are characterized by shear modulus G, the cross-sectional
area A, shear coefficient k, density ρ, and the length l. To the rigid body m0, a discrete
element with a nonlinear spring can be attached. Such an element may represent various
parts of considered structures which ought to be described by local nonlinearities. For
example, it may represent an elastic segment of an isolation type.

The rigid bodym0 is subject to the absolute acceleration (∂2y1/∂t2)(0, t) + ÿcal(t), where
y1(0, t) is the displacement of the rigid body m0 in relation to the ground and ycal(t) is
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the ground displacement in relation to the fixed spatial system. Damping in the model is
described by means of an equivalent external and internal damping expressed by

Rdi = di
∂yi
∂t

, RVi =Di
∂2yi
∂x∂t

, i= 0,1, . . . ,n, (3.1)

where constants di and Di are coefficients of external and internal damping. The x-axis
direction is normal to the direction of displacements yi, its origin coincides with the
location of the rigid body m0 in an undisturbed state, and velocities and displacements of
the cross-sections of all the elastic elements are equal to zero at time instant t = 0.

Upon the introduction of the appropriate nondimensional quantities (Pielorz [14,
15])
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where c2 = kG/ρ is a wave speed, mr and yr are a fixed mass and displacement, respec-
tively. The problem of determining the displacements, strains, and velocities in the cross-
sections of the elastic elements for the analyzed model is reduced to solving n classical
wave equations
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with the zero initial conditions
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In (3.3)–(3.5), bars denoting dimensionless quantities are omitted for convenience.
The solutions of (3.3) taking into account the initial conditions (3.4) are sought in the

form

yi(x, t)= fi(t− x) + gi
(
t+ x− 2(i− 1)

)
, i= 1,2, . . . ,n, (3.6)
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where the unknown functions fi and gi represent the waves, caused by the kinematic
excitation, propagating in the ith elastic element of the discrete-continuous model. In the
sought solutions (3.6), it is taken into account that the first disturbance occurs in the ith
element at time t = i− 1 in the cross-section x = i− 1 for i= 1,2, . . . ,n. The functions fi
and gi are continuous and identical to zero for negative arguments.

Upon substituting the solutions (3.6) into the boundary conditions (3.5) and denoting
the largest argument of functions appearing in each equality by z, the following nonlinear
equations are obtained for the functions fi and gi:

gi(z)= fi+1(z− 2) + gi+1(z− 2)− fi(z− 2), i= 1,2, . . . ,n− 1,
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where

r11 = KrD1 +R0, r12 = KrD1−R0,

r13 =−Kr −d0, r14 = Kr −d0,

ri1 = KrDi +KrDi−1 +Ri−1, ri2 = 2Kr +di−1,
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rn+1,3 = KrDn−R0, rn+1,4 = Kr −dn.

(3.8)

Equations (3.7) are nonlinear differential equations with a retarded argument of the
neutral type. They can be solved only numerically using, for example, the Runge-Kutta
method. Having obtained from (3.7) the functions fi(z) and gi(z) and their derivatives,
one can determine displacements, strains, and velocities in an arbitrary cross-section of
the elastic elements in the considered model at an arbitrary time instant. Equations (3.7)
differ from appropriate equations in (Pielorz [16]) by the possibility to use four nonlinear
functions (1.1)–(1.4) for the description of the local nonlinearity.

The properties of the solutions of equations with a retarded argument are discussed
in the literature (Bainov and Mischev [1]; Hale [2]; Muszyñski and Myszkis [3]). Here
we are interested only in the numerical investigations of some properties of the system
described by (3.7). Especially, we are interested in the effect of the local nonlinearity with
the characteristic of a soft-type described by four nonlinear functions on the behavior of
the discrete-continuous system shown in Figure 3.1.
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4. Numerical results

The numerical analysis is performed for the model presented in Figure 3.1 with four rigid
bodies, n= 3. The function of the external excitation ycal(t) is arbitrary: irregular or reg-
ular, periodic or nonperiodic. In the paper, in the analogy to the nonlinear discrete prob-
lems, it is assumed in the form

ÿcal(t)= a0 sin(pt) (4.1)

and the considerations are focused on the determination of displacements in the steady
states. By means of the function (4.1) various direct and indirect external excitations can
be described, where p is the dimensionless frequency of the external excitation. Under the
external excitation (4.1) changing in time harmonically, harmonic, superharmonic, and
subharmonic vibrations can appear. The paper concerns only harmonic vibrations.

The considered discrete-continuous systems represent low structures and are described
by the dimensionless parameters Ri, Kr ; see (3.2). These parameters can have various val-
ues. The constants Ri are the ratios of the masses mi and the mass of the foundation m0

while the constant Kr is the ratio of the mass of columns and m0. For real structures such
parameters are usually smaller than 1. In the presented calculations, they are assumed to
be equal 0.5 and 0.3, similarly as in the paper by Pielorz [14].

In numerical calculations, we concentrate on the presentation of the influence of the
local nonlinearity with the characteristic of a soft-type on displacements and forces in
selected cross-sections. The local nonlinearity is described by the functions (1.1)–(1.4).
The dimensionless parameter k1 is fixed and is equal to 0.3 while the dimensionless pa-
rameters k3 and a0 can be varied. The parameter k3 is connected directly with the local
nonlinearity, and a0 is the amplitude of the external excitation (4.1). The remaining di-
mensionless parameters appearing in equations (3.8) are fixed and equal to R0 = 1.0,
Kr = 0.3, k1 = 0.3, mr =m0, Ri = 0.5, i= 1,2, . . . ,n.

Equations (3.7) enable us to determine the numerical solution in an arbitrary cross-
section of the discrete-continuous systems. Below, however, the effect of the local non-
linearity on displacements and forces in the cross-section x = 0 is investigated because in
this cross-section the local nonlinearity is introduced.

Diagrams in Figures 4.1–4.3 show amplitude-frequency curves for displacements and
dynamic forces, correspondingly, of the four-mass system with n= 3 in x = 0. One would
expect that with the increase of the amplitude of the external excitation, the amplitudes of
displacements and forces should increase for each p. When the function (1.1) is used, it is
true up to the frequency p for which the function (1.1) approaches the maximum value
postulated by the constant k3. For k3 = −0.05, this maximum value is equal to 0.2828.
Then the solutions begin to diverge to infinity, and that is connected with the properties
of the potential of the function (1.1). The escape phenomenon is known in nonlinear
discrete systems (Stewart et al. [17]). Thus, this phenomenon is also noticed in the study
of nonlinear discrete-continuous systems with the local nonlinearity described by the
polynomial of the third degree. Extreme values for p for which harmonic vibrations with
the period equal to the period of the external excitation can be obtained are marked
by dots. The dots determine the intervals of p where the polynomial (1.1) is rather not
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Figure 4.1. Amplitude-frequency curves for displacements in x = 0.

useful for the description of the nonlinear characteristics of a soft-type. Similar effects
are noticed when the sinusoidal function (1.2) is used. In these cases, there also exist
intervals where the solutions stop to behave as a sinusoidal function. These intervals are
also marked by dots.

In Figure 4.1, the displacement amplitudes A are presented, including 4 resonant re-
gions (ω1 = 0.22, ω2 = 0.594, ω3 = 0.949, ω4 = 1.278) for k3 =−0.05, d0 = di =Di = 0.1
and for the amplitude of the external excitation a0 = 0.25,0.35. Only three resonant re-
gions are distinct. From Figure 4.1, it follows that in the first resonant region the maximal
displacement amplitudes occur for nonlinear function (1.4) for both values of a0. In the
second resonant region, functions (1.3) and (1.4) give similar results. In further resonant
regions, the results for all of the four functions are similar. In the case of function (1.1),
solutions may diverge to infinity for a0 = 0.25 as well as for a0 = 0.35. For function (1.2)
with a0 = 0.25 one can expect solutions not behaving as harmonic vibrations only in the
second resonance, while with a0 = 0.35 in both first resonant regions.

In Figure 4.2, amplitudes FA of forces described by four nonlinear functions (1.1)–
(1.4) for the amplitude of the external excitation a0 = 0.25 are presented. Only three
resonant regions are distinct. In the first and the second resonant regions, the maximal
amplitudes are obtained for the sinusoidal function (1.2), and the smallest ones for the
exponential function (1.4). After the fourth resonant region the results for all assumed
functions are difficult to distinguish. In the first resonant region, one can notice the in-
terval of p, where the solution diverges to infinity when the polynomial function is used.
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Figure 4.2. Amplitude-frequency curves for forces for k3 =−0.05, a0 = 0.25 with nonlinear functions
(1.1)–(1.4).

In the second resonant region, the function (1.1) as well as the sinusoidal function (1.2)
can give solutions losing their physical meaning.

In Figure 4.3, the diagrams of the force amplitudes FA for k3 =−0.05 and a0 = 0.35 are
plotted. In the third resonant region, the highest amplitudes are obtained for functions
(1.1) and (1.2) while the smallest ones when the exponential function is applied for the
description of the local nonlinearity. In the case of functions (1.1), (1.2), one can observe
the intervals of the solutions not behaving as harmonic vibrations in the first as well as
in the second resonant regions. For the remaining functions, the diagrams of the force
amplitudes in the first resonant region form the plateau. It means that in this region
the solutions corresponding to these functions approach the maximum value postulated
by the parameters k1, k3. The plateau is wider for the hyperbolic tangent function. The
maximum of the function (1.1) for the assumed parameters is equal to 0.2828, while for
the functions (1.2)–(1.4) it is equal to 0.3.

Figures 4.2 and 4.3 show exemplary diagrams of amplitudes of forces and the diagrams
in Figure 4.1 for amplitudes of displacements. These diagrams indicate that the polyno-
mial (1.1) and the sinusoidal function (1.2) may have some restrictions for their appli-
cation in the discussion of the nonlinear vibrations of discrete-continuous systems with
the local nonlinearities having the characteristics of a soft-type. Though these functions
have some limitations for their application, it seems to be interesting to find admissible
values of the excitation amplitude a0 for which solutions are harmonic vibrations with
the frequency p.
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Figure 4.3. Amplitude-frequency curves for forces for k3 =−0.05, a0 = 0.35 with nonlinear functions
(1.1)–(1.4).

The application ranges of the polynomial (1.1) (dashed lines) and the sinusoidal func-
tion (1.2) (continuous lines) for the considered system are shown in Figure 4.4 for k3 =
−0.025,−0.05,−0.1. They include 3 resonant regions. The appropriate diagrams inform
how the admissible values of the amplitude a0 decrease with the decrease of the parameter
k3 representing the local nonlinearity. The strongest restrictions occur in the neighbor-
hood of the resonances and the minimal admissible values of a0 increase with the increase
of the frequency p. The application ranges are wider for sinusoidal function (1.2), and
the acceptable a0 for the polynomial function can increase in a linear manner between
the first and the second resonant regions. Besides, one can notice that the differences be-
tween the diagrams for the functions (1.1) and (1.2) increase slowly with the increase of
the frequency of the external excitation p.

5. Final remarks

In the paper, it is shown that there exist discrete-continuous systems with local nonlinear-
ities having the characteristics of a soft-type which can be reduced to solving nonlinear
ordinary differential equations with a retarded argument. It was also shown that vari-
ous nonlinear functions can be incorporated for the description of local nonlinearities.
Detailed investigations are presented for the nonlinear discrete-continuous system sub-
jected to shear deformations and numerical results are given for the system having four
rigid bodies and three elastic elements. The research concerns the effect of the local non-
linearity on the solutions in several resonant regions using four nonlinear functions. This
effect is seen in the first two resonant regions. It is noticed that some limitations there
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Figure 4.4. Application ranges for k3 = −0.025,−0.05,−0.1 for polynomial function (dashed lines)
and sinusoidal function (continuous lines).

exist for the application of the polynomial function and of the sinusoidal function. Anal-
ogous considerations can be done for the system with other number rigid bodies and for
discrete-continuous systems with local nonlinearities subjected to torsional or longitudi-
nal deformations. The local nonlinearities can have the characteristics of a soft as well as
of a hard type (Nadolski and Pielorz [5]; Pielorz [7, 8, 11, 12, 14, 15]).
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