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1. Introduction

One of the crucial performance issues of the single-server queue with finite buffer (wait-
ing room) is losses, namely, customers (packets, cells, jobs) that were not allowed to enter
the system due to the buffer overflow. This issue is especially important in the analysis of
telecommunication networks.

Sample evolution of the queue length process in a finite-buffer system is depicted in
Figure 1.1. In a time interval, where the number of customers in the system is equal to its
capacity, all arrivals are blocked and lost. We call this interval buffer overflow period and
it is equivalent to the remaining service time upon reaching a full buffer. Obviously, the
duration of the buffer overflow period is responsible for the number of losses that occur
consecutively.

Distribution of the buffer overflow period deserves our attention for many practical
and theoretical reasons and these motivations can be found by the reader in the literature
(e.g. [1, 2]). Herein, we add just one more argument that makes the overflow interval an
interesting subject to study.

The overflow interval plays an important role in the design of forward error correction
(FEC) algorithms in packet networks. The FEC technique is based on adding redundant
packets to the original sequence in order to protect the transmitted data from the loss of
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Figure 1.1. Sample path of the queue size process in a single-server system with finite buffer.

packets [3]. Precisely, to each original block of k consecutive packets, we add h redun-
dancy packets, so that the loss of at most h packets in the resulting k + h block can be
recovered. FEC is particularly useful in real-time audiovisual transmission, in which the
retransmission of lost packets would take too much time [4]. Naturally, distribution of
the buffer overflow period has a direct impact on the number h that provides a low level
of unrecoverable losses. Pay attention to the fact that the classic parameter, loss ratio,
does not give sufficient information about the level of unrecoverable losses. This effect
was also studied in [5]. Using a simple M/G/1/b queue, it was shown there that by ma-
nipulating the model parameters we can keep the overall loss ratio on a constant level
while obtaining drastically different distributions of consecutive losses.

To the best of the author’s knowledge, there are no reported results on the duration
of the buffer overflow period and the structure of consecutive losses in a queue with au-
tocorrelated input rate. The previous works on the overflow period were concentrated
on simple Poisson arrivals [1, 6–8], batch Poisson arrivals [2], or renewal arrivals [8, 9].
However, these processes are not able to mimic the complex autocorrelation structure of
observed network traces, which can be bursty and self-similar [10, 11]. Naturally, these
properties have a deep impact on the buffer overflow period. As the Markovian structure,
up to some extent, can mimic the self-similar behaviour [12, 13], the MAP and its special
cases (MMPP) have been widely used in computer networks traffic modeling [14–19].
Queues fed by a MAP are usually studied assuming an infinite buffer (see, for instance,
[20–24] and the references given there). The number of papers dealing with characteris-
tics of finite-buffer MAP systems is rather limited [25–29] and none of them is devoted
to the overflow period.

The remaining part of the paper is organized in the following manner. In Section 2, a
detailed description of the queueing model and notation used throughout the article are
given. Section 3 presents the distribution of the first buffer overflow period with a proof,
some auxiliary results, and comments. Distribution of the state of the underlying chain at
the end of the overflow interval is computed in Section 4. Based on this result, the formu-
las for subsequent and stationary overflow periods are obtained. In Section 5, distribution
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of the number of consecutive losses that occur during the overflow period is presented. In
Section 6, a set of results for the popular special case of the MAP arrival process, which is
the Markov-modulated Poisson process (MMPP), is given. Two numerical examples, that
illustrate the theorems proven, are presented in Section 7. In particular, in Example 7.2
a set of numerical results based on buffering of aggregated IP traffic is reported. Finally,
remarks concluding the paper and propositions of future work are gathered in Section 8.

2. Queueing model and notation

Let N(t) denote the number of arrivals in (0, t] and J(t), 1≤ J(t)≤m, the state of the un-
derlying Markov chain. Then the Markovian arrival process is defined as a 2-dimensional
Markov process (N(t), J(t)) on the state space {(i, j) : i≥ 0,1≤ j ≤m} with an infinitesi-
mal generator R in the form

R=

⎡
⎢⎢⎢⎣

D0 D1 0 0 0 · ·
0 D0 D1 0 0 · ·
0 0 D0 D1 0 · ·
· · · · · · ·

⎤
⎥⎥⎥⎦ , (2.1)

whereD0 andD1 arem×mmatrices.D1 is nonnegative,D0 has nonnegative off-diagonal
elements and negative diagonal elements, and D =D0 +D1 is an irreducible infinitesimal
generator. It is assumed that D �=D0.

An alternative, constructive definition of a MAP is the following. Assume the under-
lying Markov process is in some state i, 1 ≤ i ≤ m. The sojourn time in that state has
exponential distribution with parameter μi. At the end of that time, there occurs a transi-
tion to another state and/or an arrival. Namely, with probability pi(0, j), 1≤ j ≤m, there
will be a transition to state j without arrival and with probability pi(1, j) there will be a
transition to state j with an arrival. It is assumed that

pi(0, i)= 0,
1∑

k=0

m∑

j=1

pi(k, j)= 1, 0≤ i≤m. (2.2)

The following relations between parameters Dk and μi, pi(k, j) hold:

μi =−(D0)ii, 1≤ i≤m,

pi(0, j)= 1
μi

(D0)i j , 1≤ i, j ≤m, j �= i,

pi(1, j)= 1
μi

(D1)i j , 1≤ i, j ≤m.

(2.3)

We consider herein a single-server queueing system fed by a MAP. The service time is
distributed according to a distribution function F(·), which is not further specified, and
the standard independence assumptions are made. The buffer size (system capacity) is
finite and equal to b (including service position). This means that if a cell (customer) at
its arrival finds the buffer overflowed, it is blocked and lost. We assume also that the time
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origin corresponds to a departure epoch. In Kendall’s notation, the system described is
denoted by MAP/G/1/b.

The following notation will be used throughout the article:
(i) J(t) is the state of the underlying Markov chain at the moment t,

(ii) X(t) is the queue size at the moment t (including service position),
(iii) P(·) is the probability,
(iv) Pi j(n, t) = P(N(t) = n, J(t) = j | N(0) = 0, J(0) = i) is the counting function for

the MAP,
(v) δi j is the Kronecker symbol (δi j = 1 if i= j and 0 otherwise),

(vi) 1 is the column vector of 1’s,
(vii) the indicator function is

I(x > y)=
⎧⎨
⎩

1 if x > y,

0 if x ≤ y.
(2.4)

Moreover, the following m×m matrices will be of use:

0=m×m matrix of zeroes,

I =m×m identity matrix,

P(k, t)= [Pi j(k, t)
]
i, j ,

Yk =
[
pi(k, j)

]
i, j , k = 0,1,

(2.5)

Ak =
[∫∞

0
Pi j(k, t)dF(t)

]

i, j
, (2.6)

R0 = 0, R1 =A−1
0 , Rk+1 = R1

(
Rk −

k∑

i=0

Ai+1Rk−i
)

, k ≥ 1, (2.7)

Gn =
(
I −Y0

) n∑

k=0

Rn−kAk −Y1

n−1∑

k=0

Rn−1−kAk. (2.8)

(In this notation [zi j]i, j denotes an m×m matrix with elements zi j .)
Finally, if {Xk}∞k=1 is a sequence of m×m matrices (or column vectors of size m), we

define an operator Kb as follows:

Kb(X)= (I −Y0
) b∑

k=1

Rb−kXk −Y1

b−1∑

k=1

Rb−1−kXk. (2.9)

Throughout the paper, it is assumed that matrices A0 and Gb are nonsingular. This
assumption does not influence the applicability of the presented results—the author did
not find any case with singular A0 or Gb during his numerical experiments. However, it
seems to be hard to prove the nonsingularity in general (see also [26, page 281] for some
remarks on the singularity of A0).
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3. First overflow period

In this section, we are going to study the distribution of the first buffer overflow period
(β1 in Figure 1.1), depending on the initial queue length, X(0), and the initial state of the
underlying chain, J(0). Formally, β1 is defined as a difference ζ − τ, where τ is the first
moment at which the buffer is full and ζ is the first departure moment after τ.

To present distribution of the first buffer overflow period, we will be using its tail:

φn,i(t)= P
(
β1 > t | X(0)= n, J(0)= i), (3.1)

usually in a column-vector form

φn(t)= (φn,1(t), . . . ,φn,m(t)
)T

, (3.2)

and the distribution function (also in a column-vector form)

Hn(t)= 1−φn(t). (3.3)

Theorem 3.1. Duration of the first buffer overflow period in the MAP/G/1/b system is
distributed according to

Hn(t)= 1−
b−n∑

k=0

Rb−n−kAkG−1
b Kb

(
g(t)

)
+
b−n∑

k=1

Rb−n−kgk(t), 0≤ n < b, (3.4)

where

gk(t)=
∫∞

0

(
1−F(u+ t)

)
P(k− 1,u)du ·D1 · 1 (3.5)

and Kb(g(t)) is defined in (2.9). (Naturally, replacing Xk by gk(t) in (2.9) is required.)

Before the proof is presented, let us make some observations. Firstly, it can be checked
that if m = 1 then representation (3.4) reduces to the M/G/1/b-system formula (see [7,
Theorem 3]). Secondly, vectors gk(t) can be computed by means of the uniformization
technique (see [21, page 33]). Finally, to prove (3.4), the following lemma will be needed
(see [30]).

Lemma 3.2. Assume that A0, A1, A2, . . . and Ψ1, Ψ2, . . . are known sequences of m×m
matrices and A0 is nonsingular. Then every solution of the system of equations

n−1∑

k=−1

Ak+1Yn−k −Yn =Ψn, n≥ 1, (3.6)

has the form

Yn = RnC+
n∑

k=1

Rn−kΨk, n≥ 1, (3.7)

where C is an m×m matrix which does not depend on n and the sequence Rk is defined in
(2.7).
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Note that if Ψ1, Ψ2, . . . is a sequence of column vectors of size m, then Yn and C also
become column vectors and Lemma 3.2 remains valid.

Proof of Theorem 3.1. Utilizing the total probability formula with respect to the first de-
parture moment, we have for every 0 < n < b, 1≤ i≤m,

P
(
β1 > t | X(0)= n, J(0)= i)

=
m∑

j=1

b−n−1∑

k=0

∫∞
0

P
(
β1 > t | X(0)= n+ k− 1, J(0)= j

)
Pi j(k, u)dF(u)

+
m∑

j=1

m∑

k=1

∫∞
0
dF(u)

∫ u
0
I(u− v > t)Pi j(b−n− 1, v)

(
D1
)
jkdv,

(3.8)

where (D1) jk denotes an element of the matrix D1 in the position ( j,k). The first term in
(3.8) corresponds to the case where there is no buffer overflow before the first departure
moment, u. Therefore the number of arrivals in (0,u) must be less than b−n. The second
term corresponds to the case where at some moment v < u the buffer gets overflowed. In
this case, we have β = u− v. If initially the system is empty, for every 1≤ i≤m we get

P
(
β1 > t | X(0)= 0, J(0)= i)=

m∑

j=1

pi(0, j)P
(
β1 > t | X(0)= 0, J(0)= j

)

+
m∑

j=1

pi(1, j)P
(
β1 > t | X(0)= 1, J(0)= j

)
.

(3.9)

Integrating the second term in (3.8) by parts and using matrix notation, we may rewrite
(3.8) as

φn(t)=
b−n−1∑

k=0

Akφn+k−1(t) + gb−n(t), (3.10)

while (3.9) gives

φ0(t)= Y0φ0(t) +Y1φ1(t). (3.11)

Replacing ϕn(t)= φb−n(t) yields

n−1∑

k=−1

Ak+1ϕn−k(t)−ϕn(t)= ψn(t), 0 < n < b,

ψn(t)= Anϕ1(t)− gn(t),

(3.12)

ϕb(t)= Y0ϕb(t) +Y1ϕb−1(t). (3.13)

Now, applying Lemma 3.2, the system (3.12) has the following solution:

ϕn(t)= Rnc(t) +
n∑

k=1

Rn−kψk(t), n≥ 1, (3.14)
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where c(t) is a column vector which does not depend on n. Putting n= 1 into (3.14), we
get c(t)=A0ϕ1(t) and

ϕn(t)=
n∑

k=0

Rn−kAkϕ1(t)−
n∑

k=1

Rn−kgk(t). (3.15)

Replacing back φn(t)= ϕb−n(t) we obtain

φn(t)=
b−n∑

k=0

Rb−n−kAkφb−1(t)−
b−n∑

k=1

Rb−n−kgk(t). (3.16)

Finally, using (3.16) and the boundary condition (3.11) yields

φb−1(t)=G−1
b Kb

(
g(t)

)
, (3.17)

which finishes the proof of Theorem 3.1. �

When applying formula (3.4), we usually store all matrices Ak, Rk and vectors gk.
Therefore, a memory space for 2b m×m matrices and b vectors of size m is required.
Regarding the time complexity, if we assume thatm×mmatrix multiplication and inver-
sion are ofO(m3) order, then the number of floating-point operations needed to compute
(3.4) grows as O(m3b2). The main cost is connected with the computation of b matrices
Rk using (2.7).

4. Subsequent overflows and stationary distribution

In this section, we are going to study distributions of the subsequent overflow periods
(β2, β3, . . . in Figure 1.1) and the limiting distribution of βk as k→∞.

If the queue is fed by a plain Poisson process, the solution is simple, as all of βk except
β1 have the same distribution. This is due to the fact that after the overflow period ends,
the number in the system is b− 1, and this is the initial queue size for the next overflow
period. Moreover, the distribution of βk, k ≥ 2 is equal to the distribution of β1 assuming
X(0)= b− 1. Thus in the case of a Poisson input, the formula for the first overflow period
immediately gives the subsequent distributions and the stationary distribution, just by
putting X(0)= n= b− 1.

In the case of a queue fed by a MAP, βk has a different distribution for every k. Again,
the initial queue size for every βk, k ≥ 2 is b− 1, but now the distribution of βk depends
also on the state of the underlying Markov chain at the end of the previous overflow
period. Therefore, we have to know how the state of this chain is distributed at the end of
the overflow period.

For this purpose, let us consider a random sequence {αk}∞k=0 defined as follows: α0 =
J(0) and αk, k ≥ 1 is equal to the state of the underlying Markov chain at the end of the
kth overflow period. Therefore the distribution of β1 depends on α0 and X(0), while the
distribution of βk, k ≥ 2 depends only on αk−1. It is easily seen that {αk}∞k=0 is a discrete-
time Markov chain.
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Denoting

Sn =
[

P
(
α1 = l | X(0)= n, J(0)= i)]i , l , (4.1)

the following will be shown.

Theorem 4.1. Distribution of the state of the underlying Markov chain at the end of the
first buffer overflow period has the form

Sn =
b−n∑

k=0

Rb−n−kAkG−1
b Kb(U)−

b−n∑

k=1

Rb−n−kUk, 0≤ n < b, (4.2)

where

Uk =
∞∑

i=k
Ai (4.3)

and Kb(U) is defined in (2.9). In particular, Sb−1 =G−1
b Kb(U).

Proof of Theorem 4.1. Conditioning on the first departure epoch, we obtain for every 0 <
n < b, 1≤ i≤m,

P
(
α1 = l | X(0)= n, J(0)= i)

=
m∑

j=1

b−n−1∑

k=0

∫∞
0

P
(
α1 = l | X(0)= n+ k− 1, J(0)= j

)
Pi j(k,u)dF(u)

+
m∑

j=1

m∑

k=1

∫∞
0
dF(u)

∫ u
0

P
(
J(u− v)= l | J(0)= k)Pi j(b−n− 1,v)

(
D1
)
jkdv.

(4.4)

Again, the first term in (4.4) corresponds to the case where there is no buffer overflow
before the first departure moment, u. The second term corresponds to the case where
at some moment v < u, the buffer gets overflowed and in this case we have P(α1 = l) =∑

k P(J(u− v)= l | J(0)= k).
The boundary condition has the form

P
(
α1 = l | X(0)= 0, J(0)= i)=

m∑

j=1

pi(0, j)P
(
α1 = l | X(0)= 0, J(0)= j

)

+
m∑

j=1

pi(1, j)P
(
α1 = l | X(0)= 1, J(0)= j

)
.

(4.5)

Using the matrix-exponential representation for transient distribution of a continuous-
time Markov chain and applying matrix notation to (4.4) and (4.5), we have

Sn =
b−n−1∑

k=0

AkSn+k−1 +Ub−n, 0 < n < b,

S0 = Y0S0 +Y1S1,

(4.6)
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with

Uk =
∫∞

0
dF(u)

∫ u
0
P(k− 1,v)D1e

D(u−v)dv =
∞∑

i=k
Ai. (4.7)

We can easily finish the proof by proceeding in the same manner as in the case of Theo-
rem 3.1. �

Now, using Theorems 3.1 and 4.1, it poses no problem to obtain the distribution of βk
for an arbitrary k. We only have to observe that Sn is a transition matrix for the chain αk in
the first step (α0 → α1) and Sb−1 is a transition matrix in every subsequent step (α1 → α2,
α2 → α3, etc.). We get the following.

Corollary 4.2. If k ≥ 2, then the duration of the kth buffer overflow period in the MAP/G/
1/b system is distributed according to

P
(
βk < t

)= vSn
(
Sb−1

)k−2
Hb−1(t), (4.8)

where vector v is a distribution of the underlying chain at t = 0, n is the queue size at t = 0,
Sn and Hn(t) are given by (4.2) and (3.4), respectively.

Finally, as a consequence of (4.8), we obtain the following.

Corollary 4.3. Limiting distribution of βk as k→∞ has the form

lim
k→∞

P
(
βk < t

)=wHb−1(t), (4.9)

where w is a stationary vector for the matrix Sb−1 (wSb−1 =w, w1= 1).

The existence and the uniqueness of the limiting distribution follows from the fact that
the matrix Sb−1 is irreducible and aperiodic.

5. Structure of consecutive losses

In this section, we are going to study the distribution of the number of losses that occur
during the first, subsequent, and stationary overflow periods.

In the case of a Poisson arrival process, the probability that a group of i consecutive
arrivals is lost during the overflow period is simply equal to

∫∞
0

e−λt(λt)i

i!
dH(t). (5.1)

In the case of a MAP arrival process, we cannot use any formula similar to (5.1). This
is due to the fact that we do not know the state of the underlying chain at the beginning
of the overflow period. Moreover, this state may be correlated with the duration of the
overflow period. Therefore, we have to proceed in similar way as in Section 4.

If we denote by γk the number of arrivals lost during the kth buffer overflow period
and

qn,i(l)= P
(
γ1 = l | X(0)= n, J(0)= i), qn(l)= (qn,1(l), . . . ,qn,m(l)

)T
, (5.2)

then the following theorem can be proven.
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Theorem 5.1. Distribution of the number of arrivals lost during the first buffer overflow
period has the form

qn(l)=
b−n∑

k=0

Rb−n−kAkG−1
b Kb

(
v(l)

)−
b−n∑

k=1

Rb−n−kvk(l), 0≤ n < b, (5.3)

with vk(l)= Ak+l1 and Kb
(
v(l)

)
given in (2.9).

Proof of Theorem 5.1. Once again, conditioning on the first departure epoch, we obtain
for an initially nonempty system

P
(
γ1 = l | X(0)= n, J(0)= i)

=
m∑

j=1

b−n−1∑

k=0

∫∞
0

P
(
γ1 = l | X(0)= n+ k− 1, J(0)= j

)
Pi j(k,u)dF(u)

+
m∑

j=1

∫∞
0
Pi j(b−n+ l,u)dF(u), 0 < n < b, 1≤ i≤m.

(5.4)

The boundary condition for an initially empty system is identical with (4.5), just replac-
ing alpha’s with gamma’s is required. Thus we have

qn(l)=
b−n−1∑

k=0

Akqn+k−1(l) + vb−n(l), 0 < n < b,

q0(l)= Y0q0(l) +Y1q1(l),

(5.5)

and the remaining part of the proof is the same as in the case of Theorem 3.1. �

Proceeding in the same manner as in the previous section, we may now obtain the
number of losses in the kth overflow period as well as its limiting distribution.

Corollary 5.2. If k ≥ 2, then the distribution of the number of arrivals lost during the kth
overflow period has the form

P
(
γk = l

)= vSn
(
Sb−1

)k−2
qb−1(l), (5.6)

where vector v is a distribution of the underlying Markov chain at t = 0, n is the queue size
at t = 0, Sn and qn(l) are given by (4.2) and (5.3), respectively. Moreover, the number of
arrivals lost during the overflow period in steady state is

lim
k→∞

P
(
γk = l

)=wqb−1(l), (5.7)

where w is a stationary vector for the matrix Sb−1.
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6. Special case: MMPP

A Markov-modulated Poisson process is constructed by varying the arrival rate of the
Poisson process according to anm-state continuous time Markov chain (see, for instance,
[24]). Namely, when the Markov chain is in state i, arrivals occur according to a Poisson
process of rate λi. Therefore, MMPP is parameterized by two m×m matrices:

(i) Q is infinitesimal generator of the continuous time Markov chain,
(ii) Λ= diag(λ1, . . . ,λm)—its diagonal elements are equal to arrival rates, nondiago-

nal elements are zeroes.
It is easy to check that the MMPP is the special case of a MAP with the following

parameters:

D0 =Q−Λ, D1 =Λ. (6.1)

Therefore, all the theorems proven above are valid also for the MMPP, only a slight change
in notation is required. In particular, we have now

Y0 =
[
yi j
]
i, j , yi j =

⎧⎪⎪⎨
⎪⎪⎩

0 if i= j,

Qij(
λi−Qii

) if i �= j,

Y1 =
[

Λi j

λi−Qii

]

i, j
, gk(t)=

∫∞
0

(
1−F(u+ t)

)
P(k− 1,u)du ·Λ · 1.

(6.2)

7. Numerical results

Example 7.1. Let us start with the same MMPP parameterization that was used in [25].
Namely, we assume the constant service time as a time unit and

Λ=
⎡
⎣1.0722 0

0 0.48976

⎤
⎦ , Q =

⎡
⎣−8.4733 · 10−4 8.4733 · 10−4

5.0201 · 10−6 −5.0201 · 10−6

⎤
⎦ . (7.1)

The stationary distribution for Q is then π = (0.00589,0.99411) and the load offered to
the queue is around 49%.

Basic steady-state parameters of this system, like distribution of the queue size and
workload, can be found in [25]. Herein, we are going to examine overflow intervals and
structure of consecutive losses of this system. For visualization, the probability density
function

hn(t)= (hn,1(t), . . . ,hn,m(t)
)T = dHn(t)

dt
(7.2)

will be used rather than the distribution function Hn(t).
Figure 7.1 shows the dependence of the density of the first overflow period on the

buffer size. In part (a), the initial state of the underlying chain is 1, while in part (b)
it is 2. In both parts, the queue is initially empty. We may observe that as b grows, the
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Figure 7.1. Shapes of the density function hn,i(t) for different buffer sizes. Part (a): i= 1, n= 0. Part
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Figure 7.2. Mean duration of the first buffer overflow period versus the buffer size, b. Part (a): i= 1,
n= 0. Part (b): i= 2, n= 0.

distribution of the first overflow period converges quickly to some limiting distribution.
This is also confirmed in the plot representing average values (Figure 7.2.). The average
duration of the buffer overflow stabilizes for b around 5 or 13, depending if the initial
state of the underlying chain is 1 or 2. It is also interesting that the average value may not
change monotonically (Figure 7.2(b)).

In Figure 7.3, the dependence of the density of the first overflow period on the ini-
tial queue size is depicted. For a wide range of n the density function does not change
significantly, but it changes rapidly, as n closely approaches b.

Now we are going to examine the subsequent and stationary overflow periods assum-
ing b = 50. First of all, we have to compute the transition matrix Sb−1. Using (4.2) gives

Sb−1 =
[

0.999202 0.000798
0.509801 0.490199

]
. (7.3)
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Table 7.1. Probability of losing l consecutive arrivals during the kth overflow period. System param-
eters: J(0)= 2, X(0)= 49, b = 50.

l
∖
k 1 2 3 4 ∞

0 7.5377× 10−1 6.7843× 10−1 6.4156× 10−1 6.2352× 10−1 6.0622× 10−1

1 1.9772× 10−1 2.3715× 10−1 2.5644× 10−1 2.6589× 10−1 2.7494× 10−1

2 4.0314× 10−2 6.5763× 10−2 7.8217× 10−2 8.4313× 10−2 9.0155× 10−2

3 6.9565× 10−3 1.5120× 10−2 1.9116× 10−2 2.1072× 10−2 2.2946× 10−2

4 1.0618× 10−3 2.9472× 10−3 3.8699× 10−3 4.3215× 10−3 4.7544× 10−3

5 1.4607× 10−4 4.9485× 10−4 6.6554× 10−4 7.4908× 10−4 8.2915× 10−4

6 1.8237× 10−5 7.2606× 10−5 9.9214× 10−5 1.1223× 10−4 1.2471× 10−4

7 2.0731× 10−6 9.4304× 10−6 1.3031× 10−5 1.4793× 10−5 1.6482× 10−5

8 2.1530× 10−7 1.0968× 10−7 1.5282× 10−6 1.7394× 10−6 1.9417× 10−6
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Figure 7.3. Shapes of the density function hn,i(t) for different initial queue sizes. Part (a): i= 1, b = 50.
Part (b): i= 2, b = 50.

The stationary vector for Sb−1 is then w = (0.998437,0.001563). Pay attention to the dif-
ferent values of π and w. While in general the underlying chain stays in state 2 for the
majority of time, the state at the end of the overflow period is usually 1. This can be ex-
plained by the fact that the overflow usually occurs when the state of the underlying chain
is 1 (λ1 is higher than λ2), and this state remains to the end of the overflow interval.

Figure 7.4 represents densities for the subsequent and stationary overflow periods,
while Table 7.1 contains distributions of the number of losses during the subsequent and
stationary overflow intervals. In both Figure 7.4 and Table 7.1, we may observe rather
quick convergence to the limiting distribution.

Example 7.2. In the second example, we are going to use an MMPP fitted to aggregated
IP traffic and show how the autocorrelation structure of the traffic influences the over-
flow period and the probability of consecutive packet losses. For this purpose, a publicly
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Figure 7.4. Densities of the duration of the first, subsequent, and stationary buffer overflow periods.
System parameters: J(0)= 2, X(0)= 49, b = 50.

available trace file, recorded at the front range GigaPOP (FRG) aggregation point, which
is run by PMA (passive measurement and analysis project, see http://pma.nlanr.net/) has
been utilized. Precisely, one million packet headers from the file FRG-1137208198-1.tsh,
recorded on Jan 14th, 2006, were used. The mean rate of the traffic is 58.11 MB/s, or
71732 packets/s with average packet size of 850 B. Using this traffic sample, the following
MMPP parameters were fitted [29]:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

−172.53 38.80 30.85 0.88 102.00
16.76 −883.26 97.52 398.9 370.08

281.48 445.97 −1594.49 410.98 456.06
23.61 205.74 58.49 −598.93 311.09

368.48 277.28 7.91 32.45 −686.12

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7.4)

(λ1, . . . ,λ5)= (59620.6,113826.1,7892.6,123563.2,55428.2).
The average interarrival times are almost the same in the traffic sample and the fitted

MMPP (13.940 μs versus 13.941 μs) and, what is important, the MMPP preserves the
autocorrelation structure of the original traffic up to three time scales (see Figure 7.5).

We assume that the queue is served at a rate of 80 MB/s (98690 pkts/s), which makes
the service (transmission) time to be 10.133 μs and the offered load 73%. We assume also
that the buffer can hold 120 packets (100 KB). These settings make the stationary full
buffer probability to be 6.55× 10−3, which can be computed by means of the methodol-
ogy presented in [25].

The transition matrix Sb−1, computed by means of Theorem 4.1, is now

Sb−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.60242 0.09548 0.00020 0.29941 0.00247
0.00021 0.97342 0.00054 0.02204 0.00377
0.00260 0.24492 0.07887 0.66704 0.00657
0.00026 0.00677 0.00033 0.98956 0.00305
0.00398 0.13003 0.00014 0.30881 0.55703

⎤
⎥⎥⎥⎥⎥⎥⎦

, (7.5)

and its stationary vector w = (0.00070,0.23479,0.00041,0.75684,0.00723).

http://pma.nlanr.net/
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Figure 7.5. Autocorrelation between interarrival times in original traffic and fitted MMPP
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Figure 7.6. Densities of the duration of the first, subsequent, and stationary buffer overflow periods
in Example 7.2. Initial parameters: J(0)= 1, X(0)= b− 1.

Figure 7.6 reports densities of the duration of the first, subsequent, and stationary
buffer overflow periods for initial state of the underlying chain 1 and X(0)= b− 1. As in
Example 7.1, we can observe rather quick convergence to the limiting distribution.

Now, let us check how the autocorrelation structure of the MMPP influences the dura-
tion of the overflow period. For this purpose, let us consider another queue, whose arrival
process is simple Poisson and therefore the packet interarrival times are uncorrelated. We
set for the same, as previously, arrival rate, service time and buffer size and thus we can
compare results. They are shown in Figure 7.7 and Table 7.2. It is evident that in the
MMPP case, the probability mass is concentrated around higher values and this causes
longer overflow periods. As a consequence, we may observe that in the MMPP queue, the
probability of losing a group of consecutive arrivals is much higher than in the Poisson-
arrival case and this effect is stronger when the size of a group is larger (Table 7.2). For
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Table 7.2. Probability of losing l consecutive packets during the overflow period for MMPP and Pois-
son arrival systems (both in steady state).

l MMPP Poisson

0 6.8230× 10−1 8.0571× 10−1

1 2.3465× 10−1 1.6359× 10−1

2 6.4755× 10−2 2.6638× 10−2

3 1.4826× 10−2 3.5958× 10−3

4 2.8914× 10−3 4.1307× 10−4

5 4.9020× 10−4 4.1217× 10−5

6 7.3432× 10−5 3.6307× 10−6

7 9.8470× 10−6 2.8608× 10−7

8 1.1947× 10−6 2.0379× 10−8

9 1.3233× 10−7 1.3242× 10−9

10 1.3480× 10−8 7.9087× 10−11

8

10

12

14
�104

2 4 6 8 10
�10�6

t

Poisson

MMPP

Figure 7.7. Stationary density of the buffer overflow period for MMPP and Poisson arrival systems
(Example 7.2). In both systems service times, loads and buffer sizes are the same.

instance, losing 5 packets in row is 12 times more probable in the MMPP queue than in
the Poisson one, while losing 10 packets in row is 170 times more probable.

8. Conclusions and future work

In this paper, the buffer overflow period in a finite-buffer queue fed by a MAP was stud-
ied. In particular, formulas for the distribution of the overflow period and the number of
arrivals lost during the overflow period were developed. The transient and the stationary
cases were both solved. Theoretical results were illustrated via numerical examples.

In addition, it was demonstrated that the autocorrelated structure of the arrival pro-
cess may have a negative impact on the overflow period and the number of losses that
occur consecutively.
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As MAP is an analytically tractable model that can capture autocorrelation properties
of observed arrival processes and because it is commonly used in network traffic model-
ing, the results presented herein are likely to be of practical importance.

As regards possible future work on this subject, the first interesting problem is the
asymptotic behaviour of the overflow period in a large buffer queue. Based on numerical
results, we may expect that as b grows, the duration of the overflow period converges to
some limiting distribution. Probably, this limiting distribution has a much simpler form
than (3.4), which potentially makes it of practical importance. For Poisson and batch
Poisson arrivals, such formulas are already available, see [1, 2], respectively.
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