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Received 8 February 2007; Accepted 3 June 2007

Recommended by Kumbakonam Rajagopal

An exact solution of an incompressible second-grade fluid for flow between two coaxial
porous cylinders is given. The velocity profiles for various values of the cross-Reynolds
number and the elastic number are plotted. It is found that for large values of the cross-
Reynolds number, the velocity variation near boundaries shows a different behaviour
than that of the Newtonian fluid.
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1. Introduction

The exact solution given in this paper is connected with flow-over-porous boundaries.
The flow of fluids over boundaries of porous materials has many applications in practice,
such as control of the flow. For Newtonian flows, there are many exact solutions. A simple
exact solution for flow over a porous plane boundary, where the suction velocity is uni-
form, was found by Griffith and Meredith and given in [1]. There is no solution for flow
over a porous plane boundary with a uniform injection velocity. However, if the porous
plane boundary is bounded by side walls, a solution of the Navier-Stokes equation can
be found for the injection case [2]. The flow in a duct of rectangular cross-section with
uniform suction and injection has been examined by Mehta and Jain [3], Sai and Rao
[4], and Erdoğan [2]. For large values of the cross-Reynolds number near the suction
region, the flow shows a boundary-layer character. Fully developed nonswirling laminar
flow through a porous pipe and a discussion of previous research have been given by Ter-
ril and Thomas [5]. The flow with swirl in a porous pipe with injection along the pipe is
three-dimensional [6]. Recently, a three-dimensional flow in a porous channel has been



2 Mathematical Problems in Engineering

investigated in [7]. The flow in a porous pipe with uniform injection and suction shows
a boundary layer character near the suction region [8].

The problem considered in this paper is an extension of the flow of a viscous fluid
in an annulus with uniform porous walls, investigated by Berman [9], to second-grade
fluid flows. The fluid injection rate at one wall is taken equal to the withdrawal rate at the
other wall. The axial flow of a non-Newtonian fluid between two coaxial porous cylin-
ders with a discussion of previous research has been investigated by Mishra and Roy [10].
A perturbation method is used for the axial velocity. The perturbation parameter used
is the product of the cross-Reynolds number and the elastic number. Although the so-
lution is obtained for small values of the perturbation parameters, the results are given
for very small elastic numbers and for very large Reynolds numbers. However, there is
no comparison with the Newtonian flow. Unsteady flow of an viscoelastic fluid between
two coaxial circular cylinders has been investigated in [11]. A number of unidirectional
transient flows of a second-grade fluid using the method of integral transforms have been
studied in [12]. Some unsteady unidirectional flows in unbounded domains, which are
axially symmetric have been investigated in [13]. Some steady and unsteady solutions of
the equations of motion for an incompressible second-grade fluids have been given by
applying different methods in [14].

It is well known that the equation of motion of incompressible second-grade fluids, in
general, is of higher order than the Navier-Stokes equation. The Navier-Stokes equation
is a second-order partial differential equation, but the equation of motion of a second-
grade fluid is a third-order partial differential equation. A marked difference between the
case of Navier-Stokes theory and that for fluids of second grade is that ignoring the non-
linearity in the Navier-Stokes does not lower the order of equation, however, ignoring the
higher order nonlinearities in the case of the second-grade fluid reduces the order of the
equation. The no-slip boundary condition is sufficient for a Newtonian fluid, but based
on the previous experience with partial differential equations, it may not be sufficient
for a second-grade fluid and therefore needs an additional boundary condition [15–17].
If one uses a perturbation expansion in terms of the coefficient appearing in the higher
order derivative of the governing equation, the no-slip boundary condition is sufficient.
However, Frater [18], considering the asymptotic suction flow, has shown that this type
of perturbation expansion may lead to erroneous results. This arises from the consider-
ation of singular perturbation problem as a regular one. He exposes an extra condition
that the solution tends to the Newtonian value as the coefficient of the higher derivative
in the governing equation approaches zero.

In this paper, the solution is obtained in terms of the confluent hypergeometric func-
tions, and it is valid for all values of the cross-Reynolds number and the elastic number.
The solution has three coefficients: two of them can be determined by the no-slip bound-
ary condition and the other can be determined by using the properties of the confluent
hypergeometric functions. A comparison of the solution with that of the Newtonian fluid
shows that there is a different behaviour near boundaries. The velocity distribution is
given for positive, negative, and infinite values of the cross-Reynolds numbers. The ve-
locity profiles for various values of the cross-Reynolds number and the elastic number
are plotted in Figure 1.1.
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Figure 1.1. The variation of the axial velocity for various values of the cross-Reynolds number (—)
(ε = 0); (- - -) (ε = 1). ζ = (ξ − σ)/(1− σ); σ ≤ ξ ≤ r/b1, σ = 0.2.

2. Basic equations

The equation of motion of a fluid in the absence of body forces is

ρ
Dυ

Dt
=∇·σ , (2.1)

where ρ is the density of the fluid, υ is the velocity, σ is the stress tensor, and D/Dt repre-
sents the material derivative. The continuity equation for the velocity is

∇· υ = 0. (2.2)

Equations (2.1) and (2.2) can be applied to all types of fluids, Newtonian and non-
Newtonian. The stress depends on the local properties of the fluid. The relation which
is called the constitutive equation is in the following form for an incompressible second-
grade fluid [19]:

σ =−pI +μA1 +α1A2 +α2A2
1, (2.3)

where μ, α1, and α2 are material constants, and An represents the Rivlin-Ericksen tensor
defined as

Ao = I, A1 =∇υ+ (∇υ)T ,

A2 =
(
∂

∂t
+ υ ·∇

)
A1 + A1 · (∇υ) + (∇υ)T ·A1,

(2.4)
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where t is time, p is pressure, and I is the identity tensor. The Clausius-Duhem inequality
and the condition that Helmholtz free energy is minimum at equilibrium provide the
following restrictions [20].

μ≥ 0, α1 +α2 = 0, α1 ≥ 0. (2.5)

A comprehensive discussion on the restrictions for μ, α1, and α2 can be found in the work
by Dunn and Rajagopal [20]. The sign of the material moduli α1 and α2 is the subject of
much controversy [21]. The experiments have not confirmed these restrictions on α1 and
α2. Thus, the conclusion is that the fluids which have been tested are not fluids of second
grade and are characterized by a different constitutive structure.

Fully developed laminar flow of an incompressible fluid of second grade between two
coaxial porous cylinders is considered. The cylindrical polar coordinates are used. The
radii of the porous cylinders are a1 and b1 (a1 < b1). The rate of fluid withdrawal at one
wall of the annulus is assumed to be equal to the rate of injection of fluid at the other
wall, and that these rates are independent of axial position in the annulus.

The velocity field is assumed to be in the following form:

υr = α

r
, υθ = 0, υz =w(r), (2.6)

where υr , υθ , υz are components of the velocity in cylindrical polar coordinates, α is posi-
tive for injection at the inner cylinder and negative for suction at the inner one. Equation
(2.2) is satisfied identically by the velocity. Inserting the velocity given by (2.6) into the
expression for the stress, the components of the stress tensor, in cylindrical polar coordi-
nates, can be written in the following forms:

σrr =−p− 2αμ
r2

+α1

(
8α2

r4
+ 2w′2

)
+α2

(
4α2

r4
+w′2

)
,

σrθ = 0,

σrz = μw′ +α1α
(
w′

r

)′
− 2αα2

r2
w′,

σθθ =−p+
2αμ
r2

+
4α2α2

r4
,

σθz = 0,

σzz =−p+α2w
′2,

(2.7)

where σrθ = σθr , σrz = σzr , σθz = σzθ ; the primes denote differentiation with respect to r.
Inserting the stress components and the velocity given by (2.6) into (2.1), one obtains

α1α
(
w′′′

r
+
w′′

r2
− w′

r3

)
+μ
(
w′′ +

1
r
w′
)
− ρ

α

r
w′ = dp

dz
, (2.8)
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where dp/dz is the axial pressure gradient which is constant. The boundary conditions
are

w
(
a1
)= 0, w

(
b1
)= 0, (2.9)

where a1 is the radius of the inner cylinder and b1 is the radius of the outer cylinder.

3. Solution of the problem

After some manipulations, (2.8) takes the form

xy′′ + (2− x)y′ −
(

1− R

2

)
y = k, (3.1)

where

w′ = r

b2
1
y(x), x =− ξ2

2εR
, ξ = r

b1
, R= α

v
, ε = α1/ρ

b2
1

, k =− b2
1

2μ
dp

dz
.

(3.2)

The solution of (3.1) can be written in the following form:

y =− k

1−R/2
+C1 M

(
1− R

2
,2,x

)
+C2 U

(
1− R

2
,2,x

)
, (3.3)

where M(a,b,x) and U(a,b,x) are the confluent hypergeometric functions [22, 23]. One
needs three boundary conditions in order to determine three arbitrary constants. Thus,
unless an additional condition is prescribed over the conditions (2.9), one has a paramet-
ric solution. For R > 0, x becomes negative, then for x < 0, U(a,b,x) is not acceptable and
therefore, C2 must be zero and (3.3) takes the form

dw

dr
= r

b2
1

[
C1 M

(
1− R

2
,2,− ξ2

2εR

)
− 2k

2−R

]
. (3.4)

Using the identity [23]

M
(

1− R

2
,2,− ξ2

2εR

)
= e−ξ

2/2εR M
(

1 +
R

2
,2,

ξ2

2εR

)
, (3.5)
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the integration gives

w = C1εR
∫
e−z M

(
1 + (R/2),2,z

)
dz− k

2−R
ξ2 +C3. (3.6)

Using the identity [23]

(1− a)
∫
e−z M(a,2,z)dz =−e−z M(a,1,z) +C, (3.7)

and the boundary conditions (2.9), one obtains

w

k
= 1

2−R

[
1− ξ2 +

(
1− σ2)E], (3.8)

where

E = e−ξ2/2εR M
(
1 + (R/2),1,ξ2/2εR

)− e1/2εR M
(
1 + (R/2),1,1/2εR

)
e−1/2εR M

(
1 + (R/2),1,1/2εR

)− e−σ2/2εR M
(
1 + (R/2),1,σ2/2εR

) , (3.9)

and σ = a1/b1. When ε goes to zero, using the asymptotic expression of M(a,b,x) [23], E
becomes

lim
ε→0

E = lim
ε→0

(
ξ2/2εR

)R/2− (1/2εR)R/2(
1/2εR

)R/2− (σ2/2εR
)R/2 = ξR− 1

1− σR
, (3.10)

and (3.8) can be written as

w

k
= 1

2−R

[
1− ξ2 +

(
1− σ2) 1− ξR

1− σR

]
, (3.11)

which is the expression of the velocity of a Newtonian fluid [9].
Since the volume flux across a plane normal to the flow is given by

Q = 2π
∫ b1

a1

wr dr, (3.12)

the mean velocity can be written as

w = 2
1− σ2

∫ 1

0
wξ dξ. (3.13)

Inserting the expression for w given by (3.8) into (3.13) and using the identity [23]

∫
e−z M(a,1,z)dz = ze−z M(a+ 1,2,z) +C, (3.14)

one finds

w

k
= 1

2−R

(
1− σ2

2
+F
)

, (3.15)
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where

F = e−1/2εR M
(
2 + (R/2),2,1/2εR

)− σ2e−σ2/2εR M
(
2 + (R/2),2,σ2/2εR

)
e−1/2εR M

(
1 + (R/2),1,1/2εR

)− e−σ2/2εR M
(
1 + (R/2),1,σ2/2εR

)

−
(
1− σ2

)
e−1/2εR M

(
1 + (R/2),1,1/2εR

)
e−1/2εR M

(
1 + (R/2),1,1/2εR

)− e−σ2/2εR M
(
1 + (R/2),1,σ2/2εR

) .
(3.16)

When ε goes to zero, using the asymptotic expression of M(a,b,x) [23], F becomes

lim
ε→0

F = lim
ε→0

(
2/(2 +R)

)[
(1/2εR

)R/2− σ2
(
σ2/2εR

)R/2]− (1− σ2
)
(1/2εR)R/2

(1/2εR)R/2− (σ2/2εR
)R/2

= −R
(
1− σ2

)
+ 2σ2

(
1− σR

)
(2 +R)

(
1− σR

) ,

(3.17)

and (3.15) can be written as

w

k
= 1

4−R2

[
(2 +R) + (2−R)σ2

2
− R

(
1− σ2

)
1− σR

]
, (3.18)

which is the expression of the mean velocity of a Newtonian fluid [9]. Using the expres-
sion of (3.8) and (3.13), the velocity becomes

w

w
= 1− ξ2 +

(
1− σ2

)
E

(1/2)
(
1− σ2

)
+F

. (3.19)

The variation of w/w with respect to ζ = (ξ − σ)/(1− σ) for various values of R and ε is
illustrated in Figure 1.1. The value of σ is taken as 0.2 and the values of ε are taken as 0
and 1. Equation (3.19) is valid for all values of R and ε. When R goes to infinity, using the
expression given in [23] which is

lim
a→∞

1
Γ(b)

M(a,b,x/a)= x1/2−(1/2)b Ib−1(2
√
x), (3.20)

equation (3.19) takes the following form

w

w
= 1− ξ2 +

(
1−σ2

)[
I0
(
ε−1/2ξ

)− I0
(
ε−1/2

)]
/
[

I0
(
ε−1/2

)−I0
(
σε−1/2

)]
(1−σ2)/2+(2ε1/2 I1

(
ε−1/2

)−2σε1/2 I1
(
σε−1/2

)−(1−σ2
)

I0
(
ε−1/2

))
/
(

I0
(
ε−1/2

)−I0
(
σε−1/2

)) ,

(3.21)

where Γ(x) is the gamma function and I0(x) and I1(x) are the modified Bessel functions
of the first kind of orders zero and one. The variation of w/w with respect to ζ for various
values of ε is illustrated in Figure 1.1. Since the asymptotic form of In(x) is ex/

√
2πx when

ε goes to zero, (3.21) becomes

w

w
= 2

ξ2− σ2

1− σ2
. (3.22)
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For R < 0, x is positive, then for x > 0, M(a,b,x) becomes an increasing function of x,
therefore, C1 must be zero and (3.3) takes the form

dw

dr
= r

b2
1

[
C2 U

(
1 + (N/2),2,ξ2/2εN

)− 2k
2 +N

]
, (3.23)

where N =−R. The integration gives

w = C2εN
∫

U
(
1 + (N/2),2,z

)
dz− k

2 +N
ξ2 +C4. (3.24)

Using the identity [21]
∫

U(a,b,z)dz = 1
1− a

U(a− 1,b− 1,z) +C (3.25)

and the boundary conditions (2.9), one obtains

w

k
= 1

2 +N

[(
1− ξ2)− (1− σ2)G], (3.26)

where

G= U
(
N/2,1,ξ2/2εN

)−U(N/2,1,1/2εN)
U(N/2,1,1/2εN)−U

(
N/2,1,σ2/2εN

) . (3.27)

When ε goes to zero, using the asymptotic expression of U(a,b,x) in [23], G becomes

lim
ε→0

G= lim
ε→0

(
ξ2/2εR

)−N/2− (1/2εR)−N/2

(1/2εR)−N/2− (σ2/2εR
)−N/2 = ξ−N − 1

1− σ−N
(3.28)

and (3.26) reduces to

lim
ε→0

w

k
= 1

2 +N

[
1− ξ2− (1− σ2) 1− ξ−N

1− σ−N

]
, (3.29)

which is the expression for the velocity of a Newtonian fluid [9]. The mean velocity is
given by (3.13). Inserting the expression for w given by (3.26) into (3.13) and using the
identity

∫
U(a,1,z)dz = 1

1− a
U(a− 1,0,z) +C, (3.30)

one obtains

w

k
= 1

2 +N

(
1− σ2

2
+ 2εNH

)
, (3.31)

where

H=
(
2/(2−N)

)[
U
(
N/2−1,0,1/2εN

)−U
(
N/2,0,σ2/2εN

)]−((1−σ2
)
/2εN

)
U(N/2,1,1/2εN)

U(N/2,1,1/2εN)−U
(
N/2,1,σ2/2εN

) .

(3.32)
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When ε goes to zero, using the asymptotic expression of U(a,b,x), H becomes

lim
ε→0

H = lim
ε→0

(
2/(2−N)

)[
(1/2εN)1−N/2− (σ2/2εN

)1−N/2]− ((1− σ2
)
/2εN

)
(1/2εN)−N/2

(1/2εN)−N/2− (σ2/2εN
)−N/2

=
(
2/(2−N)

)(
1− σ2−N)− (1− σ2

)
1− σ−N

(3.33)

and (3.31) can be written as

w

k
= 1

2 +N

[
1− σ2

2
+

(
2/(2−N)

)(
1− σ2−N)− (1− σ2

)
1− σ−N

]
, (3.34)

which is the expression for the mean velocity of a Newtonian fluid [9]. Using the expres-
sions in (3.26) and (3.31), the velocity becomes

w

w
= 1− ξ2 +

(
1− σ2

)
G(

1− σ2
)
/2 + 2εNH

. (3.35)

The variation of w/w with respect to ζ = (ξ − σ)/(1− σ) for various values of −R and ε
is illustrated in Figure 1.1. The value of σ is taken as 0.2 and the values of ε are 0 and 1.
Equation (3.35) is valid for all values of −R and ε. When −R goes to infinity, using the
expression in [23] which is

lim
ε→0

Γ(1 + a− b)U(a,b,x/a)= 2x1/2−(1/2)b Kb−1(2
√
x), (3.36)

equation (3.35) takes the following form:

w

w
= 1− ξ2 +

(
1− σ2

)[
K0
(
ε−1/2ξ

)−K0
(
ε−1/2

)]
/
[

K0
(
ε−1/2

)−K0
(
σε−1/2

)]
K0
(
ε−1/2

)−K0
(
σε−1/2

) , (3.37)

where Γ(x) is the gamma function and K0(x) and K1(x) are the modified Bessel function
of the second kind of orders zero and one. The variation of w/w with respect to ζ for
various values of ε is illustrated in Figure 1.1. When ε goes to zero, since the asymptotic
form of Kn(x) is e−x

√
π/2x, (3.37) becomes

w

w
= 2

1− ξ2

1− σ2
. (3.38)

This expression of the velocity satisfies the boundary condition at ξ = 1, but it does not
satisfy the boundary condition at ξ = σ .

4. Conclusions

The aim of this paper was to obtain an exact solution of the governing equation for the
axial flow of a second-grade fluid between two coaxial porous cylinders. The solution has
three coefficients: two of them can be determined by the no-slip boundary condition.
Thus, unless an additional condition is prescribed over the boundaries, one has a para-
metric solution. The other coefficient can be determined by using the properties of the
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confluent hypergoemtric functions. The exact solution is valid for all values of the cross-
Reynolds numbers and the elastic numbers. A comparison of the solution with that of
the Newtonian fluid shows that there is a different behaviour near the boundaries.
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[8] M. E. Erdoğan and C. E. İmrak, “On the axial flow of an incompressible viscous fluid in a pipe
with a porous boundary,” Acta Mechanica, vol. 178, no. 3-4, pp. 187–197, 2005.

[9] A. S. Berman, “Laminar flow in an annulus with porous walls,” Journal of Applied Physics, vol. 29,
pp. 71–75, 1958.

[10] S. P. Mishra and J. S. Roy, “Laminar elasticoviscous flow in an annulus with porous walls,” Physics
of Fluids, vol. 10, no. 11, pp. 2300–2304, 1967.

[11] E. Rukmangadachari, “Unsteady flow of an elastico-viscous fluid between two coaxial cylinders,”
Rheologica Acta, vol. 21, no. 3, pp. 223–227, 1982.

[12] R. Bandelli and K. R. Rajagopal, “Start-up flows of second grade fluids in domains with one
finite dimension,” International Journal of Non-Linear Mechanics, vol. 30, no. 6, pp. 817–839,
1995.

[13] C. Fetecau, “Analytical solutions for non-Newtonian fluid flows in pipe-like domains,” Interna-
tional Journal of Non-Linear Mechanics, vol. 39, no. 2, pp. 225–231, 2004.

[14] M. R. Mohyuddin, T. Hayat, F. M. Mahomed, S. Asghar, and A. M. Siddiqui, “On solutions of
some non-linear differential equations arising in Newtonian and non-Newtonian fluids,” Non-
linear Dynamics, vol. 35, no. 3, pp. 229–248, 2004.

[15] K. R. Rajagopal and P. N. Kaloni, “Some remarks on boundary conditions for flows of fluids of
the differential type,” in Continuum Mechanics and Its Applications, G. A. C. Graham and S. K.
Malik, Eds., pp. 935–942, Hemisphere, New York, NY, USA, 1989.

[16] K. R. Rajagopal, “On boundary conditions for fluids of the differential type,” in Navier-Stokes
Equations and Related Nonlinear Problems, pp. 273–278, Plenum Press, New York, NY, USA,
1995.

[17] R. L. Fosdick and B. Bernstein, “Nonuniqueness of second-order fluids under steady radial flow
in annuli,” International Journal of Engineering Science, vol. 7, no. 6, pp. 555–569, 1969.
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