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The aim of this paper is the study of instabilities during plastic deformation at constant
cross-head velocity. The deformation is supposed to be controlled by the emission of
dislocation loops. Under some hypothesis analogous to the Mecking-Lücke relation, we
derive a linear delay differential-difference equation. The “retarded” time term appears as
the phase shift between the time of loop nucleation and the time at which the mean
strain is recorded. We show the existence of the solution of strain equation. We give
an analytic approach of solution using Lambert functions. The stability is also investi-
gated close to the stable solution using a linearization of the number of nucleated loops
functions.
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1. Introduction

The morphological change of solids has been largely developed these last years in me-
chanical engineering and materials science. Localization of plastic deformation in ho-
mogeneous materials can be associated with instabilities of the stress-strain curves. This
phenomenon can have very different aspects: Portevin-Le Chatelier PLC effect, Lüders
bands, twinning, thermomechanical effect, avalanches of dislocations. Some criteria of
plastic localization are proposed in [1].

The PLC effect was first related to a negative strain rate sensitivity by Penning [2]. The
physical origin of this phenomenon is the dynamic strain ageing associated with the in-
teraction between mobile dislocations and diffusing solute atoms [3]. In [4], localization
of plastic deformation associated to the PLC effect was investigated by Kovács et al. in an
Al−Mg alloy subjected to tensile deformation at constant stress rates and room tempera-
ture. In [5], a new model and numerical results are presented for a physically-consistent
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description of plastic material instabilities referred to as PLC effect, namely the oscillatory
plastic flow that may be observed in metallic alloys subjected to load—or displacement—
controlled plastic deformation in a certain range of strain, strain rate, and temperature.
Demirski and Komnik present in [6] an investigation of the relation between the dy-
namic (inertial) properties of the loading system and the plastic deformation kinetics
at the jump and formulate the condition of the jumplike character of the deformation:
the strain rate sensitivity of the flow stress must be below critical, which depends on
the effective mass and the stiffness of the crystal-machine system. Graff et al. [7, 8] pro-
pose finite element simulations and experimental observations of PLC effect and Lüders
bands propagation in notched and compact tensile specimens of aluminum using the
macroscopic PLC constitutive model. Stüwe and Tóth [9] analyze the role of crystal ori-
entation in the stability of tensile testing when plastic deformation and Lüders bands
are produced by crystallographic slip. Yang and Tong [10] consider the interaction be-
tween solute atoms and mobile dislocations during plastic deformation in an aluminum
alloy and explain the formation of the coarse slip bands in terms of dynamic strain aging
under both single- and multiple-slip conditions. Louchet and Brechet [11] present the
different types of dislocations patterning during uniaxial deformation as a function of
significant physical parameters such as crystalline structure; they have shown that there is
a competition between dislocation production and rearrangements and they prove that
this phenomenon is controlled by strain rate and temperature. Miguel et al. [12] pro-
pose a simplified numerical model to study the deformation of ice single crystals; they
analyze the avalanche-like rearrangements of dislocations during the dynamic evolution
and characterize the viscoplastic deformation of ice or similar crystalline materials in the
from of nonequilibrium statistical mechanics.

In this paper, following the work of Grilhé et al. [13] restricted to graphically analysis
of the stability of solution, we give a complete mathematical study of the problem of plas-
tic deformation instability. Under some assumptions and by using a linear analysis, we
deduce a differential equation with delay. We show the theoretical existence and stability
of the solution according to the characteristics of material and the time lag. We use the
Lambert W-functions to give an analytical solution of our problem. This will enable us to
validate our theoretical result of stability. The paper is presented as follows: in Section 2,
we present the modeling of the physical problem of plastic deformation instability. In
Section 3, we show the existence of the solution and we use the Lambert W-functions to
give an analytical approach of the solution. In Section 4, we theoretically prove the as-
ymptotic stability of the solution around the initial stress and we complete this work by a
numerical validation of stability.

2. Presentation of the problem

2.1. Mecking-Lücke equation. We consider the elastic-plastic deformation. In this case,
the strain rate ε̇ is the sum of the plastic strain rate ε̇p of the specimen and of the elastic
strain rate ε̇e = σ̇/M of the combined sample and loading system (with a stiffness M)

ε̇(t)= ε̇p(t) + ε̇e(t). (2.1)
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For instance, we are interested in an expression of plastic strain rate. We can write

ε̇p(t)= bΣ̇(t)
V

, (2.2)

where V is the volume of sample which is supposed to remain constant, b is the magni-
tude of Burgers vector along the tensile axis, and Σ(t) is the area in which the dislocation
appears. The relation (2.2) is depending of the dislocation mechanism which is operative
in the crystal. In the case where the dislocation density ρ(t) and mean velocity vary slowly
and in a monotonous way and we suppose that plastic deformation is governed by Peierl’s
forces, (2.2) becomes

ε̇p(t)= bρ(t)v(t). (2.3)

The plastic deformation may also be controlled by the emission of dislocation loops from
Frank-Read type sources model. We denote by n(t) the number of loops arising at time
t in the unit volume and during unit time and by S the mean area swept by the loops
supposed constant during times which are long enough compared with the period of
instabilities. Equation (2.2) becomes

ε̇p(t)= bn(t)S. (2.4)

The area S depends on the instantaneous density of the forest and thus on the previous
strain history of the sample. We suppose that S varies slowly. If we denotes by L the mean
free-path of a dislocation, then we can write the rate of creation of dislocation in the form

ρ̇(t)� n(t)S
L

. (2.5)

Replacing in (2.4) the term n(t)S by Lρ̇(t) obtained in (2.5), we get the relation given by
Mecking and Lücke [14]:

ε̇p(t)= bρ̇(t)L. (2.6)

The relations (2.4) and (2.6) are established assuming that the area S is instantaneously
swept by each dislocation as soon as it is emitted.

2.2. Derivation of the evolution equation [13]. Delay differential equation arises in
many areas of mathematical modelling; for example: population dynamic, chemical ki-
netics, biosciences problems, and more general control problems. In this study, the system
is governed by a principle of causality: the future state of the system is independent of the
past states and is determined solely by the present. With a finite dislocation velocity, the
area swept by a loop nucleated at a time t = 0 is a function S(t) which is depends on
the mechanism considered (slip, twinning, etc.) and on the state of the crystal. After the
flight-time τ′, the mobile dislocation gets pinned or reaches the free surface of the sample
having covered a constant area S(τ′)= S since it was emitted. Then only loops generated
at a time t = t′, with 0 < t′ < τ′, will contribute to the deformation at a time t. We can
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write (2.4) in the form

ε̇p(t)= b
∫ τ′

0
n(t− s)Ṡ(s)ds. (2.7)

The number of loops nucleated at a time t is a function of time through the applied stress.
Thus, the strain rate is given by the relation

ε̇(t)= b
∫ τ′

0
n
(
σ(t− s)

)
Ṡ(s)ds+

σ̇(t)
M

. (2.8)

In a tensile test with constant strain rate ε̇, a stationary solution of (2.8) is σ = constant=
σ0 and we have

ε̇(t)= bn
(
σ0
)
S(τ′). (2.9)

n(σ0) and σ0 can be considered as remaining constants only during periods shorter than
the duration of the tensile test. To simplify the problem, we suppose that [13]

Ṡ(t)= Sδ(t− τ), (2.10)

where S is a constant equal to S(τ′), δ(t− τ) is a Dirac distribution, and τ is the mean
delay time given by

τ =
∫∞

0 Ṡ(t)t dt
S

. (2.11)

The approximation (2.10) amounts to replacing S(t) by a step function. The time lag
given by relation (2.11) can be interpreted by the phase displacement between the time of
loop nucleation and the time at which the main strain is recorded. Under the assumption
(2.10), we can rewrite (2.8) in the form

ε̇(t)= bSn
(
σ(t− τ)

)
+
σ̇(t)
M

. (2.12)

We remark that the solution given in (2.9) is always valid. To investigate the stability of
system strain-stress curves, we linearize the function n(σ) close to the value σ0

n
(
σ(t)

)= n
(
σ0
)

+
∂n

∂σ

(
σ = σ0

)(
σ(t)− σ0

)
. (2.13)

Then (2.12) becomes

Mε̇(t)=MbSn
(
σ0
)

+ aσ(t− τ) + σ̇(t)− aσ0, (2.14)

where

a=MbS
∂n

∂σ

(
σ0
)
> 0. (2.15)
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Finally, using (2.9) we derive the Mecking-Lücke equation with delay describing the tem-
poral evolution of stress

σ̇(t)=−aσ(t− τ) + aσ0. (2.16)

3. Resolution of the evolution equation

A linear constant-coefficient ordinary differential equation with a constant delay-time
can be solved by Laplace transform techniques [15]. In this section, we show the exis-
tence of the solution of problem (2.16). We also give an asymptotic approach to complete
solution for system (2.16) based on the concept of Lambert W-functions. The stability of
stress function close to a constant stress σ0 is presented using an explicit solution of (2.16)
in the form of an infinite series of modes written in terms of Lambert W-functions.

Equation (2.16) is a linear retarded differential difference equation with delay time τ.
The solution of either equation is determined uniquely when initial data ϕ defined on an
initial interval is prescribed (ϕ is not necessary differentiable). To define a function σ in
(2.16) for t ≥ 0, we impose an initial data on the interval [−τ,0] (e.g., we consider ϕ≡ 1
in [−τ,0]). In fact, let ϕ be a given continuous function on [−τ,0] (ϕ is called preshape
function) and we consider the problem (2.16) with initial data ϕ:

σ̇(t)=−aσ(t− τ) + aσ0 if t ≥ 0,

σ(t)= ϕ(t) if t ∈ [−τ,0].
(3.1)

The following result proves the existence of the solution of problem (3.1).

Theorem 3.1. The problem (3.1) has a unique solution σ defined on [−τ,∞) depending on
initial data ϕ.

Proof of Theorem 3.1. Using the variation-of-constants formula [16] and considering σ
such that σ(t)= ϕ(t) for −τ ≤ t ≤ 0, and

σ(t)= ϕ(0) +
∫ t

0

[
aσ0− aσ(s− τ)

]
ds for t ≥ 0. (3.2)

It is clear that the function given by (3.2) is continuously differentiable for t ≥ 0 and (3.1)
is satisfied on [0,∞) (at t = 0 the derivative in (3.2) represents the right-hand derivative).

�

3.1. Lambert W-functions. Some physical problems and modern engineering problem
use the Lambert W-functions [17, 18]. Corless et al. [19, 20] present some properties and
applications in pure and applied mathematics of the Lambert functions. They have also
developed the asymptotic expansions of the branches of W . The Lambert W-function
is defined to be the inverse of the function ω 	→ ωeω. This function W(z) satisfies the
following:

W(z)eW(z) = z. (3.3)
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W is a multivalued function from C to C. If z is real and z <−1/e then W(z) is mul-
tivalued complex. If z, real and −1/e ≤ z < 0, there are two possible real values of W(z):
the branch satisfying −1≤W(z) is denoted by W0(z) and called the principal branch of
Lambert W-functions and the other branch satisfying W(z)≤−1 is denoted by W−1(z).
If z is real and z ≥ 0, there is a single real value for W(z) which also belongs to the prin-
cipal branch W0(z). We can write the principal branch W0(z) in the following:

W0(z)=
∞∑
n=1

(−n)n−1

n!
zn. (3.4)

Calculation of other branches of Lambert W-function, for k = 0;±1;±2; . . ., are given by

Wk(z)= ln(z) + 2πik− ln
[

ln(z) + 2πik
]

+
∞∑
p=0

∞∑
m=p

Cpm

(
ln
[

ln(z) + 2πik
])m

(
ln(z) + 2πik

)p+m , (3.5)

where the coefficient Cpm = (−1)pS(p+m, p+ 1)/m!, S is a nonnegative Stirling number
of the first kind [21], computable via the generating function

x(x− 1)···(x−n+ 1)=
n∑

m=0

(−1)n−mS(n,m)xm, S(n,m)= 0 for m> n. (3.6)

3.2. Analytic approach solution. In this section we give an analytic approach to the so-
lution of (3.1) using the Lambert W-functions. For this we consider the characteristic
equation associated to (2.16)

σ̇(t)=−aσ(t− τ). (3.7)

Equation (3.7) is obtained from (2.16) by looking for nontrivial solution of the form ceλt

where c is constant. Equation (3.7) has a nontrivial solution ceλt if and only if

F(λ)≡ λ+ ae−λτ = 0. (3.8)

Equation (3.8) is equivalent to

λeλτ =−a. (3.9)

Multiplying the two terms of (3.9) by τ, we obtain

λτeλτ =−aτ. (3.10)

Using the Lambert W-functions defined in (3.3), we can write (3.10) in the form

W(−aτ)eW(−aτ) =−aτ, (3.11)

where W(−aτ)= λτ. The value of λ is given by the formula

λ= W(−aτ)
τ

. (3.12)
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The analytic approach solution of characteristic (3.7) can be written as

σ1(t)=
∞∑

k=−∞
Cke

(Wk(−aτ)/τ)t, (3.13)

where

Ck = lim
N→∞

(
Λ−1(τ,N)ϕ

)
k, (3.14)

where Λ(τ,N) is defined as a matrix with the functions ζk(t)= e(Wk(−aτ)/τ)t as its elements
[17], and (·)k represents the kth element of the corresponding vector (see the appendix).
We can choose the preshape ϕ = 1, then if we denote by 12N+1 the (2N + 1)-vector of
coefficients 1, then we have

Ck = lim
N→∞

(
Λ−1(τ,N)12N+1

)
k. (3.15)

Remark 3.2. We can write the solution of (3.7) with initial data ϕ in the form [22]

y(t)= ϕ
[t/τ]+1∑
n=0

(−a)n
(
t− (n− 1)τ

)n
n!

, (3.16)

where [z] denotes the integer part of z.

Now, we consider the problem (3.1), the solution of (3.1) with initial data ϕ ≡ 1 can
then be written as

σ(t)=
∞∑

k=−∞

[
Ck +

∫ t

0
lim

N→∞;R→∞
(
Λ−1(Rs,N

)�)kds
]
e(Wk(−aτ)/τ)t, (3.17)

where Ck is defined by (3.15) and� is the (2N + 1)-vector of coefficients aσ0, that is,

�= aσ012N+1. (3.18)

4. Stability analysis

Many techniques has been used to prove the stability of solution of differential-difference
equations. In this section, we make use of the method of Liapunov functionals [16] that
generalize the second method of Liapunov for ordinary differential equations. The exact
region of asymptotic stability of solution of system (3.1) is obtained by the roots of a
characteristic equation when they are in the left half-plane. We specify that the asymp-
totic stability of the solution of (3.1) around σ0 amounts to study the asymptotic stability
of the solution of the homogeneous equation (3.7) near of the origin, since any solution
of (3.1) can be written in the form σ = σ1 + σ2, where σ1 is the solution of the homoge-
neous equation (3.7) having the initial data ϕ on [−τ,0], and where σ2 is the particular
solution of (2.16) having zero initial values on [−τ,0]. Thus we see that if the zero solu-
tion of homogeneous equation (3.7) is asymptotically stable, then all solutions of (3.1)
are asymptotically stable around a constant stress σ0.
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4.1. Theoretical stability. We give sufficient conditions for the stability and instability of
the solution of (3.1). It is well known that the solution σ of (3.1) is asymptotically stable
for every preshape continuous function ϕ on [−τ,0] if (3.8) has no zeros in C+ where
C+ = {λ ∈ C/Re(λ) ≥ 0}. We show the asymptotic stability using the following lemma
(see [16, page 416]).

Lemma 4.1. All roots of the equation (z+α)ez +β = 0, where α and β are real, have negative
real parts if and only if

α >−1, α+β > 0,

β < ζ sinζ −αcosζ ,
(4.1)

where ζ is the root of ζ =−α tanζ , 0 < ζ < π if α �= 0, and ζ = π/2 if α= 0.

Now we present the result of asymptotic stability of solution of system (3.1).

Theorem 4.2. For every preshape continuous function ϕ on [−τ,0], the solution of (3.1) is
asymptotically stable if and only if 0 < aτ < π/2 and the solution is unstable if and only if
aτ ≥ π/2.

Proof of Theorem 4.2. We can write (3.8) in the form

λτeλτ + aτ = 0. (4.2)

The solution of (3.1) is asymptotically stable if and only if the roots of (4.2) are in the
left half-plane. Using Lemma 4.1 for (4.2) with α = 0 and β = aτ, the roots (4.2) have
negative real parts if and only if ζ = π/2 and 0 < aτ < π/2. The proof of Theorem 4.2 is
complete. �

4.2. Numerical validation of stability. We use the analytical approach solution in the
form (3.17) of problem (3.1) to make the asymptotic analysis of stability of solution.
The following numerical results do not give the exact solution of (3.1), but they show
asymptotic stability and instability of solution of (3.1) according to the parameter aτ. We
use only the first terms (N = 0 andN = 1) in the expression (3.17) to make the asymptotic
analysis of stability. Various calculations are made by using the MAPLE software and [23].
These numerical results validate the theoretical result obtained in Theorem 4.2. Figures
4.1(a) and 4.2(a) show the asymptotic stability of the solution of (3.1) near to σ0. The
beginning of phase instability of the solution of (3.1) is shown in Figure 4.3 and Figures
4.1(b) and 4.2(b).

Physical discussions. The results of this paragraph show that if aτ (a=MbS(∂n/∂σ)(σ0))
is lower than π/2, then the stress-strain curve is a horizontal σ = σ0. On the other hand,
if aτ becomes higher than π/2, then periodic instabilities must appear. Several physical
factors (M, bS, (∂n/∂σ)(σ0), and τ) play a role in the strain-stress curve stability.
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Figure 4.1. (a) Solutions σ(t)/σ0 to (3.1) for τ = 0.5, 0.8 and a= π/2; the solution for τ = 0.5; a= π/2
is plotted in dotted line. (b) Solutions σ(t)/σ0 to (3.1) for τ = 1.1, 7 and a = π/2; the solution for
τ = 1.1; a= π/2 is plotted in dotted line. The solutions are represented for t ∈ [0;15] and N = 0.
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Figure 4.2. (a) Solutions σ(t)/σ0 to (3.1) for τ = 0.5, 0.8 and a= π/2; the solution for τ = 0.5; a= π/2
is plotted in dotted line. (b) Solutions σ(t)/σ0 to (3.1) for τ = 1.1, 7 and a = π/2; the solution for
τ = 1.1; a= π/2 is plotted in dotted line. The solutions are represented for t ∈ [0;15] and N = 1.

(1) First, the stiffness machine valueM. This has been checked during deformation of
Cu−Al alloys by Coujou and Vergnol [24]: with a hard stiffness machine, serrated
stress-strain curves are observed and these curves become smooth with a soft
stiffness machine.

(2) Sb is the amplitude of an elementary step of deformation. In the case of twinning,
these elementary steps are microtwins [25–27] so that Sb is large and aτ is higher
than π/2. This must explain the observed twinning instabilities [25–27].

(3) In the case of PLC effect, dislocations are pinned by impurities and are unlocked
when stress becomes large. In this case, instabilities can be attributed to great
values of (∂n/∂σ)(σ0) [7, 8].
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Figure 4.3. Solution σ(t)/σ0 to (3.1) for τ = 7 and a= π/2. The solution is represented for t ∈ [0;60]
and N = 1. The time interval is selected larger to see the instability of the solution.

5. Conclusion

In this article, we established a differential-difference equation with delay allowing to
describe the plasticity of a solid becoming deformed by loops of dislocations or micro-
twinning. The linearized problem is used for study of deformation: we showed the ex-
istence of solution. The analytic approach of solution via the Lambert W-functions is
presented. We could state the criterion of stability and describe the beginning of the de-
formation in the stable and unstable regions. For a long time, it is necessary to use the
autonomous nonlinear equation

σ̇(t) +βσ2(t− τ) +Θσ(t− τ) + ξ = 0, (5.1)

where

Θ= α− 2βσ0; ξ = βσ2
0 −ασ0,

α=MbS
∂n

∂σ

(
σ0
)
> 0; β =MbS

∂2n

∂σ2

(
σ0
)
< 0.

(5.2)

Equation (5.1) derives from (2.12) by replacing n(σ(t)) by the second-degree Taylor poly-
nomial expansion of n at σ0.

Appendix

Letting h(t) be a continuous function, we can write

h(t)=
∞∑

k=−∞
Lkζk(t); t ∈ [0,R], (A.1)
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where Lk is the kth Lambert coefficient and ζk(t) = e(Wk(−aτ)/τ)t. The real R can go to
infinity.

To find the values of the coefficients Lk, we assume that the most dominant modes are
the first N modes, where N is a large number, we can write h(t) in the form

h(t)≈
N∑

k=−N
Lkζk(t); t ∈ [0,R]. (A.2)

By dividing the interval [0,R] into 2N divisions, (A.2) becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ−N (R) ζ−N+1(R) ··· ζN (R)

ζ−N
(
R− R

2N

)
ζ−N+1

(
R− R

2N

)
··· ζN

(
R− R

2N

)

ζ−N
(
R− 2R

2N

)
ζ−N+1

(
R− 2R

2N

)
··· ζN

(
R− 2R

2N

)

...
...

...
...

ζ−N (0) ζ−N+1(0) ··· ζN (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

L−N
L−N+1

...
LN

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

h(R)

h
(
R− R

2N

)

...
h(0)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

(A.3)

We denote by

Λ(R,N)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ−N (R) ζ−N+1(R) ··· ζN (R)

ζ−N
(
R− R

2N

)
ζ−N+1

(
R− R

2N

)
··· ζN

(
R− R

2N

)

ζ−N
(
R− 2R

2N

)
ζ−N+1

(
R− 2R

2N

)
··· ζN

(
R− 2R

2N

)

...
...

...
...

ζ−N (0) ζ−N+1(0) ··· ζN (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L=

⎛
⎜⎜⎜⎜⎝

L−N
L−N+1

...
LN

⎞
⎟⎟⎟⎟⎠ ; Θ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h(R)

h
(
R− R

2N

)

...
h(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.4)

The vector L represents an approximation for the coefficient Lk for large values of N . We
assume that the matrix Λ(R,N) is invertible, then we can write the system (A.3) in the
form

L=Λ(R,N)−1Θ. (A.5)
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Consequently, the coefficient Lk can be represented as

Lk = lim
N→∞

(
Λ(R,N)−1Θ

)
k (A.6)

and for t ∈ [0,R] we have

h(t)= lim
N→∞

N∑
k=−N

Lkζk(t)= lim
N→∞

N∑
k=−N

(
Λ(R,N)−1Θ

)
kζk(t). (A.7)
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