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Recommended by José Manoel Balthazar

A low-cost computer procedure to determine the orbit of an artificial satellite by using
short arc data from an onboard GPS receiver is proposed. Pseudoranges are used as mea-
surements to estimate the orbit via recursive least squares method. The algorithm ap-
plies orthogonal Givens rotations for solving recursive and sequential orbit determination
problems. To assess the procedure, it was applied to the TOPEX/POSEIDON satellite for
data batches of one orbital period (approximately two hours), and force modelling, due
to the full JGM-2 gravity field model, was considered. When compared with the reference
Precision Orbit Ephemeris (POE) of JPL/NASA, the results have indicated that precision
better than 9 m is easily obtained, even when short batches of data are used.

Copyright © 2007 Rodolpho Vilhena de Moraes et al. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The Global Positioning System (GPS) provides a powerful and quick means to com-
pute orbits for low Earth artificial satellites. Theoretically, four GPS satellites, simulta-
neously tracked, are enough for geometrical positioning of an artificial satellite carrying
an onboard GPS receiver. Dynamical orbit determination is a nonlinear problem where
the perturbing factors are not easily modelled. The GPS satellites transmit signals such
that accurate measurements of distances are performed based on the comparison be-
tween received signals and template signals generated by the receiver [1]. Through a GPS
receiver onboard of an artificial satellite it is possible to obtain such measurements (pseu-
doranges) that can be processed to estimate a state vector (e.g., position and velocity vec-
tors and parameters referred to the receiver clock bias). Using our knowledge about the
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dynamics of the motion and, at the same time, assuming statistics for the measurement
errors, the state vector can be computed based on a set of observations. To this, the differ-
ences between the observed and modelled observations are minimised according to the
least squares criterion [2–4].

The aim of this work is to determine the orbit of an artificial satellite carrying a GPS
receiver, by a recursive least squares method based on L1-code GPS satellite-to-satellite
tracking observations, and to make use of Givens rotations [5] in order to solve the prob-
lem in a recursive way. The Givens rotations algorithm is as stable as other orthogonaliza-
tion algorithms (such as Cholesky decomposition, Gram-Schmidt, or Householder) and
allows the processing for each observation epoch, avoiding the storage of large matrices.
Advantages of the use of Givens rotations were already point out in the seventies of the
last century in an improvement of a computational form of the discrete Kalman filter [6].

Givens rotations have been successively used at Center for Space Research, University of
Texas at Austin, Austin, Tex, USA [7].

Thus, this procedure for near real time positioning has been considered to be used in
the next two Chinese-Brazilian remote sensing satellites CBERS-3 and CBERS-4 sched-
uled to fly in 2008–2010, according to a Brazil-China protocol agreement. These missions
carry a main CCD camera payload with 20 m resolution and, therefore, a simple orbit
determination scheme with 10 m accuracy is a desirable requirement for the image pro-
cessing users. Due to onboard memory limitations it is likely that only a short batch of
GPS data (one revolution) around the image scene will be available.

Initially, a simple dynamical model (geopotential perturbations only) was used to pre-
liminary assess the procedure, by using the TOPEX/POSEIDON satellite as a test bed.
However, the final purpose is to evolve to applications of the procedure considering real
and suitable models for the perturbations well suited for the orbital geometry and physi-
cal characteristics of the CBERS mission satellites [8].

2. Dynamical model

The problem of dynamical orbit determination is essentially nonlinear. The orbital mo-
tion is described in an inertial frame by a set of ordinary differential equations:

r̈=−μ r
r3

+ P, (2.1)

where r = (x, y,z) is the position vector, μ is the gravity parameter, and P stands for
modelled perturbations. Formally, we include an additional equation ḃ = 0 with b =
[b0,b1,b2] solve-for parameters referred to the receiver clock bias, (bias, drift, and drift
rate). Thus, the state vector to be estimated is defined by x ≡ [r v b

]t
with v being

the velocity vector. The state transition matrix which relates the state between times tk
and tk+1 can be computed by Φ̇(t, tk) = F(x, t)Φ(t, tk) with initial condition Φ(tk, tk)= I
[3, 9, 10]. The Jacobian matrix F(x,t) contains partial derivatives of the differential equa-
tions of motion. In general, the transition matrix is numerically integrated together with
the orbit. In our case, where only the geopotential perturbation is modelled, the matrix
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F can be written as

F= ∂f
∂x
=
⎡

⎢
⎣

03×3 I3×3 03×3

A3×3 03×3 03×3

03×3 03×3 03×3

⎤

⎥
⎦ , (2.2)

where f is the acceleration acting on the satellite, 03×3 is a 3× 3 matrix of zeros, I3×3

is a 3× 3 identity matrix and, A3×3 is the 3× 3 matrix of gravity gradient 3× 3 given
by A3×3 = ∂v̇/∂r. In this work, the modelled force includes the geopotential, taking into
account the spherical harmonic coefficients up to 50th order and degree of the JGM-
2 model [11]. The geopotential acceleration and its gradient matrix A3×3 were com-
puted using basically Pine’s universal recursive formulation [12], however we use the
improved numerical recursions as stated in Lundberg and Schutz [13]. For assessing the
proposed approach, we decided to consider only the geopotential perturbation, applied
to TOPEX/Poseidon satellite for which results are broadly available for comparison pur-
poses. Considering that the aimed application would be the CBERS satellite, the final
procedure, as developed for the CBERS mission, will include also other relevant pertur-
bations such as radiation pressure forces, lunisolar attraction, and atmospheric drag.

3. Measurement model

The general nonlinear equation representing the scalar model of observations at epoch.
is given by yk = hk(xk, t) + vk, where yk is the vector of m observations, hk(xk) is the m-
dimensional nonlinear vector function of the state vector xk, vk is the m-dimensional
vector of observation errors modelled as white noise. Pseudoranges are measurements
of the distance between the GPS satellites and the receiver’s antenna, referring to the
epochs of emission and reception of the signals. Pseudorange is a typical type of mea-
surement in an orbit determination process using GPS, and can be written as [1] Pi =
ρi + c(dt−dTi) +Dion +Dtrop + v, where Pi is the pseudorange measured by the user with
respect to the ith GPS satellite, ρi is the geometric distance, c is the speed of light, dt is the
user clock offset, dTi is the ith GPS satellite clock offset, Dion are ionospheric delays (not
considered in this work), Dtrop are tropospheric delays (not applicable), and v denotes
random measurement noise. Tests computing the first-order ionosphere effect using P1

and P2 measurements, were performed. They show that, given the aimed for precision
in this work (order of 10 m), ionospheric delays can be neglected. The user clock offset
is modelled as cdt = b0 + b1Δt + b2Δt2, where b= [b0,b1,b2] is a vector of parameters to
be estimated representing the clock bias, bias rate, and rate of bias rate. To estimate the
state vector parameters using the least squares algorithm (e.g., [14]), the measurement
equation is linearized and the sensitivity matrix of partial derivatives with respect to the
state vector is derived.

4. Recursive least squares method based on givens rotations

The numerical stability of a state vector estimator based on the least square method
should be assured. To validate the method for orbit determination using a recursive ap-
proach, namely the recursive least squares method, one is tempted to use the Kalman



4 Mathematical Problems in Engineering

form [2] in straightforward way. Extensive analyses of such algorithms have shown that
they are unstable numerically and sensitive to error accumulation [2, 3]. On the other
hand, the nonrecursive solution of normal equations requires a matrix inversion, another
source of numerical errors, which should be avoided. In order to overcome such prob-
lems, several methods can be found in the literature using orthogonal transformations.
They yield best numerical performance with respect to problems due to error propa-
gation or uncertainty in the information. The main goal of applying orthogonal trans-
formations to matrices and vectors in the least squares algorithms is the substitution of
the conventional algebra based on matrix inversions by a method that is more robust
and less prone to numerical errors. Among the several existing orthogonal transforma-
tions (e.g., Givens, Gram-Schmidt, Householder), the Givens rotations algorithm is the
most adequate transformation to selectively annihilate elements of a matrix, making it
easy to implement the least squares method in a recursive way. For a batch least squares
method, Gram-Schmidt or Householder transformations are in general computationally
less costly than Givens rotations. However, from a recursive formulation point of view,
Givens rotations algorithm allows us to implement the processing of one measurement
at a time, avoiding the need of large matrices for storage (see, e.g., [6, 9, 15]).

Indeed, the direct solution of the normal equations can be quite sensitive to small
errors in a sensitivity matrix H that are inevitable when forming the product (HTH),
with a limited numerical machine accuracy. In order to avoid the normal equations of
the form (HTH)x =HT y, the minimization of the least squares cost function using Q-R
factorisation [6, 16] is recommended:

Hm×n =Qm×m

(
Rn×n

0(m−n)×n

)

, (4.1)

where the matrix H is factored into an orthogonal matrix Q and an upper triangular
matrix R.

Methods for performing the Q-R factorisation have been proposed [5, 6, 16, 17],
involving orthogonal transformations that successively annihilate the sub-diagonal ele-
ments of H. Nevertheless we concentrated our approach on the Givens rotations method
for the reasons stated above.

The complete transformation can be written as the product of the sequence of orthog-
onal rotations required to transform Matrix H into the form of (4.1):

QT = (UmUm−1 ···U3U2
)

(4.2)

denoting the sequence of orthogonal rotations required to put matrix H into the form of
(4.1).

Orthogonal transformations of matrices play a considerable role in the numerical
computations of the least squares problems [18]. In fact, the Euclidian norm of a vec-
tor does not change, the same accuracy is obtained with single computer floating point
arithmetic that otherwise would require double precision and the problem is solved in a
numerically robust fashion.
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Several programming tests were carried out before choosing the Givens rotation algo-
rithm for implementation in the recursive least squares method. The Kalman type algo-
rithm led to truncation errors for long batches of data. The Gram-Schmidt and House-
holder method were not as well suited for recursive implementation. Thus the Givens
algorithm was finally selected. The final combination of a simple orbit model and robust
numerical properties of the Givens orthogonal transformation resulted in a very com-
pact computer program with small requirements of storage, paving the way for further
improvements in terms of more complex models for orbit and GPS measurements.

5. Results

Actual TOPEX/POSEIDON (T/P) satellite flight data are used to validate the proposed
method. The T/P satellite was launched on August 10, 1992, and it orbits the Earth at
an altitude of 1336 km in an orbit with an inclination of 66◦, with near-zero eccentricity,
and an orbital period of about 1.87 hours. It has a GPS receiver onboard as experimental
equipment to verify several precision methods for orbit determination. The receiver can
track up to 6 GPS satellites simultaneously on two frequencies if antispoofing is inactive.
RINEX format for T/P observation data, GPS group data, and navigation messages are
provided by International GNSS Service (IGS), NASA, DC, USA [19], Goddard Space
Flight Center (GSFC), NASA, DC, USA, and Jet Propulsion Laboratory (JPL), NASA,
DC, USA. Here, the following files were used [20].

(1) T/P observation files: Pseudorange codes measured at two frequencies in GPS
time steps of 10 seconds, and made available by the GPS data processing facility
of JPL in RINEX format.

(2) Files with the Precise Orbit Ephemeris (POE): generated by JPL in one minute
UTC time steps in inertial true of date coordinates.

(3) GPS navigation message files in RINEX format made available by the Crustal
Dynamics Data Information System (CDDIS) of the GSFC.

In this work, the estimated position and velocities were compared with the T/P Pre-
cise Orbit Ephemeris (POE) generated by JPL which provides position estimates with an
estimated precision of 15 cm or better. The test conditions for the investigated problem
are the following:

(1) actual topex/poseidon pseudorange measurement dataset collected by the on-
board GPS receiver on November 18 1993;

(2) geopotential perturbations taking into account the spherical harmonic coeffi-
cients up to 50th order and degree of JGM-2 model;

(3) GPS antenna offset neglected, as its effects is about 5 m;
(4) pseudorange measurements at frequency L1 (Code);
(5) recursive least squares method with Givens rotations algorithm;
(6) short dataset of 2 hours (about 1 orbital period).

The estimates obtained by our method were compared with the POE reference and
produced position error of better than 9 m, starting with the JPL/POE values at first
epoch, but clock parameters at the 100 m error level.

Figure 5.1 shows the position error components compared with the JPL/POE refer-
ence orbit and Figure 5.2 shows the pseudorange residuals versus time, where the final
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Figure 5.1. Position differences to the POE/JPL orbit.

�20

�10

0

10

20

R
es

id
u

al
s

(m
)

0 2400 4800 7200

Time (s)

Figure 5.2. Pseudorange residuals.

residuals are clearly unbiased with respect to the apriori residuals. These are the plots
of pseudorange data residuals (observed minus computed) for different satellites, seen at
different times around the orbit. The apriori covariance matrix was set to 1000 m and
10 m/s for each component of the position and velocity vectors, respectively, and 5 m
standard deviation was adopted for the measurement error.

6. Conclusions

The aim of this work was to assess a recursive least squares method based on Givens ro-
tations to determine the orbit of an artificial satellite using an onboard GPS receiver. A
short batch of a two hours pseudorange measurement dataset (about one orbital period),
collected by the GPS receiver onboard of the T/P satellite, was used. The modelled forces
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included the geopotential taking into account the spherical harmonic coefficients up to
50th order and degree of the JGM-2 model. Results of this work, using T/P dataset from
November 18, 1993, compared against the postprocessed GPS ephemeris POE/JPL, has
demonstrated an accuracy better than 9 m, without requiring much computational effort.
In accordance with the obtained results, we can conclude that the recursive least squares
procedure implemented with Givens rotations algorithm is a simple, reliable, and numer-
ically stable method for orbit determination by using GPS measurements. The attained
precision can, of course, be improved, and the authors are working on it, considering
other relevant perturbing effects [21]. Finally, it is important to point out that for the tar-
get application, the CBERS-3 and 4 satellites, the perturbations due to atmospheric drag,
solar radiation pressure, lunisolar gravity field and tides, as well as measurement errors
(e.g., ionosphere) must be taken into account for precision applications.
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