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of the original Lorenz model to obtain a generalized Lorenz-type model for the flow in-
duced by the transient thermal field at the bottom plate. This study examines the con-
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functions and fluid properties.
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1. Introduction

The study of the thermally induced convection flow, or the Rayleigh-Benard convec-
tion problem, has centered on the Lorenz equation since 1963 when Lorenz used the
3-mode truncation of the Fourier series to obtain a nonlinear model [1]. Lorenz used
the Boussinesq approximation adopted by Saltzman [2] who solved the convection flow
problem in a seven-mode Fourier series approximation. The Lorenz equation represents
the Rayleigh-Benard convection for both the parallel and circular plates [3, 4]. Essentially,
the Boussinesq approximation originates from the Navier-Stokes equation and the heat
conduction equation when the variation of the fluid density is negligible. The Lorenz
model concerns the thermally induced convection flow by a steady-state temperature dif-
ference between the two parallel plates. Lorenz’s simplification to the nonlinear equation
allows for identification of the convection flow characteristics, such as the strange at-
tractors and flow stabilities. Major investigations of the Lorenz system have been on the
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bifurcation, stability, and chaos at different Rayleigh numbers and at both the small and
large Prandtl numbers [5–8]. These earlier studies are largely based on numerical com-
putations or experimental observations, which demonstrate various behaviors, including
the sequential bifurcations with respect to the Rayleigh numbers and chaos with sensitive
dependence on the initial conditions. In addition, both the homoclinic and heteroclinic
bifurcations occur leading to periodic orbits [9–11]. The study by McLaughlin found that
the sequential bifurcation of the Lorenz system itself can give rise to chaos [12, 13]. Curry
observed that chaos also persists when the system is subject to a harmonic forcing [14].
However, a formulation to explain the sequential bifurcations has not been well estab-
lished yet.

A sustained interest in the nonlinear convection flow extends the nonlinear model
further to higher order systems than the Lorenz three-dimensional model. Curry subse-
quently expanded the Lorenz model to a generalized Lorenz model of 14 modes. Curry
found different bifurcation and stability conditions with this high-dimensional analogue
of the convection flow problem [15]. Specifically, Curry’s computation results indicate
that a torus of a periodic orbit appeared at a higher r with period doubling bifurcations,
where r is the ratio between the Rayleigh number and the critical Rayleigh number. Curry
showed that the stability of the origin gives its way to the Hopf bifurcation at a critical
Rayleigh number. This critical number r differs from that established from the original
Lorenz model. In a separate study, Boldrighini and Franceschini [16] and Franceschini
and Tebaldi [17] investigated a five-term truncation of the convection equations. They
found that the system has a four-fold symmetry with four stable points and undergoes
both Hopf bifurcation and the period doubling bifurcation at large Rayleigh numbers to
produce four stable periodic orbits. Further, saddle node bifurcations exist at a larger r.
Gibbon and McGuinness studied another variation of the five-mode truncation of the
fluid convection model [18]. Their stability condition renders the Hopf bifurcation at
r = 1 and bifurcations into nonstable torus at a high r, which is consistent with Curry’s
results. In general, the numerical computation results of the high-dimensional convection
flow reveal a different stability and bifurcation condition from that of the original Lorenz
model. It is apparent that such a deviation comes from the different modal truncations.
For the Fourier series, although a higher order truncation gives a closer approximation
of the system, the fundamental mode plays a dominant role compared with other modes.
This makes the low-dimensional system, such as the Lorenz model, remain a valid ap-
proximation.

In spite of all the attention paid to the Lorenz system, major efforts have focused
on a thermal field defined the same as that in the original Rayleigh’s description,
that is, a constant temperature difference between the two parallel plates is main-
tained externally [3]. This restriction excluded the transient thermal process in the plate.
Therefore, the conclusions drawn from the Lorenz equation or a generalized higher-
dimensional Lorenz-type model become invalid when a transient thermal field is present.
The nonuniform transient temperature difference arises from a thermal and fluid en-
ergy transfer without external thermal modulation. Therefore, a formulation taking into
account the nonuniform transient thermal field will better explain the relevant flow
behaviors.
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In this paper, we investigate the Rayleigh-Benard convection problem with a transient
thermal field at the bottom layer. We derive the equation of motion with a transient ther-
mal field using the same truncation modes as that of Lorenz. Our purpose for this study
is to see how the transient thermal field influences the flow behavior, such as the bifurca-
tion and chaos with respect to the Rayleigh number and fluid properties. We will answer
questions on the sequential bifurcations to convection flow attractors and flow stability
in quantified terms to justify the numerical computation results from prior models and
from the current model. The study could reveal the difference and analogy between the
original Lorenz system and the system with a nonuniform transient thermal field.

This paper is organized as follows. Subsequent to this introduction on the previous
study of the original and the generalized Lorenz system, we derive the convection flow
model with a nonuniform transient thermal field. Next, we examine the steady-state at-
tractors of the flow subject to different thermal fields. In this part, we formulate various
bifurcation conditions, such as the Hopf bifurcation, period doubling, and saddle node
bifurcations that affect the attractor behavior and stability. In the fourth section, we illus-
trate the numerical computation results for the sequential bifurcations and the transient
response behavior. We pay special attention to the homoclinic bifurcations at large r and
offer our explanation of the phenomena. This paper concludes with discussions and a
summary of the influence of a transient thermal field on flow behaviors.

2. The model

The flow within a parallel plates with a transient heat source at the bottom layer is shown
in Figure 2.1. The flow is parallel in the y-direction. The flow velocity u,w in the horizon-
tal x- and the vertical z-direction, respectively, are related to the stream function ψ(x,z, t)
by the continuity equation as

∂u

∂x
+
∂w

∂z
= 0, u=−∂ψ

∂z
, w = ∂ψ

∂x
. (2.1)

Using the Boussinesq approximation, that is, the variation of the fluid density is negligi-
ble, the equilibrium equation for the flow field is [2]

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
+
∂P

∂x
− ν∇2u= 0, (2.2a)

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
+
∂P

∂z
− gεT1− ν∇2w = 0, (2.2b)

∂T

∂t
=−u∂T

∂x
−w∂T

∂z
+ κ∇2T , (2.3)
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Figure 2.1. A flow field in two parallel plates.

where the thermal field is defined as

T(x,z, t)= T1(x,z, t) + θ(x,z, t)=
(

1− z

H

)
ΔT + θ(x,z, t),

T1(x,z, t)= ΔT(x,0, t)− ΔT(x,0, t)z
H

,

θ(x,z, t)= θ11(x,z, t) + θ02(z, t).

(2.4)

The laminate temperature variation is independent of the cell height, that is,

∂ΔT

∂z
= 0. (2.5)

θ(x,z, t) is the transient temperature variation of the of the flow field, which is composed
of the 2D variation θ11(x,z, t) and the vertical variation θ02(z, t), respectively. ΔT(x,0, t)
is the temperature difference between the two parallel plates or equivalently the temper-
ature variation of the bottom plate when the upper plate is as the reference. ΔT(x,0, t)
causes a linear temperature variation along the vertical direction, T1(x,z, t). ΔT(x,0, t)
has both transient and nonuniform spatial variations in the x-direction, that is, ∂ΔT(x,0,
t)/∂t �= 0, ∂ΔT(x,0, t)/∂x �= 0.

Introducing (2.1) into (2.2a) and (2.2b), the governing equation of motion for the
thermally induced convection flow is transformed to be

∂

∂t

(∇2ψ
)− ∂ψ

∂z

∂

∂x

(∇2ψ
)

+
∂ψ

∂x

∂

∂z

(∇2ψ
)− gε∂T1

∂x
− ν∇4ψ = 0. (2.6)

Here, g and ε are the gravitational acceleration and the coefficient of volume expansion
of the fluid. With both spatial and temporal variations of the temperature, (2.3) becomes

∂θ

∂t
+
[(

κ

κL
− 1

)
z

H

]
∂ΔT

∂t
=−∂θ

∂z

∂ψ

∂x
+
∂θ

∂x

∂ψ

∂z
− z

H

∂ΔT

∂x

∂ψ

∂z
+ κ∇2θ +

ΔT

H

∂ψ

∂x
. (2.7)
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The Rayleigh number is a function of the temperature difference between the two parallel
plates, that is,

Ra = gεH3ΔT(x,z, t)
κν

. (2.8a)

The critical Rayleigh number is

Rc = π4

a2

(
1 + a2)3

. (2.8b)

Rc = 27π4/4 when the convection occurs at a wave length of a2 = 1/2 [2]. Considering
the transient conductive thermal field in the form ΔT(x, t) = ΔT(x)∗ gT(t), the ratio
between the two Rayleigh numbers r is

r(t)= Ra
Rc
∗ gT(t)= r∗ gT(t). (2.8c)

The function gT(t) represents the transient temperature variation with respect to time of
a conductive plate. For example, gT(t) is an exponential function arising from solution of
the diffusion equation

∂ΔT

∂t
= κL∇2(ΔT). (2.9)

gT(t) can also assume other forms for different thermal processes in the solids.
By incorporating (2.9) for the heat conduction of the plate along with the heat con-

ductivities at the boundaries, such as the Newmann or Dirichlet boundary conditions as
explained below, we obtain a Lorenz-type model with a nonuniform transient thermal
field as

dX

dτ
=−σX + σY ,

dY

dτ
= cXZ−Y + rX ,

dZ

dτ
= drX +XY − bZ + eκrβ,

(2.10a)

where

σ = ν

κ
, β = gT ,τ

gT
, b= 4

1 + a2
, c = 2cos

(
2πz
H

)
,

eκ = 1
2

(
κ

κL
− 1

)[
1 +

1
2

(
πz

H

)2]
.

(2.10b)

Note that here gT ,τ means ∂gT(τ)/∂τ. We adopted the same truncation modes X , Y , Z as
that in the original Lorenz equation, which are dimensionless functions of the normalized
time τ = (π/H)2(1 + a2)κt alone. The parameters b, σ , κ, ν, τ are defined the same as in
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the original Lorenz equation, that is, the geometry factor b, Prandtl number σ , kinematic
thermal viscosity ν, and thermal diffusivity of the fluid κ and that of the solid κL. It is
worth mentioning that our derivation verified that the original Lorenz model represents
the points of z =H/3 or z = 2H/3 only of the 2-dimensional flow field by assuming that
c =−1 based on the expression c = 2cos(2πz/H) of this model.

In the above derivation, a series approximation is used for the temperature variation
ΔT(x) with respect to x, in order to be consistent with the form of the functions X , Y , Z
for the purpose of reduction. This variation of ΔT(x) introduces the thermal parameter
d, which is related to heat conduction at the boundaries as follows:

(a) the von Neumann condition ΔT(x)=T0 sin(2πx/L) satisfies ΔT(x = 0, x = L)=0,

ΔT(x, t)= ΔT(x)gT(τ),

d = dN (x)=−2
√

2
(
πx

L

)2

, dN =
[− 2

√
2π2,0

]= [−27.92,0].
(2.11a)

(b) the Dirichlet condition ΔT(x)= T0 cos(2πx/L) satisfies ∂ΔT/∂x(x = 0, x = L)= 0,

ΔT(x, t)= ΔT(x)gT(τ),

d = dD(x)=−
√

2πx
L

, dD =
[−√2π,0

]= [−4.44,0].
(2.11b)

At the center of the plate x = L/2, dN |x=L/2 =−6.98, dD|x=L/2 =−2.22, dN = dD|x=L/2π =
−√2/2.

By incorporating the nonuniform transient thermal field, we obtain this Lorenz-type
model that differs from the original Lorenz equation. The model correlates the convective
flow with the transient temperature fluctuation function β(τ) in the conductive plate, the
spatial temperature variation and the thermal boundary condition of the plate d(x), and
the plate-fluid thermal diffusion rate parameter eκ(z), respectively. The transient thermal
field acts as a forcing source in the form β(τ)= gT ,τ(τ)/gT(τ), which measures the rate of
change of the temperature or the thermal fluctuation of the plate. β(τ) drives the vertical
temperature of the fluid Z directly to influence the flow field stream function X and the
temperature variation Y . When β(τ) = 0 and d(x) = 0, this model reduces to that by
Lorenz.

As the definition entails, eκ(z) concerns the thermal diffusion between the fluid and the
plate; eκ(z) influences the vertical temperature variation Z due to the heat exchange be-
tween the plate and the fluid. Since the thermal diffusivity of the fluid is generally greater
than that of the solid, that is, κ > κL, therefore, eκ(z) > 0. In addition, eκ(z) increases as
the fluid-solid heat exchange rate subsides at the high end of the cell. As an example,
the glycerin has conductivity in the range of κ= 0.14 [W/cm K], engine oil has κ= 0.28
[W/cm K], and a conductive metal plate has κ= 0.2 [W/cm K]. If κ/κL = 5 for the solid
layer, eκ|min = 2 at z = 0, and eκ|max = 11.89 at z =H . At the same points for c =−1, that
is, z =H/3 and z = 2H/3, eκ(z =H/3)= 3.08 and eκ(z = 2H/3)= 6.38, respectively.
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This expanded model has the same negative divergence as the original Lorenz system,
when the transient function β(τ) is considered as an external forcing, that is,

∂Ẋ

∂X
+
∂Ẏ

∂Y
+
∂Ż

∂Z
=−(1 + b+ σ) < 0, (2.12)

which suggests that the flow is dissipative. Geometrically, a dissipative system has all tra-
jectories confined when the transient temperature rise is restricted. On the other hand,
a rapid temperature rise certainly will cause oscillation without bound if β(τ) is un-
bounded.

3. The steady-state attractors and bifurcations

We examine the linearized system for the stability of the flow at the steady state, that is,

J =

⎡
⎢⎢⎣
−σ σ 0

cZ + r −1 cX

dr +Y X −b

⎤
⎥⎥⎦ . (3.1)

3.1. The steady state at the origin for X = Y = Z = 0. The eigenvalues determine the
stability and bifurcation behaviors of the system. For a steady-state attractor appearing at
X = Y = Z = 0, the eigenvalues are given by

(λ+ b)
[
(λ+ 1)(λ+ σ)− σr]= 0. (3.2)

It is evident that the eigenvalues are independent of d(x) and the thermal fluctuation
function β(τ). This defines the same eigenvalues as the Lorenz model, that is,

λ1 =−b < 0,

λ2,,3 = 1
2

[
−(1 + σ)±

√
(1− σ)2 + 4σr

]

= 1
2

[
−(1 + σ)± (1− σ)

√
1 + δ

]
, δ = 4σr

(1− σ)2
> 0.

(3.3)

Using the series approximation,

λ2 = σ
[
−1 +

r

(1− σ)

]
, λ3 =−

[
1 +

σr

(1− σ)

]
. (3.4)

λ2 < 0 for σ > 1or r < (1− σ). Note that σ > 1 is a typical condition for the convection
flow problem. λ3 < 0 when r > (1− 1/σ). The negative eigenvalues produce a stable flow
to the nodal attractor at the origin. The condition for the onset of the convection flow is
r < (1− 1/σ). For σ→∞, this means that r → 1.

An unstable saddle node bifurcation occurs at λ3 = 1, corresponding to

r = 2
(

1− 1
σ

)
. (3.5)
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This condition can be satisfied by numerous combinations of parameters, such as σ = 2,
r = 1 and σ = 10, r = 1.8, which suggests that the system experiences a sequential saddle
node bifurcation as r varies. In a similar fashion, we can find that the condition for period
doubling bifurcation at λ1 = −b is b = 1. However, the period doubling bifurcation will
not occur at λ2,3 = −1. This is because the physical parameter r > 0; λ2 = −1 requires
r = −(1− σ)2/σ < 0 and λ3 = −1 requires r = 0. Since all the eigenvalues are real, the
steady state attractor at the origin does not undergo the Hopf bifurcation. However, a
successive saddle node and period doubling bifurcations can occur at different r, b and σ .

3.2. The nonzero steady-state attractors. The steady-state attractor at the nonorigin,
that is, at X ,Y ,Z �= 0 is determined by Ẋ = Ẏ = Ż = 0 from (2.10a), which yields

X = Y ,

cZ = (1− r),

drX +X2− bZ + eκrβ(τ)= 0.

(3.6)

This defines the attractors at

X2 +drX +η = 0, η = b

c
(r− 1) + eκrβ(τ)= 1

c

[
r
(
b+ ceκβ(τ)

)− b],

X = Y = 1
2

(
−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)])
,

Z = 1
c

(1− r).

(3.7)

The original Lorenz attractor at c =−1, d = 0, eκ = 0 or β(τ)= 0 is at

X = Y =±
√
b(1− r), Z = r− 1. (3.8)

X , Y can be either real or complex, depending on the value of r. To ensure the physical
parameter X is a real parameter, the following condition should be satisfied:

(
r∗
)2− 4b+ 4ceκβ(τ)

cd2
r +

4b
cd2

> 0. (3.9)

For a real attractor X , Y , r > r∗1 or r < r∗2 , r∗2 < r∗1 . The condition in (3.9) is alternatively
expressed as

f0
(
r∗
)= (dr∗)2

+
4
c

[
b− r∗(b+ ceκβ(τ)

)]
> 0. (3.10)

The characteristic equation for the stability of the attractor is in the form

λ3 + Iλ2 + IIλ+ III = 0, (3.11)
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where

I =−(λ1 + λ2 + λ3
)= (1 + b+ σ),

II = (λ1λ2 + λ1λ3 + λ2λ3
)= b2 + bσ − cX2,

III =−λ1λ2λ3 = σcdrX ,

(3.12)

where X is determined by (3.7). The characteristics equation can lead to various bifurca-
tion conditions determined by the eigenvalues, as we analyze below.

(a) Periodic orbits with purely imaginary eigenvalues. The steady-state attractors will not
occur with a pair of purely imaginary eigenvalues. This is because the condition requires
that

b+ 1= 0. (3.13)

As b > 0, this is impossible. Similarly, it can be demonstrated that neither will a flow
initiate due to the real eigenvalues of

λ1 =−b, λ2 =−λ3. (3.14)

(b) All negative real eigenvalues and complex conjugacy. For the Hopf bifurcation in a
complex conjugacy λ2,3 = α± iγ and α=−1/2(I + λ1), the coefficients of the characteris-
tic equation become

I =−(λ1 + 2α
)= (1 + b+ σ),

II = (2αλ1 +α2 + γ2)= b2 + bσ − cX2,

III =−λ1
(
α2 + γ2)= σcdrX.

(3.15)

For any αλ1 > 0 in either of the Hopf bifurcations, II = 2αλ1 + α2 + γ2 > 0. This defines
the necessary condition associated with three possibilities: (a) all real eigenvalues to make
II > 0; (b) the subcritical Hopf bifurcation when α < 0 with λ1 < 0; (c) the supercritical
Hopf bifurcation when α > 0 with λ1 > 0. However, α > 0 leads to λ1 <−I < 0, since I > 0
and α=−1/2(I + λ1). Therefore, only cases (a) and (b) are possible. In the case of λ1 = 0,
III = 0 and X = 0. This means that there is no periodic orbit due to either of the Hopf
bifurcations alone with λ1 = 0. The condition II > 0 generates the steady-state attractor
at

X >− r
(
b+ ceκβ(τ)

)− b+ b(b+ σ)
cdr

=−
(
b+ ceκβ(τ)

)
cd

− b(b+ σ − 1)
cdr

= Δnh. (3.16a)

For the steady-state response, this is equivalent to

fnh(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δnh > 0. (3.16b)

Note that the condition (3.16) does not differentiate between cases of all real eigenvalues
in II > 0 and the case of complex conjugate eigenvalues with α < 0 and λ1 < 0. This means
that the necessary condition is not exclusive for either of the cases.
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(c) The Hopf bifurcation with complex eigenvalues. In the case of the Hopf bifurcation
with a real eigenvalues, we can further identify the necessary conditions for different
cases. The condition can be expressed in the form identical to that in (3.16) except for
the operator Δnh. That is,

f j(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ j . (3.17)

Here the function f j(r) is associated with the specific operator Δ j , of which three condi-
tions can be drawn based on the relation between λ1 and α:

(1) I ∗ II − III < 0, a necessary condition for the supercritical Hopf bifurcation with
λ1 <−I < 0, α > 0, which requires the steady-state attractor to satisfies

X <− (1 + b+ σ)
cdr(1 + b)

[
b(b+ σ − 1) + r

(
b+ ceκβ(τ)

)]= Δ−H. (3.18a)

Therefore, the necessary condition is

f −sup(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ−H < 0. (3.18b)

(2) I ∗ II − III > 0 for the subcritical Hopf bifurcation with −I < λ1 < 0 and −I/2 <
α < 0, which is the opposite condition to that for the supercritical Hopf bifurca-
tion with λ1 <−I < 0. Therefore, the necessary condition is

f −sub(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ−H > 0. (3.19)

(3) II2− 4I ∗ III > 0 for the subcritical Hopf bifurcation with λ1 > 0, α <−I/2 < 0,
this defines

X <

{(
b2 + bσ − b+

(
ceκβ(τ) + b

)
r
)2− c(dr)2

[(
ceκβ(τ) + b

)
r− b]}{

4(1 + b+ σ)σ − 2(b2 + bσ − b+
(
ceκβ(τ) + b

)
r
)

+ c(dr)2
}
cdr

= Δ+
sub. (3.20a)

This leads to the necessary condition of

f +
sub(r)= 1

2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ+

sub < 0. (3.20b)

The above three conditions are exclusive necessary condition for each Hopf bifurcation.

(d) The Hopf bifurcation concurrent with the saddle node/period doubling bifurcations.
When the real eigenvalue is specified, the necessary and sufficient condition can be
uniquely defined for the Hopf bifurcation with a real eigenvalue. For example, the pe-
riod doubling or saddle node bifurcation can occur at λ1 = −1 and λ1 = 1, respectively,
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concurrent with the subcritical Hopf bifurcation. This is because α < 0 as long as λ1 >
−(1 + b+ σ). Therefore,

αλ1=1 = 1
2

[−I − 1]=−1
2

(2 + b+ σ), αλ1=−1 = 1
2

[−I + 1]=−1
2

(b+ σ). (3.21)

Notice that a combination of λ1 = ±1 and α = 0 for the purely imaginary eigenvalues is
impossible since λ1 < −1 at α = 0.The necessary and sufficient condition for the Hopf
bifurcation with any real λ1 is

III + λ1II =−
(
λ1
)2(

I + λ1
)
, (3.22)

which defines the attractor at

X =−
{(
λ1
)2(

1 + σ + b+ λ1
)

+ λ1
[
b2 + bσ − b+ r

(
b+ ceκβ(τ)

)]}
(
λ1 + σ

)
cdr

= Δ∗H. (3.23a)

Equivalently, this gives the bifurcation condition of:

f ∗H (r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ∗H = 0. (3.23b)

The condition in (3.22) ensures that all the necessary conditions for the Hopf bifurcation
in (3.18), (3.19), and (3.20) are satisfied. For example, in the case of the supercritical Hopf
bifurcation with λ1 <−I < 0, the condition I ∗ II − III < 0 becomes

I ∗ II − III = I ∗ II + λ−1 II +
(
λ−1
)2
I +

(
λ−1
)3
< I ∗ II − I ∗ II +

(
λ−1
)2
I +

(
λ−1
)3

= (λ−1 )2[
I +

(
λ−1
)]
< 0.

(3.24a)

For the subcritical Hopf bifurcation with−I < λ1 < 0, α < 0, I ∗ II − III > 0 is satisfied by

I ∗ II − III = I ∗ II + λ−1 II +
(
λ−1
)2
I +

(
λ−1
)3
> I ∗ II − I ∗ II +

(
λ−1
)2
I +

(
λ−1
)3

= (λ−1 )2[
I +

(
λ−1
)]
> 0.

(3.24b)

For the subcritical Hopf bifurcation with λ1 > 0, α < 0, the condition II2− 4I ∗ III > 0 is

II2 + 4I ∗ (λ−1 II +
(
λ−1
)2
I +

(
λ−1
)3)= [II + 2

(
λ−1 I

)]2
+ 4
(
λ−1
)3∗ I > 0. (3.24c)

The condition (3.23) can also determine the concurrent saddle node bifurcation at
λ1 = 1 and the period doubling bifurcation at λ1 = −1, respectively, since, (3.23) is the
necessary and sufficient condition for the Hopf bifurcations with a specified eigenvalue.
This condition defines the Hopf bifurcation curve, whereas those necessary conditions
in (3.18), (3.19), and (3.20) define the domain boundaries for the bifurcation they are
associated with. These conditions describe a bifurcation map with respect to the physical
parameters. The fact that all of the conditions are in the third order polynomials of r
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suggests that several ranges of parameters could coexist to satisfy the condition. As a
result, the system exhibits sequential bifurcations discussed above. One exception is the
Hopf bifurcation with a pair of purely imaginary eigenvalues, which will not occur due to
the restriction of the physical parameters. These bifurcation conditions provide qualified
and quantified terms to define the steady-state attractors and describe their stability due
to various bifurcations.

4. Computation results

We use a numerical computation in the 4th-order Runge-Kutta method to study the bi-
furcation behavior and the response of the system. We fixed parameters at c =−1, d =−π
for the response with respect to σ , b, and r.

4.1. Bifurcation conditions. The computation for the bifurcation map assumes the fluid
property parameters b and σ in the range of [0 10]. We study various bifurcation condi-
tions that can be satisfied by the parameters in this range with respect to σ and b when
r and β(τ) are specified. The purpose of the computation is to demonstrate the influ-
ence of the transient thermal field effect on the convective flow of the specified geometry
loci. For the Hopf bifurcations with a specified eigenvalue λ1, we select the period dou-
bling bifurcation at λ1 = −1 and the saddle node bifurcation at λ1 = 1, respectively. In
addition, the Hopf bifurcation conditions at both λ1 = 15 and λ1 = −15 are examined.
At λ1 = −15, either a supercritical or a subcritical Hopf bifurcation can occur since the
real part of the complex conjugate α varies between α = −3 and α = 7 for b, σ in the
range of [0 10]. For λ1 = 15, only a subcritical Hopf bifurcation is possible as α varies
between α=−8 and α=−18. These four curves are marked by f sd for the Hopf bifurca-
tion with the saddle node, f pd for that with the period doubling, f H p for the subcritical
Hopf bifurcation at λ1 = 15 and f Hn for the Hopf bifurcation at λ1 =−15, respectively.
Curves f sub p > 0, f h > 0 and f nh > 0 represent the contour projections of the func-
tion f +

sub(r) > 0 in (3.20b), f −sub(r) > 0 in (3.19), and fnh(r) > 0 in (3.16b), respectively, for
the three distinct necessary conditions associated with the Hopf bifurcations and other
possible cases. Therefore, curves f sd, f pd, and f Hn and f H p define the necessary and
sufficient conditions while each other one represents the necessary condition only.

Figures 4.1(a), 4.1(c), and 4.1(e) show the bifurcation curves at a specified r and β(τ).
Figure 4.1(a) is for r = 5 and β(τ)= 0 whereas Figure 4.1(c) shows the bifurcation at r = 5
and β(τ)=−10. In both figures, we observe the curve with the saddle node bifurcation,
f sd, the curve with the period doubling f pd and the curve f Hn for the Hopf bifurcation
at λ1 = −15. The curve f sub p > 0 in Figure 4.1(a) defines parameter range that satisfies
the condition for a successive subcritical Hopf bifurcation with λ1 > 0. The 3D plot for
the condition f sub p is shown in Figure 4.1(b), indicating that the intercepted area by the
two blue curves satisfy f sub p > 0. Curve f H p also appears in both Figures 4.1(a) and
4.1(c) for the subcritical Hopf bifurcation with λ1 = 15, with different parameter ranges.

Note that there are two curves of f h > 0 for the subcritical Hopf bifurcation with
λ1 < 0, that is, f −sub(r) > 0, in Figures 4.1(a) to 4.1(c), as a result of the projection at a
specified value at f h = 50, similar to the curve f sub p > 0 in Figure 4.1(a). For the case
in Figure 4.1(c) with r = 5 and β = −10, the necessary condition f −sub(r) > 0 in (3.17),
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Figure 4.1. Bifurcation conditions and map. (a) Bifurcation map at r = 5, β = 0. (b) The subcritical
Hopf bifurcation condition f +

sub(r) > 0 at r = 5, β = 0. (c) Bifurcation map at r = 5. (d) The subcrit-
ical Hopf bifurcation condition with λ1 < 0 f −sub(r) > 0 at r = 28. (e) Bifurcation map at r = 28. (f)
Condition for the period doubling bifurcation at fPD(r) at r = 28.

shown by f h = 50 > 0, is uniformly satisfied by the parameters in the 2D domain as
shown in Figure 4.1(d) for f −sub(r) > 0. The curves in Figures 4.1(a) and 4.1(c) illustrate
only a selective projection of the contour at f h = 50. In both Figures 4.1(a) and 4.1(c),
the necessary condition for fnh(r) > 0 is also satisfied, marked by the curve f nh > 0 where
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the projection is at fnh(r)= 20 in Figure 4.1(a) and fnh(r)= 50 > 0 in Figure 4.1(c). Both
conditions f h > 0 for f −sub(r) > 0 and f nh > 0 for fnh(r) > 0 are valid in the entire domain
of b and σ in Figures 4.1(a) and 4.1(c).

The variation of β(τ) changes the bifurcation conditions as it is evident from compar-
ison of Figures 4.1(a) and 4.1(c) where the same condition is satisfied by different param-
eters. In the same token, a different r also alters the bifurcation map. Figure 4.1(e) is the
map for r = 28 and β =−10, where the Hopf bifurcation curve with the period doubling
and the saddle node bifurcations are illustrated. The curves f h > 0 and f nh > 0 are again
selective contour projections of functions that are satisfied by the parameters b, σ in the
range of [0 10]. Figure 4.1(f) shows that the Hopf bifurcation concurrent with the period
doubling bifurcation occurs around σ = 1, which is characteristic for all different range
of parameters as seen from Figures 4.1(a), 4.1(c), and 4.1(e) also.

4.2. Transient thermal field functions. We study three different transient thermal field
functions, which are as follows.

(a) The harmonic function gT(τ). A cyclic function of β(τ) results. Specifically,

gT(τ)= cos(ωτ), β(τ)=−ω tan(ωτ)

⎧⎨
⎩
< 0, 0 < (ωτ) < π/2,

> 0, π/2 < (ωτ) < π.
(4.1a)

Note that the sign of ω does not affect the sign of β(τ) = −ω tan(ωτ) in each bounded
interval kπ < (ωτ) < (k+ 1)π + π/2.The function β(τ) goes to infinity at the boundaries
(ωτ) = (k+ 1)π ± π/2. The function β(τ) causes instantaneous change of the attractors
due to transitions of the bifurcation conditions, which makes the condition Ẋ = Ẏ = Ż =
0 invalid. Equivalently, this suggests that a steady-state attractor at Ẋ = Ẏ = Ż = 0 does
not exist in this case.

(b) The exponential function gT(τ) for the thermal conduction. The exponential function
gT(τ) produces a constant driving force as

gT(τ)= exp(−ωτ), β(τ)=−ω. (4.1b)

The function β(τ) > 0, if ω < 0 for a temperature rise or vice versa. Therefore, a temper-
ature rise or decline for β(τ) > 0 or β(τ) < 0 will influence the steady state response in
a different fashion. However, in each case the steady-state attractor, as defined in (3.7),
remains stationary since β(τ) is a constant.

(c) The linear function gT(τ). The linear function gT(τ) makes β(τ) > 0 and β(τ)→ 0 as
τ →∞, that is,

gT(τ)= ωτ, β(τ)= 1
τ
> 0. (4.1c)
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The three transient thermal field functions β(τ) discussed above suggest that the steady
state is not stationary with a harmonic function gT(τ), while the exponential and linear
functions lead to stationary attractors.

4.3. Transient responses. We use a time step h= 0.001 second to generate the transient
response for steps of N = 10,000 for this system with respect to different β(τ) and other
parameters. The initial condition is assumed to be X = 0, Y = 20, Z = 10, unless other-
wise specified.

(a) r = 1, β(τ)= 0, nodal attractors at the origin. For r = 1 and β(τ)= 0 without the tran-
sient thermal effect, the response could converge to the steady-state X = Y = 0, Z = r− 1
or X = Y =−d, Z = r − 1, depending on the initial conditions. Figures 4.2(a) and 4.2(b)
show that all X , Y , and Z converge to the zero steady-state attractor at r = 1, b = 8/3,
σ = 6.33 with the given initial conditions. The steady state reaches the nodal point X = 0,
Y = 0, Z = 0 quickly after a transient oscillation. The corresponding eigenvalues are all
real and negative, that is, λ= 0,−10.4273,−3.2394, which makes the nodal attractor sta-
ble.

(b) r = 5, β(τ) = 0, the Hopf bifurcation. The parameters b = 8/3, σ = 10, r = 5 induce
the subcritical Hopf bifurcation with eigenvalues of λ1 = 11.5572 and λ2,3 =−12.6119±
20.8298i. Figures 4.2(c) and 4.2(d) show a spiral oscillation leading to the nonzero
steady-state attractor. A similar behavior exists at r = 28, shown in Figures 4.2(e) and
4.2(f). A higher oscillation frequency during the transition to the steady-state is evident
at r = 28 in comparison with that at r = 5, as shown in the phase diagrams of X-Y and
Y-Z for r = 5 and r = 28, respectively. This is caused by the eigenvalue with an increased
imaginary part at r = 28, which is λ1 = 23.6679 and λ2,3 =−18.7065± 91.5255i.

(c) r = 28 with different transient thermal field functions. The response behaves differently
with a different transient thermal field function β(τ). Figures 4.3(a) and 4.3(b) show the
transient response with b = 8/3, σ = 10, r = 28 and β(τ) = 1/τ. The transient response
vanishes after certain iterations with the ensuing oscillation approaching the steady state
by way of the Hopf bifurcation as β(τ) = limτ→∞(1/τ) = 0. The steady state attractor is
identical to that shown in Figures 4.2(e) and 4.2(f), respectively.

The response with an exponential function g(τ)= exp−(π/2)τ and β(τ)=(π/2) is shown
in Figures 4.3(c) and 4.3(d) with b = 8/3, σ = 10, and r = 28. The transient exponential
function, in fact, produces a constant driving force to the system. This function β(τ) di-
rectly influences the vertical temperature Z(τ) and modifies the attractor X , Y , and Z.
The steady-state attractor is at X = Y = 88.64, Z = 27 for β(τ) = (π/2) shown in Fig-
ures 4.3(c) and 4.3(d) for the phase diagrams of X-Y and Y-Z, respectively. Note that
the subcritical Hopf bifurcation produces a spiral for either β(τ) = (π/2) or β(τ) = 1/τ
approaching a stationary steady-state attractor. Notably, the attractor position Z is inde-
pendent of β(τ), although β(τ) influences the transient behavior of Z prior to the steady
state. Each initial response goes through a period of increasing amplitude for different
r and different function β(τ). This is caused by the positive real eignevalue λ1. Such in-
crease is eventually balanced by the negative real part of the complex eigenvalues, which
eventually makes the periodic oscillation dominate in a subcritical Hopf bifurcation.
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Figure 4.2. Phase diagrams without the transient effect. (a) X-Y at b = 8/3, σ = 2b + 1, r = 1. (b)
X-Z at b = 8/3, σ = 2b+ 1, r = 1. (c) X-Y at b = 8/3, σ = 10, r = 5. (d) Y-Z at b = 8/3, σ = 10, r = 5.
(e) X-Y at b= 8/3, σ = 10, r = 28. (f) Y-Z at b = 8/3, σ = 10, r = 28.

The attractor’s behavior with an assumed constant function β(τ) is an instant repre-
sentation of the oscillatory attractors with a transient function β(τ), whereas the attractor
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Figure 4.3. Response with a transient function β(τ), b = 8/3, σ = 10, r = 28. (a) Z versus time, β(t)=
1/τ. (b) X-Y phase diagram, β(t)= 1/τ. (c) X-Y phase diagran β(t)= π/2, g(t)= exp−(π/2)τ . (d) Y-Z
phase diagram, β(t)= π/2, g(t)= exp−(π/2)τ .

experiences instantaneous oscillations with respect to the transient eigenvalues and func-
tion β(τ). The steady-state attractor also experiences instability when the function β(τ)
approaches infinity such as in the case of β(τ)=−ω tan(ωτ). The oscillatory behavior of
attractors associated with the transient function β(τ) means that the steady-state attrac-
tors can not be predicted based on the assumption of Ẋ = Ẏ = Ż = 0, as that in (3.7). In
fact, a steady-state attractor does not exist for a case of Ẋ �= 0, Ẏ �= 0, Ż �= 0.

(d) The homoclinic bifurcation at r = 1000, a periodic oscillation. In contrast with the
bifurcation conditions associated with the steady-state attractors, another type of bifur-
cation occurs independent of these conditions, that is, the homoclinic explosion, a phe-
nomenon that transform the steady-state oscillation to a newly born set of orbits. Figures
4.4(a) to 4.4(f) show a periodic oscillation as a result of the explosion at b = 8/3, σ = 10,
r = 1000 and β(τ) = π with a transient function gT(τ) = exp−πτ . The time history of X ,
Y and Z in Figures 4.4(a), 4.4(c), and 4.4(e), respectively, indicates a burst of the ho-
moclinic explosion after the steady state is sustained for a certain period of time. The
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Figure 4.4. Response with a transient function β(t) = π, b = 8/3, σ = 10, r = 1000. (a) X versus
time. (b) steady-state Poincare map X-Y . (c) Y versus time. (d) steady-state Poincare map X-Z. (e) Z
versuss time. (f) steady-state Poincare map Y-Z.

Poincare maps shown in Figures 4.4(b), 4.4(d), and 4.4(f) are sampled at a frequency
interval Δh = 0.01s, equivalent to 10 iterations for each point. Totally 87,310 periodic
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traces are taken in each map after eliminating the transient 2,600 iterations. These or-
bits remain the same as those with fewer sampling points, such as N = 10,000, or those
at a different sampling frequency. These identical Poincare maps confirm that the orbit
is periodic. The numerical computation results also reveal that the response with β(τ)
from a linear transient function arrives at the same periodic orbit due to the explosion
after reaching the steady state predicted by (3.7). β(τ) only influences the duration of the
steady state prior to such an explosion, but not the orbit after the explosion.

(e) The steady state at r = 903, a quasi-periodic oscillation. Another bifurcation behav-
ior exists, as can be observed from the phase diagrams at b = 8/3, σ = 10, and r = 903,
where the homoclinic bifurcation leads to multiple periodic orbits. Figures 4.5(a), 4.5(c),
and 4.5(e) show the bifurcation explosion after an initial steady-state sustained for about
2000 iterations. The phase diagrams in Poincare maps show a finite number of orbits in
Figures 4.5(b), 4.5(d), and 4.5(f), after eliminating the initial 2600 transient iterations.
Our extensive computation results verified that such a homoclinic bifurcation initiates at
a higher Rayleigh number, that is, about r = 900. This transition number r is also affected
by the exponential function frequency ω.

Figures 4.4 and 4.5 together suggest that the system experiences homoclinic bifurca-
tions that lead to another steady state. This phenomenon agrees with the earlier observa-
tion from that of the original Lorenz model in that homoclinic explosions at a large r lead
to periodic orbits [11]. Our results ascertain that such homoclinic explosions persist with
different transient functions β(τ). Namely, a different β(τ) function leads to identical or-
bits as a result of the explosion, that is, either a monotonic periodic orbit or multiple
period orbits.

There exists no valid explanation for such explosion phenomena that occur at a large
r except consistent computation observations. However, examining the eigenvalues for
each case suggests that cases with a large number r are associated with an insignificant real
eigenvalues, that is, λ1 = 26.6 at both r = 1000 and r = 903. At the same time, the com-
plex conjugates have a trivial real part where the real and the imaginary part has a ratio in
the order of 102, that is, λ2,3 =−20.18± 3139.10i for r = 1000; λ2,3 =−20.16± 2837.40i
for r = 903, respectively. The steady-state attractors are at X = 3138.9, Z = 999 and X =
2837.3, Z = 902, respectively. These eigenvalues suggest that the amplitude of the steady-
state oscillation is insignificant, due to the canceling effect between the real and the com-
plex eigenvalues. Such a behavior is evident in the time history of the oscillation prior to
the explosion. However, such trivial oscillation is subject to computing errors which can
alter the eigenvalues and give birth to new periodic orbits. Therefore, the homoclinic orbit
is a manifestation of the transition of eigenvalues as a result of the computation error per-
turbation. A single periodic oscillation is the consequence of a pair of stable eigenvalues
due to such a perturbation, whereas a multiperiod oscillation occurs when the eigenval-
ues are unstable, experiencing multiple transitions among different values. Therefore, the
phase diagram embodies either a finite number of periodic orbits when the eigenvalues
are finite or an infinite number of orbits when the eigenvalues vary continuously. Al-
though the function β(τ) influences the transient behavior, we observe that the initiation
of the explosion is dependent on β(τ). The skew-shaped periodic orbit for the Poincare
map in Figures 4.4(d) and 4.5(d) with X �= Y is the consequence of such perturbation
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Figure 4.5. Response with a harmonic function β(t)=−ν tan(νt), b = 8/3, σ = 10, r = 903, v = π/8.
(a) X versus time. (b) Transient response Y versus time. (c) Z versus time. (d) steady-state Poincare
map X-Y . (e) Steady-state Poincare map X-Z. (f) Steady-state Poincare map Y-Z.

that produces the orbits different from those predicted by the steady-state analysis. An-
other fact that can be verified from the expression of the coefficients in (3.12) is that a
large r reduces the absolute values of λ1 and α is in an reduced magnitude. In addition,
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the two values are related by the constant coefficient I = 1 + b+ σ =−(λ1 + 2α) < 0. This
makes the two in a comparable scale to reinforce the canceling effect that leads to the triv-
ial oscillation magnitude. It is apparent that the characteristics of the eigenvalues offers a
compelling argument for the homoclinic explosions at a large r.

5. Discussions and conclusions

Our bifurcation analysis and the computation results indicate that the thermally induced
convection flow presents drastically different behaviors when the transient thermal field
drives the flow. The transient form Lorenz model incorporates the influence of the con-
ductive layer and the heat transfer boundary condition for the flow behavior of the entire
2D field. The transient thermal field function influences the steady-state and transient
oscillations. We identified stationary steady-state attractors that exist subject to certain
transient thermal field functions. The fluctuation of the thermal field modifies the attrac-
tors, bifurcation conditions for the initiation of the unstable flow. It also affects the bursts
of the homoclinic bifurcation, though not the homoclinic orbit itself. The transient ther-
mal field variation is likely to cause transitions among different bifurcation behaviors,
which could generate turbulence or chaos due to instantaneous transitions of the attrac-
tors.

The bifurcation analysis from this study provides a quantified justification for the se-
quential bifurcations at different thermal and fluid parameters. This explains the succes-
sive bifurcations exhibited by the original Lorenz model as well as the current model at
a different range of parameters. Further, we identified the mechanisms of the bursts of
the homoclinic explosions at a large r. We attribute the explosions to the trivial effect of
the oscillation amplitude determined by these eigenvalues at large r that is sensitive to
numerical computation errors to alter the oscillation orbits.

This study revealed the typical behaviors of the thermally induced convection flow
with a transient thermal source and predicted the system response in both qualitative
and quantitative terms for the bifurcations of steady-state attractors. These bifurcation
conditions shed light on the turbulence of the thermally induced convection flow.

Nomenclature

a: critical wave number
b: geometry factor
c: geometry factor
d: coefficient for the thermal boundary condition effect
dN , dD: coefficients d for the Newmann and Dirichlet condition, respectively
eκ: coefficient for the thermal diffusivity between the fluid and the solid
f −sup(r): necessary condition for the supercritical Hopf bifurcation with λ1 < 0
f −sub(r): necessary condition for the subcritical Hopf bifurcation with λ1 < 0
f +
sub(r): necessary condition for the subcritical Hopf bifurcation with λ1 > 0
f ∗H (r): necessary and sufficient condition for the Hopf bifurcation with

a specified eigenvalue λ1 > 0 or λ1 < 0
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f sd: bifurcation curve for the Hopf bifurcation with the concurrent
saddle node bifurcation

f pd: bifurcation curve for the Hopf bifurcation with the concurrent period
doubling bifurcation

f H p: bifurcation curve for the subcritical Hopf bifurcation at λ1 = 15

f Hn: bifurcation curve for the Hopf bifurcation at λ1 =−15

f h > 0: the contour projection of the function f −sub(r) > 0

f nh > 0: the contour projection of the function fnh(r) > 0

f sub p > 0: curve for the contour projection of the function f +
sub(r) > 0

g: gravitational acceleartion

gT(t), gT(τ): transient thermal field function

gT ,τ(τ): time derivative of the transient thermal field function gT(τ)

H : height of the fluid cell

I ,II ,III : coefficients

J : Jocobi of the system

L: length of the fluid cell

r: ratio between Ra and Rc

r∗: threshold value of r for r > 0

Ra: Rayleigh number

Rc: critical Rayleigh number

T(x,z, t): temperature of the flow field

T0: magnitude of the temperature variation at the bottom layer

T1(x,z, t): linear temperature variation along z

ΔT(x,0, t): temperature difference between the two parallel plates

X : variable for the function θ11(x,z, t)

Y : variable for the function θ02(x,z, t)

Z: variable for the function ψ(x,z, t)

u, w flow in x and z, respectively

ε: the coefficient of volume expansion of the fluid

α: the real part of the eigenvalue

γ: the imaginary part of the eigenvalue

β(τ): ratio between gT ,τ(τ) and gT(t)

δ: intermediate variable
κ: thermal diffusivity of fluid

κL: thermal diffusivity of solid at the bottom plate

σ : Prandtl number
η: intermediate variable
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λ: eigenvalue

τ: normalized time

ω: frequency of the transient thermal field function

θ, θ11, θ02: temperature variation of the flow field

ν: kinematic thermal viscosity

ψ(x,z, t): flow field stream function

Δnh: operator for the attractors when the eigenvalues are real or complex

Δ−H : operator for the attractor at the Hopf bifurcation with λ1 < 0

Δ+
sub: operator for the attractor at the Hopf bifurcation with λ1 > 0

Δ∗H : operator for the attractor at the Hopf bifurcation with a specified λ1
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