
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2008, Article ID 323080, 16 pages
doi:10.1155/2008/323080

Research Article
Combined Preorder and Postorder Traversal
Algorithm for the Analysis of Singular Systems by
Haar Wavelets

Beom-Soo Kim,1 Il-Joo Shim,2 Myo-Taeg Lim,3 and Young-Joong Kim3

1 School of Mechanical and Aerospace Engineering, Gyeongsang National University, 445 Inpyeong-Dong,
Tongyeong, Gyeongnam 650-160, South Korea

2 Department of Automatic System Engineering, Daelim College, 526-7 Bisan-Dong, Anyang,
Gyeonggi 431-715, South Korea

3 School of Electrical Engineering, Korea University, 1-5 Anam-dong, Sungbuk-gu,
Seoul, 136-701, South Korea

Correspondence should be addressed to Myo-Taeg Lim, mlim@korea.ac.kr

Received 31 May 2008; Accepted 25 August 2008

Recommended by Carlo Cattani

An efficient computational method is presented for state space analysis of singular systems via
Haar wavelets. Singular systems are those in which dynamics are governed by a combination
of algebraic and differential equations. The corresponding differential-algebraic matrix equation is
converted to a generalized Sylvester matrix equation by using Haar wavelet basis. First, an explicit
expression for the inverse of the Haar matrix is presented. Then, using it, we propose a combined
preorder and postorder traversal algorithm to solve the generalized Sylvester matrix equation.
Finally, the efficiency of the proposed method is discussed by a numerical example.

Copyright q 2008 Beom-Soo Kim et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Wavelets are mathematical functions that cut up data into different frequency components
and then study each component with a resolution matched to its scale. Wavelets are now
being applied in many areas of science and engineering [1–4]. Much attention has been
focused on the use of wavelet transforms to investigate dynamic systems. This is due to the
powerful ability of wavelet transforms to decompose time series in time-frequency domain
and wavelet basis functions. Chen and Hsiao [3, 4] derived a Haar operational matrix
for integration and solved the lumped and distributed parameter systems by constructing
operational matrices of various order. The main characteristic of this technique is that
it converts a differential equation into an algebraic one with the result that the solution

mailto:mlim@korea.ac.kr


2 Mathematical Problems in Engineering

procedures are greatly reduced and simplified. This approach gives new insight into the use
of the Haar wavelet method.

Singular systems (also referred to as descriptor or semistate systems) arise more
naturally than do state-variable descriptions in the analysis of many sorts of systems.
Examples occur in electrical networks, neural networks, control systems, chemical systems,
economic systems, and so on (see [5, 6] and references therein). These systems are governed
by a mixture of differential and algebraic equations. The complex nature of singular systems
causes many difficulties in the analytical and numerical treatment of such systems.

Recently, Haar wavelet technique was applied to state analysis and observer design of
singular systems [7]. This approach replaces the state function and the forcing function by
the truncated Haar series, respectively. Then the state trajectories are obtained by solving a
generalized Sylvester matrix equation. But there exists a trade-off between the resolution
of the wavelets and the computation time. The accuracy of the solution can be achieved
by increasing the resolution level, but this requires more computation time and very large
memory.

In this paper, an efficient computational method is presented for state space analysis
of singular systems via Haar wavelets. First, an explicit expression for the inverse of the
Haar matrix is presented. This inverse matrix also has a recursive structure. By using this
matrix, we propose a combined preorder and postorder traversal algorithm. Then, the full-
order generalized Sylvester matrix equation should be solved in terms of the solutions of
simple linear matrix equations. Finally, the efficiency of the proposed method is discussed by
a numerical example.

2. Kronecker product

Let A = [aij] and B = [bij] be n × p and r × q matrices, respectively. The Kronecker product of
the matrices, denoted by A ⊗ B(∈ R

nr×pq), is defined as

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1pB
a21B a22B a2pB

...
...

an1B an2B · · · anpB

⎤
⎥⎥⎥⎦ . (2.1)

The vec operator transforms a matrix A of size n × p to a vector of size np × 1 by stacking the
columns of A. Some properties of the Kronecker product are given below [8]:

(A + B) ⊗ C = A ⊗ C + B ⊗ C,

(A ⊗ B)C = (AC ⊗ B),

(A ⊗ B)(C ⊗D) = (AC ⊗ BD),

(A ⊗ B)T = AT ⊗ BT .

(2.2)

3. Haar wavelets and their properties

Wavelets constitute a family of functions constructed from dilation and translation of a single
function called the mother wavelet that generates orthogonal bases of L2(R). The simplest



Beom-Soo Kim et al. 3

and most basic of the wavelet systems is the Haar wavelet which is a group of square waves
with magnitudes of ±1 in certain intervals and zeros elsewhere [9]. The scaling function ϕ0(t)
and mother wavelet ϕ1(t) are defined by, respectively,

ϕ0(t) =

{
1, t ∈ [0, 1),
0, t /∈ [0, 1),

ϕ1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, t ∈
[

0,
1
2

)
,

−1, t ∈
[

1
2
, 1

)
,

0, t /∈ [0, 1).

(3.1)

Then, all the other basis functions ϕk(t) are obtained by dilation and translation of the mother
wavelet as follows:

ϕk(t) = ϕ1
(
2nt − j

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, t ∈
[
ta, tb

)
,

−1, t ∈
[
tb, tc

)
,

0, t /∈
[
ta, tc

)
,

(3.2)

where k = 2n + j, integer n ≥ 1 is a dilation parameter, integer 0 ≤ j < 2n is a shift parameter,
and the intervals are given by ta = m/2n, tb = (0.5 + j)/2n, and tc = (1 + j)/2n. Since the
support of the Haar wavelet is [0, 1), any square integrable function y(t) ∈ L2[0, 1) can be
written as an infinite linear combination of Haar functions

y(t) =
∞∑
k=0

ckϕk(t), t ∈ [0, 1), (3.3)

where the Haar coefficients are determined by

ck =
〈
y(t), ϕk(t)

〉
= 2n

∫1

0
y(t)ϕk(t)dt, (3.4)

where 〈·, ·〉 denotes the inner product. In practical applications, Haar series are truncated to
m terms, that is,

y(t) ∼=
m−1∑
k=0

ckϕk(t) = CT
mhm(t), (3.5)

where Haar functions coefficient vector Cm and Haar functions vector hm are defined as Cm �[
c0 c1 · · · cm−1

]T and hm(t) �
[
ϕ0(t) ϕ1(t) · · · ϕm−1(t)

]T.



4 Mathematical Problems in Engineering

Integrals of the Haar functions with respect to variable t form ramp and triangular
waveforms standing with uniform slope, respectively, at the positions of the corresponding
rectangular functions. The group of these integrals can be expressed as follows:

∫1

0
ϕ0(t)dt = t, t ∈

[
ta, tb

)
,

∫1

0
ϕk(t)dt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t − ta, t ∈
[
ta, tb

)
,

−t + tc, t ∈
[
tb, tc

)
,

0, t /∈
[
ta, tc

)
.

(3.6)

Then, the Haar matrix Hm is defined as

Hm(t) �
[
hm

(
t0
)

hm

(
t1
)
· · · hm

(
tm−1

)]
, (3.7)

where i/m ≤ ti ≤ (i + 1)/m.
Integration of the Haar function vector can be written as

∫ t

0
hm(τ)dτ ∼= Pmhm(t), (3.8)

where Pm is the m-square operational matrix of integration which satisfies the following
recursive formula [3]:

Pm =

⎡
⎢⎢⎣

Pm/2 − 1
2m

Hm/2

1
2m

H−1
m/2 0m/2

⎤
⎥⎥⎦ , P1 =

[
1
2

]
, (3.9)

where 0m/2 is an m/2-square zero matrix. The Haar matrix Hm also has the following
recursive formula [3]:

Hm =

[
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]
]
, H1 = [1]. (3.10)

Particularly, it was proven that the following relationship holds [3]:

H−1
m =

1
m

HT
mDm, (3.11)



Beom-Soo Kim et al. 5

where Dm = diag(1 1 2 2 · · · 2p−1 · · · 2p−1︸ ︷︷ ︸m/2
) and p = log2m. This diagonal matrix Dm also

can be represented in the recursive form

Dm =

⎡
⎣

Dm/2 0m/2

0m/2
m

2
Im/2

⎤
⎦ , D1 = [1], (3.12)

where m = 2k, k = 1, 2, . . . , J , and J is called a resolution scale or level.
We present the following lemma which will be used to decompose the generalized

Sylvester matrix equation.

Lemma 3.1. Let Hm be a Haar matrix defined in (3.10). Then, its inverse matrix has the following
recursive form:

H−1
m =

[
H−1
m/2 ⊗

[
0.5
0.5

]
Im/2 ⊗

[
0.5
−0.5

]]
. (3.13)

Proof. We assume that H−1
m has the following recursive structure:

H−1
m =

[
H−1
m/2 ⊗

[
a
b

]
Im/2 ⊗

[
c
d

]]
, (3.14)

where a, b, c, d are constants to be determined. Now, we multiply Hm and H−1
m :

HmH−1
m =

⎡
⎢⎢⎢⎢⎢⎣

(
Hm/2 ⊗

[
1 1

] )(
H−1
m/2 ⊗

[
a
b

]) (
Hm/2 ⊗

[
1 1

] )(
Im/2 ⊗

[
c
d

])

(
Im/2 ⊗

[
1 −1

] )(
H−1
m/2 ⊗

[
a
b

]) (
Im/2 ⊗

[
1 −1

] )(
Im/2 ⊗

[
c
d

])

⎤
⎥⎥⎥⎥⎥⎦
. (3.15)

Then, using the property of (A ⊗ B)(C ⊗D) = AC ⊗ BD, we obtain

HmH−1
m =

[
Im/2 ⊗ (a + b) Hm/2 ⊗ (c + d)
H−1
m/2 ⊗ (a − b) Im/2 ⊗ (c − d)

]
. (3.16)

Thus, a = b = 0.5, c = 0.5, d = −0.5 satisfy HmH−1
m = H−1

m Hm = I.

4. Singular linear system

Consider a linear continuous-time singular system described by

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0, (4.1)

where x(t) ∈ R
p denotes the vector of state variables, u(t) ∈ R

q denotes the vector of
manipulated inputs, E, A are p × p matrices, E is generally singular, and B is a p × q



6 Mathematical Problems in Engineering

matrix. Without loss of generality, we assume that rank(A) = p and (4.1) is regular, that is,
det(λE − A)/= 0. Regularity means that the solution x(t) is uniquely determined by the given
initial value x0 and input u(t).

If the input function vector u(t) is square integrable in the interval [0, 1), then it can be
represented in a Haar function basis hm(t) as

u(t) = Ghm(t), (4.2)

where G ∈ R
q×m is a Haar coefficient matrix and can be obtained by the method described in

Section 3. Likewise, ẋ(t) is expanded in Haar function basis

ẋ(t) = Vhm(t), (4.3)

where V ∈ R
p×m is the unknown matrix to be determined. From the definition of the Haar

function, the initial state can be represented as follows:

x0 =
[
x0 0 · · · 0

]
hm(t). (4.4)

Integrating (4.3) from 0 to t, we have

x(t) = VPmhm(t) + x0. (4.5)

Integrating (4.1) and using (3.8) and (4.4), after canceling hm(t), we obtain

EV −AVPm = Q, (4.6)

where we define Q �
[
Ax0 0 · · · 0

]
+ BG. Thus, the differential matrix equation (4.1) has

been transformed to a generalized Sylvester matrix equation that must be solved for V.
Equation (4.6) can be solved by using Kronecker product as in [6]

(
Im ⊗ E + PT

m ⊗A
)
vec(V) = vec(Q), (4.7)

where Im is a unit matrix. Equation (4.7) can be solved by LU factorization. However, the
coefficient matrix Im ⊗ E + PT

m ⊗A has dimension pm × pm, making this approach impractical
except for small systems. There are other methods for solving the Sylvester matrix equation
(4.6), for example, the Bartels-Stewart algorithm, Krylov subspace method, and matrix sign
function method (see [10] and references therein). In [3, 11], recursive algorithms were
derived to solve the equations of type V − AVPm = Q for linear systems. It should be noted
that the algorithm in [3] is not applicable to a generalized Sylvester matrix equation (4.6),
since E is a singular matrix.



Beom-Soo Kim et al. 7

9 10 11 12 13 14 15 16

5 6 7 8

3 4

2

0

1

V(3)
2 =

[
V(5)

3 V(6)
3

]
V(4)

2 =
[
V(7)

3 V(8)
3

]

V(2)
1 =

[
V(3)

2 V(4)
2

]

V(5)
3 =

[
V(9)

4 V(10)
4

]
V(6)

3 =
[
V(11)

4 V(12)
4

]
V(7)

3 =
[
V(13)

4 V(14)
4

]
V(8)

3 =
[
V(15)

4 V(16)
4

]

V =
[
V(1)

1 V(2)
1

]

V(1)
1

V(9)
4 V(10)

4 V(11)
4 V(12)

4 V(13)
4 V(14)

4 V(15)
4 V(16)

4

Level 1

Level 2

Level 3

Level 4

Figure 1: Binary tree for resolution scale J = 4.

4.1. Decomposition and recursive binary tree

Under the assumption that A is a nonsingular matrix, (4.6) can be written as the following
Sylvester equation:

A−1EV −VPs = A−1Q. (4.8)

To decompose (4.8), we split V and A−1Q by columns:

AE

[
V(1)

1 V(2)
1

]
−
[
V(1)

1 V(2)
1

]
⎡
⎢⎣

Pm/2 − 1
2m

Hm/2

1
2m

H−1
m/2 0m/2

⎤
⎥⎦ =

[
Qa Qb

]
, (4.9)

where AE � A−1E, A−1Q =
[
Qa Qb

]
, V =

[
V(1)

1 V(2)
1

]
with Qa,Qb,V

(1)
1 ,V(2)

1 ∈ Rp×m/2. Here

V(r)
k

denotes the matrix that is decomposed at level k with r = {2k, 2k − 1}. Then, we obtain
the following reduced-order matrix equations:

AEV(1)
1 −V(1)

1 Pm/2 −
1

2m
V(2)

1 H−1
m/2 = Qa. (4.10)

AEV(2)
1 +

1
2m

V(1)
1 Hm/2 = Qb. (4.11)

Since E is a singular matrix, AE is also singular. Thus, we postmultiply by H−1
m/2 both sides of

(4.11) to express V(1)
1 in terms of V(2)

1

V(1)
1 = −2mAEV(2)

1 H−1
m/2 + 2mQbH−1

m/2. (4.12)



8 Mathematical Problems in Engineering

Substituting (4.12) into (4.10) yields

− 2mA2
EV(2)

1 H−1
m/2 + 2mAEQbH−1

m/2 + 2mAEV(2)
1 H−1

m/2Pm/2

− 2mQbH−1
m/2Pm/2 −

1
2m

V(2)
1 H−1

m/2 = Qa.
(4.13)

Therefore, the original problem is decomposed into a reduced-order generalized Sylvester
matrix equation (4.13) and a matrix algebraic equation (4.12). Again postmultiplying by Hm/2

both sides of (4.13), we have

(
− 2mA2

E −
1

2m
I
)

V(2)
1 + 2mAEV(2)

1 H−1
m/2Pm/2Hm/2

= QaHm/2 − 2mAEQb + 2mQbH−1
m/2Pm/2Hm/2.

(4.14)

In (4.14), we define

Cm/2 � H−1
m/2Pm/2Hm/2. (4.15)

Then, the matrix Cm/2 is an upper triangular matrix and has the following recursive form:

Cm/2 =

⎡
⎢⎢⎣

1
2

Cm/4
2
m

1m/4

0m/4
1
2

Cm/4

⎤
⎥⎥⎦ , C1 =

[
1
2

]
, (4.16)

where 1m/4 denotes m/4-square matrix with all elements being 1 (see Appendix A).
Substituting (4.16) into (4.14) and splitting V(2)

1 and the right-hand side of (4.14) by
columns yields

Ah

[
V(3)

2 V(4)
2

]
+ 2mAE

[
V(3)

2 V(4)
2

]
⎡
⎢⎢⎣

1
2

Cm/4
2
m

1m/4

0m/4
1
2

Cm/4

⎤
⎥⎥⎦ =

[
T(3)

2 T(4)
2

]
, (4.17)

where

Ah �
(
− 2mA2

E −
1

2m
I
)
,

QaHm/2 − 2mAEQb + 2mQbCm/2 � T(2)
1 =

[
T(3)

2 T(4)
2

]
,

V(2)
1 =

[
V(3)

2 V(4)
2

]
.

(4.18)



Beom-Soo Kim et al. 9

Thus, (4.17) is decomposed into two matrix equations with dependent and independent
subsystems.

AhV(3)
2 +mAEV(3)

2 Cm/4 = T(3)
2 . (4.19)

AhV(4)
2 +mAEV(4)

2 Cm/4 = T(4)
2 − 4AEV(3)

2 1m/4. (4.20)

In (4.19) and (4.20), we first solve for V(3)
2 and then after updating the right-hand side of

(4.20) with respect to V(3)
2 , solve for V(4)

2 . Since (4.19) and (4.20) have the same form as (4.17)
and Cm/4 is still an upper triangular matrix, they can be decomposed into two subsystems
in which the dimension has been reduced by half, respectively. Therefore, we recursively
decompose each equation into two equations until no further decomposition is possible in
which all V(r)

J , T(r)
J (r = 2J−1 + 1, . . . , 2J) are column vectors. This procedure constructs the

binary tree as shown in Figure 1.
A binary tree is a rooted tree in which each node has at most two children, designated

as a left child and a right child. A full binary tree is a binary tree in which each node has
exactly two children or none. A perfect (or complete) binary tree is a full binary tree in which
all leaves have the same depth [12]. In Figure 1, the binary tree in the dotted box is a perfect
binary tree of depth J − 1. An external node (or leaf node) is a node with no children. For
instance, the nodes labeled 1, 9, 10, 11, 12, 13, 14, 15, and 16 in Figure 1 are external nodes.

Matrix equations corresponding to all external nodes of the perfect binary tree are
classified into two types of equations described as follows:

AhV(r)
J + 4AEV(r)

J C1 = T(r)
J , r = 2J−1 + 1, 2J−1 + 3, . . . , 2J − 1 (r is odd),

AhV(r)
J + 4AEV(r)

J C1 = T(r)
J − 4AEV(r−1)

J 11, r = 2J−1 + 2, 2J−1 + 4, . . . , 2J (r is even).
(4.21)

Note that in equation (4.21), C1 = 1/2, 11 = 1. Thus, they become simple linear matrix
equations as follows:

(
Ah + 2AE

)
V(r)
J = T(r)

J , if r is odd,
(
Ah + 2AE

)
V(r)
J = T(r)

J − 4AEV(r−1)
J , if r is even.

(4.22)

4.2. Combined preorder and postorder traversal algorithm

Visiting all the nodes in a tree in some particular order is known as a tree traversal. A preorder
traversal visits the root of a subtree, then the left and right subtrees recursively. A postorder
traversal visits the left and right subtrees recursively, then the root node of the subtree [12].
For example, the preorder and postorder traversals of the binary tree shown in Figure 1 are
as follows:

5 1615814137412761093210

5 2481615714133612111091 0

Preorder traversal:

Postorder traversal:



10 Mathematical Problems in Engineering

Step 1. Initialize Ah, AE, T.
Step 2. Obtain V(2)

1
Input: Resolution scale J
WaveSolver(J)
{

for (r = 2J−1 + 1; r < 2J ; r = r + 2)
{

Solve for V(r)
J the system (Ah + 2AE)V

(r)
J = T(r)

J

Update T(r+1)
J accroding to T(r+1)

J = T(r+1)
J − 4AEV(r)

J

Solve for V(r+1)
J the system (Ah + 2AE)V

(r+1)
J = T(r+1)

J

WaveTree (1, J, r + 1)
}

}
Input: rno is a number of recursive call.

Resolution scale J
r is a node number.

WaveTree(rno, J, r)
{

if (J − rno ≤ 0)
return

Merge: V(r/2)
J−rno =

[
V(r−1)
J−rno+1 V(r)

J−rno+1

]

if
(
r

2
is even

)

WaveTree

(
rno+1, J,

r

2

)
;

else
Update and Split:

[
T(r−1)
J−rno+1 T(r)

J−rno+1

]
= T(r/2+1)

J−rno − 4AEV(r/2)
J−rno1m/2J−rno

}
Step 3. Solve V(1)

1 from (4.12).

Algorithm 1

During the decomposition of (4.14), the right-hand side of the right child is split after
updating it recursively as follows:

T(r)
k
− 4AEV(r−1)

k
1m/2k =

[
T(2r−1)
k+1 T(2r)

k+1

]
. (4.23)

This splitting and updating sequence is a preorder traversal of the perfect binary tree from
root node �2 . The unknown matrix V(2)

1 is obtained by merging all column vectors V(r)
J (r =

2J−1 + 1, . . . , 2J). This sequence is a postorder traversal of the perfect binary tree from root
node �2 . To update (4.23), we need V(r−1)

k which is obtained from the left child. Hence,
to solve (4.22), it is necessary to update, split, and solve by using the following combined
preorder and postorder traversal method.

The pseudocode of the proposed algorithm is as in Algorithm 1.
For example, at resolution scale J = 4, the proposed combined preorder and postorder

traversal method is illustrated in Figure 2.



Beom-Soo Kim et al. 11

2

3

5

9

10

6

11

12

4

7

13

14

8

15

16

9

10

5

11

12

6

3

13

14

7

15

16

8

4

2

Preorder Postorder

T(2)
1 =

[
T(3)

2 T(4)
2

]

T(3)
2 =

[
T(5)

3 T(6)
3

]

T(5)
3 =

[
T(9)

4 T(10)
4

]

T(9)
4

T(10)
4 = T(10)

4 − 4AEV(9)
4

T(6)
3 − 4AEV(5)

3 12 =
[
T(11)

4 T(12)
4

]

T(11)
4

T(12)
4 = T(12)

4 − 4AEV(11)
4

T(4)
2 − 4AEV(3)

2 14 =
[
T(7)

3 T(8)
3

]

T(7)
3 =

[
T(13)

4 T(14)
4

]

T(13)
4

T(14)
4 = T(14)

4 − 4AEV(13)
4

T(8)
3 − 4AEV(7)

3 12 =
[
T(15)

4 T(16)
4

]

T(15)
4

T(16)
4 = T(16)

4 − 4AEV(15)
4

(Ah + 2AE)V
(9)
4 = T(9)

4

(Ah + 2AE)V
(10)
4 = T(10)

4

[
V(9)

4 V(10)
4

]
= V(5)

3

(Ah + 2AE)V
(11)
4 = T(11)

4

(Ah + 2AE)V
(12)
4 = T(12)

4

[
V(11)

4 V(12)
4

]
= V(6)

3

[
V(5)

3 V(6)
3

]
= V(3)

2

(Ah + 2AE)V
(13)
4 = T(13)

4

(Ah + 2AE)V
(14)
4 = T(14)

4

[
V(13)

4 V(14)
4

]
= V(7)

3

(Ah + 2AE)V
(15)
4 = T(15)

4

(Ah + 2AE)V
(16)
4 = T(16)

4

[
V(15)

4 V(16)
4

]
= V(8)

3

[
V(7)

3 V(8)
3

]
= V(4)

2

[
V(3)

2 V(4)
2

]
= V(2)

1

Node notations:

Solve

Split

Update

Merge

Update & split

Retrieve

Figure 2: The combined preorder and postorder traversal for resolution scale J = 4.

In Figure 2, nodes 2, 3, 5, and 9 of preorder traversal are done at Step 1 and the
remaining nodes are processed at Step 2. The computational efficiency of the proposed
method is discussed in the next section.

5. An illustrated example

In this section, an example is presented to illustrate the proposed algorithm. We consider a
singular linear system of (4.1) with

E =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

−33 0 1.0 0
0 1 0 1.0
0 621.4 −28.27 0
0 −327.1 12.72 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
0

52.65
−23.69

⎤
⎥⎥⎦ , (5.1)

and X0 =
[
0 0.5 1.0 0

]T
. And we assume that u(t) is a unit step function. In the cases of J = 4

and 8, the simulation results are depicted in Figures 3 and 4, respectively.



12 Mathematical Problems in Engineering

−5

0

5

10

0

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(s)

Resolution scale: 4, m = 24 = 16

x1

x2

Figure 3: Case for resolution scale J = 4.

−5

0

5

10

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(s)

Resolution scale: 8, m = 28 = 256

x1

x2

Figure 4: Case for resolution scale J = 8.

From these figures, it is clear that the solution accuracy is improved when the
resolution scale is increased. However, it requires more computational time.

In (4.7), the LU factorization of Im ⊗ E + PT
m ⊗ A involves O(m3p3) flops. The cost of

the proposed algorithm is the sum of the cost of WinSolver, O((m/2)p3 + (m/2)p2), and the
cost of WinTree, O(

∑J−2
k=1(2

J−1p2 + (2J+2k−2 − 2J−2)p)) (see Appendix B). Since m = 2J , the costs



Beom-Soo Kim et al. 13

100

105

1010

1015

1020

C
om

pu
ta

ti
on

al
co

st

2 4 6 8 10 12 14 16 18 20

Resolution scale J

Computational cost comparison, A ∈ R4×4

Kronecker
Proposed

Figure 5: Log plot of flop counts for the Kronecker product method and the proposed method.

Table 1: Flop counts for various sizes of the matrix A and resolution scales.

J

A ∈ R4×4 A ∈ R20×20

Kronecker Proposed algorithm Kronecker Proposed algorithm

method WinSolver WinTree Total method WinSolver WinTree Total

2 4096 160 0 160 512000 16800 0 16800
5 2097152 1280 3360 4640 262144000 134400 32160 166560
10 6.871 × 1010 40960 89534464 89575424 8.589 × 1012 4300800 448983040 453283840
12 4.398 × 1012 163840 5.726 × 109 5.727 × 109 5.497 × 1014 17203200 2.864 × 1010 2.867 × 1010

15 2.251 × 1015 1310720 2.932 × 1012 2.932 × 1012 2.814 × 1017 137625600 1.466 × 1013 1.466 × 1013

18 1.152 × 1018 10485760 1.501 × 1015 1.501 × 1015 1.441 × 1020 1101004800 7.506 × 1015 7.506 × 1015

20 7.378 × 1019 83886080 4.194 × 1016 4.194 × 1016 9.223 × 1021 4.404 × 109 4.803 × 1017 4.803 × 1017

of WinSolver and O(m3p3) can be rewritten as O(2J−1p3 + 2J−1p2) and O(23Jp3), respectively.
Thus, the total cost of the proposed algorithm is

O

(
2J−1p3 + 2J−1p2 +

J−2∑
k=1

(
2J−1p2 +

(
2J+2k−2 − 2J−2)p)

)
flops. (5.2)

Table 1 and Figure 5 show that the computational cost of the proposed algorithm is
significantly less than the Kronecker product method, and that the flop counts are increasing
rapidly with resolution scale. As the resolution scale grows, the flop counts of WinTree is
increasing more rapidly than that of WinSolver since the sizes of matrices 1m, Tm, and Vm

increase exponentially.



14 Mathematical Problems in Engineering

Table 2

Level Size of 1m/2J−rno Size of T(r/2+1)
J−rno and V(r/2)

J−rno Times Computational cost

2 2J−2 × 2J−2 p × 2J−2 1 p22J−3 +
(
p2 + p

)
2J−1 − p2J−1

3 2J−3 × 2J−3 p × 2J−3 2 p22J−5 +
(
p2 + p

)
2J−2 − p2J−2

: : : : :
J − k 2k × 2k p × 2k 2J−k−2 2k+1p2 + 2k

(
22k − 1

)
p × 2J−k−2

: : : : :
J − 2 4 × 4 p × 4 2J−4 23p2 + 22(24 − 1

)
p × 2J−4

J − 1 2 × 2 p × 2 2J−3 4p2 + 21(22 − 1
)
p × 2J−3

6. Conclusions

An efficient computational method was presented for state space analysis of singular systems
via Haar wavelets. The problem was formulated as a generalized Sylvester matrix equation.
We presented an explicit expression for the inverse of the Haar matrix and a combined
preorder and postorder traversal algorithm to solve the problem more effectively. The full-
order generalized Sylvester matrix equation was solved in terms of the solutions of simple
linear matrix equations by the proposed algorithm. The efficiency of the proposed method
was demonstrated by a numerical example.

Appendices

A. Formula for Cm

In this appendix, we derive a formula for Cm. By using (3.13), (3.9), and (3.10), we can write

Cm = H−1
m PmHm

=
[

H−1
m/2 ⊗

[
0.5
0.5

]
Im/2 ⊗

[
0.5
−0.5

]]
⎡
⎢⎣

Pm/2 − 1
2m

Hm/2

1
2m

H−1
m/2 0m/2

⎤
⎥⎦

[
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]
]

=
[(

H−1
m/2 ⊗

[
0.5
0.5

])[
Pm/2 −

1
2m

Hm/2

]
+
(

Im/2 ⊗
[

0.5
−0.5

])[
1

2m
H−1
m/2 0m/2

]]

×
[

Hm/2 ⊗
[
1 1

]

Im/2 ⊗
[
1 −1

]
]

=
([(

H−1
m/2 ⊗

[
0.5
0.5

])
Pm/2 −

1
2m

(
H−1
m/2 ⊗

[
0.5
0.5

])
Hm/2

]

+
[

1
2m

Im/2 ⊗
[

0.5
−0.5

]
H−1
m/2 0m/2

])[
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]
]

=
[(

H−1
m/2 ⊗

[
0.5
0.5

])
Pm/2 −

1
2m

(
H−1
m/2 ⊗

[
0.5
0.5

])
Hm/2

] [
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]
]

+
[

1
2m

Im/2 ⊗
[

0.5
−0.5

]
H−1
m/2 0m/2

] [
Hm/2 ⊗

[
1 1

]

Im/2 ⊗
[
1 −1

]
]



Beom-Soo Kim et al. 15

=
(

H−1
m/2 ⊗

[
0.5
0.5

])
Pm/2

(
Hm/2 ⊗

[
1 1

] )
− 1

2m

(
H−1
m/2 ⊗

[
0.5
0.5

])
Hm/2

(
Im/2 ⊗

[
1 −1

] )

+
1

2m
Im/2 ⊗

[
0.5
−0.5

]
H−1
m/2

(
Hm/2 ⊗

[
1 1

] )
.

(A.1)

Since (A ⊗ B)C = (A ⊗ B)(C ⊗ 1) = (AC ⊗ B) and (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), the above
equation is rewritten as

Cm =
((

H−1
m/2Pm/2

)
⊗
[

0.5
0.5

])(
Hm/2 ⊗

[
1 1

] )
− 1

2m

((
H−1
m/2Hm/2

)
⊗
[

0.5
0.5

])(
Im/2 ⊗

[
1 −1

] )

+
1

2m

((
Im/2H−1

m/2

)
⊗
[

0.5
−0.5

])(
Hm/2 ⊗

[
1 1

] )

=
(
H−1
m/2Pm/2Hm/2

)
⊗
([

0.5
0.5

] [
1 1

])
− 1

2m
(
Im/2

)
⊗
([

0.5
0.5

] [
1 −1

])

+
1

2m
(
Im/2

)
⊗
([

0.5
−0.5

] [
1 1

])

= Cm/2 ⊗

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎦ +

1
2m

Im/2 ⊗
([
−0.5 0.5
−0.5 0.5

]
+
[

0.5 0.5
−0.5 −0.5

])

= Cm/2 ⊗

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

⎤
⎥⎥⎦ +

1
2m

Im/2 ⊗
[

0 1
−1 0

]

=

⎡
⎢⎢⎣

1
2

Cm/2
1
m

1m/2

0m/2
1
2

Cm/2

⎤
⎥⎥⎦ .

(A.2)

B. Flop counts of the combined preorder and postorder traversal algorithm

In this appendix, we show that the computational cost for the combined preorder and
postorder traversal algorithm described in Section 4.2 can be obtained as follows:

(1) WinSolve

Solve for V(r)
J the system

(
Ah + 2AE

)
V(r)
J = T(r)

J : O
(
p3).

Update T(r+1)
J according to T(r+1)

J = T(r+1)
J − 4AEV(r)

J : O
(
p
(
2p − 1

)
+ p

)
= O

(
2p2).

Solve for V(r+1)
J the system

(
Ah + 2AE

)
V(r+1)
J = T(r+1)

J : O
(
p3).



16 Mathematical Problems in Engineering

The total iteration number of “for (r = 2J−1 + 1; r < 2J ; r = r + 2)” is m/4. Thus, WinSolve
involves O((m/4)(p3+2p2 + p3)) = O((m/2)(p3+p2)) flops.

(2) WinTree

Update and split T(r/2+1)
J−rno − 4AEV(r/2)

J−rno1m/2J−rno (see Table 2).

Therefore, the computational cost for WinTree can be calculated by

O

(
J−2∑
k=1

(
2k+1p2 + 2k

(
22k − 1

)
p
)
× 2J−k−2

)
= O

(
J−2∑
k=1

(
2J−1p2 +

(
2J+2k−2 − 2J−2)p)

)
. (A.1)

References

[1] C. Cattani, “Haar wavelet-based technique for sharp jumps classification,” Mathematical and Computer
Modelling, vol. 39, no. 2-3, pp. 255–278, 2004.

[2] C. Cattani, “Wavelet approach to stability-of-orbits analysis,” International Applied Mechanics, vol. 42,
no. 6, pp. 721–727, 2006.

[3] C. F. Chen and C. H. Hsiao, “Haar wavelet method for solving lumped and distributed-parameter
systems,” IEE Proceedings: Control Theory and Applications, vol. 144, no. 1, pp. 87–94, 1997.

[4] C. F. Chen and C.-H. Hsiao, “Wavelet approach to optimising dynamic systems,” IEE Proceedings:
Control Theory and Applications, vol. 146, no. 2, pp. 213–219, 1999.

[5] F. L. Lewis, “A survey of linear singular systems,” Circuits, Systems, and Signal Processing, vol. 5, no.
1, pp. 3–36, 1986.

[6] F. L. Lewis and B. G. Mertzios, “Analysis of singular systems using orthogonal functions,” IEEE
Transactions on Automatic Control, vol. 32, no. 6, pp. 527–530, 1987.

[7] R. Kalpana and S. R. Balachandar, “Haar wavelet method for the analysis of transistor circuits,” AEU
- International Journal of Electronics and Communications, vol. 61, no. 9, pp. 589–594, 2007.

[8] C. F. van Loan, “The ubiquitous Kronecker product,” Journal of Computational and Applied Mathematics,
vol. 123, no. 1-2, pp. 85–100, 2000.

[9] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme,” Mathematische Annalen, vol. 69, no. 3,
pp. 331–371, 1910.

[10] Z. Gajic and M. T. J. Qureshi, Lyapunov Matrix Equation in System Stability and Control, vol. 195 of
Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1995.

[11] B.-S. Kim, I.-J. Shim, B. K. Choi, and J. H. Jeong, “Wavelet based control for linear systems via reduced
order Sylvester equation,” in Proceedings of the 3rd International Conference on Cooling and Heating
Technologies (ICCHT ’07), pp. 239–244, Tokyo, Japan, July 2007.

[12] F. Carrano and W. Savitch, Data Structures and Abstractions with Java, Prentice Hall, Upper Saddle
River, NJ, USA, 2003.


	Introduction
	Kronecker product
	Haar wavelets and their properties

	Singular linear system
	Decomposition and recursive binary tree
	Combined preorder and postorder traversal algorithm

	An illustrated example
	Conclusions
	Appendices
	Formula for Cm
	Flop counts of the combined preorder and postorder traversal algorithm
	(1) WinSolve
	(2) WinTree


	References

