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Modern automated production lines usually use one or multiple computer-controlled robots or
hoists for material handling between workstations. A typical application of such lines is an
automated electroplating line for processing printed circuit boards (PCBs). In these systems, cyclic
production policy is widely used due to large lot size and simplicity of implementation. This paper
addresses cyclic scheduling of a multihoist electroplating line with constant processing times. The
objective is to minimize the cycle time, or equivalently to maximize the production throughput, for
a given number of hoists. We propose a mathematical model and a polynomial algorithm for this
scheduling problem. Computational results on randomly generated instances are reported.
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1. Introduction

Modern automated production lines usually use one or multiple computer-controlled robots
or hoists for material handling between workstations. A typical example is an automated
electroplating line for processing printed circuit boards (PCBs). Such a production line usually
consists of a loading station, a sequence of chemical tanks, an unloading station, and a crew
of identical programmable hoists, as shown in Figure 1. Parts to be processed enter the system
from the loading station, and then are processed successively through tanks, and finally leave
the system from the unloading station. Each tank contains chemicals required for a specific
electroplating step in the processing of parts such as acid cleaning, acid activating, copper
plating, rinsing, and so on. Each tank can process only one part at a time. The processing
time in a tank may be a given constant or allowed to vary within a given window. Due to
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Figure 1: An automated multihoist electroplating line for processing PCBs.

specific characteristics of chemical treatment, as soon as the processing operation of a part is
completed in a tank, it must be immediately removed from that tank and transported to the
next one without any delay. Otherwise, defective parts may be produced due to oxidization
and contamination. In an automated electroplating line, the movements of parts between the
tanks are performed by a crew of computer-controlled hoists on a single track. By optimizing
the sequence and start times of the hoist moves, we can optimize the throughput of the line.
This problem is commonly known as the hoist scheduling problem in the literature [1–9].

Due to large lot size in electroplating operations, the production is often organized in a
cyclic manner, and only one part type is processed repeatedly in the line in a production period.
In such a cyclic production system, the hoists are programed to perform a fixed sequence of
moves repeatedly. Each repetition of the sequence is called a cycle. The duration of a cycle is
called the cycle time or the cycle length. Normally, one raw part enters and one finished part
leaves the line within a cycle. The throughput rate is the inverse of the cycle time. Therefore,
minimizing the cycle time is equivalent to maximizing the throughput of a production line.

This paper addresses cyclic scheduling of a multihoist electroplating line with constant
processing times, that is, the processing times of a part in tanks are constants. This type of
scheduling problem arises typically from high-precision electroplating systems, in which the
quality of treatment of a part mainly depends on its processing times in tanks. In literature,
some studies (e.g., [1, 3–5, 7, 8, 10–12]) deal with the scheduling problem with time windows,
that is, the processing time of parts in each tank must fall into a given time window.
This problem is NP-hard both for the single-hoist case and for the multihoist case. Hence,
the researchers proposed heuristics or branch-and-bound algorithms for the single-hoist or
multihoist scheduling problem with time windows. It should be noted that the polynomial
algorithm developed in this paper for the problem with constant processing times can be
served as a heuristic for the problem with time windows.

For the scheduling problem with constant processing times, Agnetis [13] developed
polynomial algorithms for lines with two or three tanks and a single hoist for material
handling. The same problem for any given number of tanks was shown to be solvable
in polynomial time by Levner et al. [14]. Che and Chu [6] extended Levner’s work and
developed an efficient algorithm for single-hoist electroplating lines with multifunctional
and/or duplicate tanks. As the number of tanks increases, material handling between the tanks
often becomes bottlenecks. To eliminate such bottlenecks and increase the throughput, it is
a common practice to use more than one hoist in an electroplating line with more than 10
tanks. Karzanov and Livshits [15] appear to be the first authors to study the cyclic multihoist
scheduling problem. They studied the system with parallel tracks (i.e., hoists travel along their
respective tracks) and proposed an O(N3) algorithm to find the minimal number of hoists for
a given cycle time, where N is the number of tanks in a production line. Kats and Levner [16]



A. Che and C. Chu 3

extended their results and found that the problem of minimizing the number of hoists for all
possible cycle times can be solved in O(N5) time. Kats and Levner [17] also developed an
O(N3 logN) algorithm for the multihoist scheduling problem for a given hoist assignment.

In the above studies, the researchers assumed that the hoists travel along their respective
parallel tracks and, therefore, the collision avoidance among the hoists was not addressed.
However, almost all practical electroplating lines have only one available track. This paper
addresses the single-track, multihoist scheduling problem with constant processing times.
When the hoists travel along a common track, the problem is much more complicated than
that with parallel tracks. With parallel tracks, it is not required to address collision avoidance
constraints among the hoists and the problem can be reduced to either an assignment problem
or a simple variant of a single-hoist problem if the hoist assignment is given. However, for
electroplating lines with a single track, we must address the collision avoidance constraints
among the hoists either on the track or on the tanks. As will be shown in this paper, the
solution of the problem with a single track differs from that for parallel tracks. Liu and
Jiang [18] proposed an efficient algorithm for the single-track, two-hoist scheduling problem
with constant processing times. In this paper, we develop a mathematical model and a
corresponding polynomial algorithm for the single-track, multihoist scheduling problem with
constant processing times.

2. Problem formulation

Consider an electroplating line consisting of a loading station M0, N chemical tanks,
M1,M2, . . . ,MN , and an unloading station MN+1. The stations or tanks are arranged in a
row from left to right in the following order: M0,M1, . . . ,MN,MN+1, as shown in Figure 2.
A single type of parts is to be processed in the line. The part flow can be described as follows.
After a part is removed from M0, it is processed successively through tanks M1,M2, . . . ,MN

and finally leaves the system from MN+1. Each tank can process at most one part at a time and
the processing time in Mi is a given constant ti. There are K identical hoists on a single track,
which are responsible for transporting parts between the tanks. Without loss of generality,
we assume that the hoists are numbered, from left to right, from 0 to K − 1, as shown in
Figure 2. For simplicity, the hoist movement of transporting a part from Mi to Mi+1 is called
move i, 0 ≤ i ≤ N. Each move i consists of three simple hoist operations: (1) lift up a part from
Mi; (2) transport the part to Mi+1; and (3) lower the part onto Mi+1. The time required for the
hoists to perform move i, i = 0, 1, . . . ,N, is θi, where lifting up a part from Mi, i = 0, 1, . . . ,N,
and lowering a part ontoMi, i = 1, 2, . . . ,N+1, take vi and μi, respectively. The hoist movement
without transporting any part is called a void move. The time for the hoists to perform a void
move from Mi to Mj, i, j = 0, 1, . . . ,N + 1, is di,j . di,j ’s satisfy the triangular inequality. Finally,
let constant δ be the allowable minimum distance among the hoists on the track in order to
avoid collision, that is, if the distance between two hoists is less than δ, then a collision happens
between them. For simplicity of notation, δ is measured in time in the remainder, which is equal
to the allowable minimum distance divided by the travel speed of the hoists.

The hoists are programed to perform a fixed sequence of moves repeatedly. The sequence
of moves performed by the hoists during a cycle is called a cyclic schedule. Our objective is to
find a cyclic hoist schedule such that the cycle time T is minimized. A cyclic hoist schedule
consists of the set of moves performed by each hoist and their respective starting times relative
to the start of the cycle. To define a hoist schedule, let Yi be the starting time of move i relative
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Figure 2: Part flow through an electroplating line with N chemical tanks and K hoists.
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Figure 3: A cyclic schedule with three tanks and two hoists.

to the start of a cycle, i = 0, 1, . . . ,N, and ri be the index of the hoist to perform move i (i.e.,
move i is performed by hoist ri), ri ∈ {0, 1, . . . , K − 1}, i = 0, 1, . . . ,N. Thus, a cyclic schedule
can be uniquely defined by (T, {ri, i = 0, 1, . . . ,N}, {Yi, i = 0, 1, . . . ,N}).

Figure 3 illustrates a cyclic schedule for an electroplating line with three chemical tanks
(not including the loading station M0 and the unloading station M4) and two hoists for
material handling. Three complete cycles are illustrated in Figure 3. Without loss of generality,
we assume that Y0 = 0, that is, move 0 happens at the start of a cycle which also implies that a
part is introduced into the system at the start of a cycle. Note that if Y0 > 0, we can change the
origin of the time axis such that Y0 = 0. From Figure 3, we see that parts are introduced into
the system at time instant 0, T, 2T, . . .. Each hoist performs a fixed sequence of moves cyclically.
For this example, we have r0 = 0, r1 = 1, r2 = 0, r3 = 1 , that is, hoist 0 performs moves 0 and 2
cyclically, while hoist 1 executes moves 1 and 3 repeatedly. From Figure 3, a cyclic schedule is
uniquely defined by (T, {ri, i = 0, 1, . . . ,N}, {Yi, i = 0, 1, . . . ,N}).

Our objective is to find a cyclic hoist schedule denoted by (T, {ri, i = 0, 1, . . . ,N}, {Yi, i =
0, 1, . . . ,N}) such that the cycle time T is minimized. A cyclic schedule (T, {ri, i =
0, 1, . . . ,N}, {Yi, i = 0, 1, . . . ,N}) is feasible if and only if it satisfies the following four families
of constraints:

(i) processing time constraints. The parts’ processing time in Mi is exactly ti, i =
1, 2, . . . ,N;

(ii) tank capacity constraints. Each tank can process at most one part at a time;

(iii) hoist availability constraints. There is no conflict in the use of the same hoist between
any pair of moves executed by that hoist, since any hoist cannot perform two moves
at the same time;
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(iv) collision-free constraints. The hoists travel on a single track and no collisions happen
during a cycle.

As mentioned above, at the start of each cycle, a part is introduced into the system
from the loading station. This means that the parts are introduced into the line at time instant
0, T, 2T, . . ., as shown in Figure 3. For the sake of simplicity, the part introduced into the system
at time nT (n ≥ 0) is called part n. With this definition, move i of part n represents the hoist
movement of transporting part n from Mi to Mi+1. Let Zj be the completion time of the jth
processing operation of part 0, which is also the starting time of move j of part 0. From Figure 3,
Zj can be calculated by using the following formula:

Zj =
j∑

i=1

(
θi−1 + ti

)
, j = 1, 2, . . . ,N, (2.1)

with Z0 = 0. By definition, Zj + nT is the completion time of the jth processing operation of
part n and also the starting time of move j of part n, for any 0 ≤ j ≤ N, for any n ≥ 0. In steady
state, the starting time of move j within [0, T) (i.e., relative to the start of a cycle) is given by

Yj = Zj mod T, j = 0, 1, . . . ,N. (2.2)

Figure 3 illustrates the above relationship between Yj and Zj .
In the following, we formulate our problem using the notion of prohibited intervals of

the cycle time, which was first introduced by Levner et al. [14] into the cyclic scheduling of no-
wait systems. Note that the part processing time requirements are implicitly taken into account
by using (2.1) and (2.2) to compute the starting times of the moves, as soon as T is known.

2.1. Formulation of the tank capacity constraints

The tank capacity constraints require that the processing of any two successive parts on the
same tank cannot be overlapped, since each tank can process one part at a time. Furthermore,
by taking into account the times required for lifting up a part from a tank and lowering a part
onto a tank, we must have

T ≥ tj + μj + νj, ∀ 1 ≤ j ≤N. (2.3)

This relation leads to

T ≥ β = max
1≤j≤N

(
tj + μj + νj

)
. (2.4)

2.2. Formulation of the hoist availability constraints

The hoist availability constraints require that there is no conflict in the use of the same hoist
between any pair of moves executed by that hoist. This implies that there must be sufficient
time interval between the start of any two moves performed by the same hoist, since any
hoist cannot perform two moves at the same time. This means that, for any pair of moves
(j, i), j = 0, . . . ,N − 1, i = j + 1, . . . ,N, if move i and move j are performed by the same hoist
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(i.e., ri = rj), then move i of any part must be executed either sufficiently before or sufficiently
after move j of any part. Due to the cyclic nature of the problem, it is sufficient to consider
the hoist availability constraints for move i of part 0 and move j of part n (for any n ≥ 1)
if move i and move j are performed by the same hoist. Therefore, for any pair of moves
(j, i), j = 0, 1, . . . ,N − 1, i = j + 1, . . . ,N, such that ri = rj , move i of part 0 must be done
either sufficiently before or sufficiently after move j of part n, for any n = 1, 2, . . . .

Appendix A shows that when part n enters the system, for any n ≥ n∗ + 1, where n∗ =
min(N + K, �(ZN + θN)/β�) − 1, part 0 must have left the system. Hence, there is no more
conflict in the use of the hoist between part 0 and part n when n ≥ n∗ + 1. So, we need to
consider only those n’s such that n = 1, 2, . . . , n∗. In fact, n∗ is the upper bound on the number
of parts simultaneously processed in a production line.

Figure 4(a) shows the case when move i of part 0 happens after move j of part n, while
Figure 4(b) shows the case when move i of part 0 is done before move j of part n. By definition,
move i of part 0 starts at Zj and ends at Zi + θi, and move j of part n starts at Zj + nT and ends
at Zj + nT + θj , as shown in Figures 4(a) and 4(b). It follows from Figure 4(a) that

Zi ≥ Zj + nT + θj + dj+1,i, (2.5)

where dj+1,i is the time for the hoist to travel, upon completion of move j of part n, from Mj+1

to Mi to perform move i of part 0. Similarly, it follows from Figure 4(b) that

Zj + nT ≥ Zi + θi + di+1,j , (2.6)

where di+1,j is the time for the hoist to travel, upon completion of move i of part 0, from Mi+1

to Mj to perform move j of part n.
To simplify the notation, define fij ≡ Zi − Zj + θi + di+1,j . According to (2.5) and (2.6), in

any case, we must have

either nT ≤ Zi − Zj − θj − dj+1,i = −fj,i,
or nT ≤ Zi − Zj + θi + di+1,j = fi,j ,

∀ 1 ≤ n ≤ n∗, ∀ 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N such that ri = rj .

(2.7)

Equations (2.7) are equivalent to

nT /∈
(
− fj,i,fi,j

)
, ∀ 1 ≤ n ≤ n∗, ∀ 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N such that ri = rj . (2.8)

Example 2.1. An electroplating line consists of three tanks, that is, N = 3. There are two hoists
available in the system, that is, K = 2. The processing times are as follows: t1 = 16, t2 =
8, t3 = 14. For all 0 ≤ i < j ≤ 4, the time for a void move from Mi to Mj is obtained by using
di,j = dj,i =

∑j−1
k=idk,k+1 with d0,1 = d3,4 = 4, d1,2 = d2,3 = 2. For all 0 ≤ i ≤ 4, μi = 0.5, vi = 0.5.

The times required for executing moves: θ0 = θ3 = 6, θ1 = θ2 = 4.We set δ = 1. For this example,
according to (2.1), we have Z0 = 0, Z1 = 22, Z2 = 34, Z3 = 52. By definition, β = max1≤j≤N(tj +
μj + vj) = 17, n∗ = min(3 + 2, �(Z3 + θ3)/β�) − 1 = 3, f1,0 = 32, f2,0 = 46, f3,0 = 70, f2,1 =
20, f3,1 = 44, f3,2 = 30, f0,1 = −16, f0,2 = −26, f0,3 = −42, f1,2 = −8, f1,3 = −24, f2,3 = −14.
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Figure 4: (a) Hoist availability constraint when move i succeeds move j (ri = rj). (b) Hoist availability
constraint when move i precedes move j (ri = rj).

2.3. Formulation of the collision-free constraints

In this subsection, we formulate the collision-free constraints among the hoists. This is
accomplished by considering possible collisions in the execution of moves. For any two moves i
and j executed by different hoists, if their execution requires that the hoists use a common zone
of the track, then either move i must sufficiently precede move j or move j must sufficiently
precede move i. Otherwise, possible collisions between the hoists may happen, since they use
a common zone of the track at the same time. In the remainder of the paper, for any two moves
i and j, without loss of generality, we assume that i > j. Three cases should be considered.

Case 1. ri > rj and i > j + 1, see Figure 5(a). In this case, in view of the part flow shown in
Figure 2, no collisions will happen between the two hoists during their execution of moves i
and j.

Case 2. ri > rj and i = j + 1, see Figure 5(b). In this case, hoist rj and hoist ri may collide at Mi,
onto which a part is lowered by hoist rj and from which another part is lifted up by hoist ri.

Case 3. ri < rj , see Figure 5(c). In this case, hoists ri and rj will use an overlapping zone of the
track from Mj to Mi+1 in order to execute moves i and j, and collisions may happen between
them when passing through this overlapping zone.

From this analysis, when there are multiple hoists on a single track, collisions may
happen among hoists not only when they use an overlapping zone of the track, but also when
using the same tank, from which a part is lifted up by one hoist and onto which another part
is lower down by another hoist. Such a tank is called a boundary tank in this paper. In the
following, we will first address Case 3 and then consider Case 2.

2.3.1. Execution of two moves requires using an overlapping zone of the track

By Case 3 (see Figure 5(c), hoists ri and rj will use an overlapping zone of the track from Mj to
Mi+1 in order to execute moves i and j, and collisions may happen between them. In order to
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Figure 5: (a) No collisions in the execution of two moves (ri > rj , i > j + 1). (b) Execution of two moves
requires using a boundary tank Mi (ri > rj , i = j + 1). (c) Execution of two moves requires using an
overlapping zone of the track from Mj to Mi+1 (ri < rj , i > j).
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Figure 6: (a) Collision-free constraint when move i succeeds move j (ri < rj). (b) Collision-free constraint
when move i precedes move j (ri < rj).

avoid collision between hoists ri and rj such that ri < rj , they cannot use this overlapping zone
at the same time. There must be sufficient time interval between them in using this overlapping
zone. This means that, for any pair of moves (j, i), j = 0, 1, . . . ,N − 1, i = j + 1, . . . ,N, such that
ri < rj , move i of part 0 must be done either sufficiently before or sufficiently after move j of
part n, for any n = 1, 2, . . . , n∗.

Figure 6(a) shows the case when move i of part 0 is done after move j of part n, that is,
Zi > Zj + nT . In order to avoid collision, after hoist rj finishes move j of part n, it should arrive
at Mi before hoist ri and should move to a higher position than Mi (i.e., move to a position
nearer to the unloading station than Mi), as shown in Figure 6(a). Note that the earliest time
at which hoist rj arrives at Mi is Zj +nT +θj +dj+1,i, and the latest time at which hoist ri arrives
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at Mi is Zi, and the allowable minimum distance among the hoists is δ. Hence, as shown in
Figure 6(a), the following constraint must be satisfied:

Zi ≥ Zj + nT + θj + dj+1,i +
(
rj − ri

)
δ. (2.9)

Similarly, as shown in Figure 6(b), if move i of part 0 is done before move j of part n, that is,
Zi < Zj + nT , we must have

Zj + nT ≥ Zi + θi + di+1,j +
(
rj − ri

)
δ. (2.10)

From (2.9) and (2.10), we have

either nT ≤ Zi − Zj − θj − dj+1,i −
(
rj − ri

)
δ = −fj,i −

(
rj − ri

)
δ,

or nT ≥ Zi − Zj + θi + di+1,j +
(
rj − ri

)
δ = fi,j +

(
rj − ri

)
δ,

∀ 1 ≤ n ≤ n∗, ∀ 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N such that ri < rj .

(2.11)

The constraints (2.11) can be equivalently written as

nT /∈
(
−fj,i−

(
rj−ri

)
δ,fi,j +

(
rj−ri

)
δ
)
, ∀ 1≤n≤n∗, ∀ 0≤ j ≤N−1, j+1≤ i≤N such that ri <rj .

(2.12)

2.3.2. Execution of two moves requires using a boundary tank

By Case 2 (see Figure 5(b)), hoists rj and ri may collide at Mi, onto which a part is lowered by
hoist rj and from which another part is lifted up by hoist ri. In order to avoid collision, part m
(for any m ≥ 0) must have been lifted up from Mi, for any 1 ≤ i ≤ N, when part m + 1 arrives
at Mi. Note that part m will leave Mi at time Zi +mT + νi, and part m + 1 will arrive at Mi at
time Zi−1 +(m+1)T +θi−1 −μi. knowing that the allowable minimum distance among the hoists
is δ, in order to avoid collision between hoists rj and ri, we must have

Zi−1 + (m + 1)T + θi−1 − μi ≥ Zi +mT + νi +
(
ri − ri−1

)
δ, ∀ 1 ≤ i ≤N such that ri−1 < ri.

(2.13)

This relation leads to

T ≥ ti + μi + νi +
(
ri − ri−1

)
δ, ∀ 1 ≤ i ≤N such that ri−1 < ri. (2.14)

This relation can be equivalently written as

T /∈
(
−∞, ti + μi + νi +

(
ri − ri−1

)
δ
)
, ∀ 1 ≤ i ≤N such that ri−1 < ri, (2.15)

From the above formulation of the problem, we see that the collision-free constraints
can be formulated as (2.12) and (2.15). It should be emphasized that this formulation of the
collision-free constraints is complete, since by Cases 1, 2, and 3 (or Figures 5(a), 5(b), and 5(c))
possible combinations of ri and rj are all taken into account for any pair of moves (j, i), j =
0, 1, . . . ,N − 1, i = j + 1, . . . ,N. Note that (2.8) and (2.12) can be generalized as

nT /∈
(
−fj,i−

(
rj−ri

)
δfi,j+

(
rj−ri

)
δ
)
, ∀ 1≤n≤n∗, ∀ 0≤ j ≤N−1, j+1 ≤ i≤N such that ri ≤ rj .

(2.16)
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According to (2.4), (2.15), and (2.16), the multihoist electroplating line scheduling
problem considered in this paper can be formulated as the following prohibited intervals for
the cycle time T:

Minimize T, (2.17)

subject to (2.4), (2.15), and (2.16).
Note that (2.4), (2.15), and (2.16) can be equivalently written as

T /∈ Q(R)

≡ (−∞, β) ∪
{

⋃

1≤i≤N
ri−1<ri

(
−∞, ti + μi + νi +

(
ri − ri−1

)
δ
)
}

∪
{

⋃

0≤j≤N

⋃

j+1≤i≤N
ri≤rj

{
(
− fj,i −

(
rj − ri

)
δ,fi,j +

(
rj − ri

)
δ
)
∪
(−fj,i −

(
rj − ri

)
δ

2
,
fi,j +

(
rj − ri

)
δ

2

)

∪ · · · ∪
(−fj,i −

(
rj − ri

)
δ

n∗
,
fi,j +

(
rj − ri

)
δ

n∗

)}}
,

(2.18)

where vector R = (r0, r1, . . . , rN). R is called the hoist assignment in the remainder. It can be
found from (2.18) that Q(R) is a union of R-parameterized open prohibited intervals for the
cycle time T. For a given R, Q(R) is a union of open prohibited intervals for the cycle time T.

In this Section, we formulate our problem as a series of prohibited intervals for the
cycle time, that is, Q(R). Each family of the problem constraints (i.e., tank capacity constraints,
hoist availability constraints, and collision-free constraints) corresponds to a set of prohibited
intervals for T, for example, the hoist availability constraint between a pair of moves (j, i) such
that ri = rj corresponds to a set of prohibited intervals nT /∈ ( − fj,i,fi,j), for n = 1, 2, . . . , n∗. Due
to this property, for a given hoist assignment R, if T /∈ Q(R), then such a T must be feasible,
since, by definition, such a T falls into no prohibited intervals in Q(R), and consequently all
problem constraints must be satisfied.

3. Problem analysis

In this Section, we perform a property analysis for the mathematical model we developed in
the above Section. Based on this analysis, we will show that the optimal cycle time for the
problem is necessarily one of special values of the cycle time. Hence, the optimal cycle time
can be found by detecting the feasibility for each one of these special values of the cycle time,
and our problem is thus reduced to a feasibility checking problem for a given value of T.

Theorem 3.1. Given a hoist assignment R, the optimal cycle time T ∗(R) ∈ A(R), where

A(R) ≡ {β} ∪
{
x | x = ti + μi + νi +

(
ri − ri−1

)
δ, x > β, 1 ≤ i ≤N, ri−1 < ri

}

∪
{
y | y =

fi,j +
(
rj − ri

)
δ

n
, y > β, 1 ≤ n ≤ n∗, 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, ri ≤ rj

}
.

(3.1)
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Proof. Given a hoist assignment R, Q(R) is a union of open prohibited intervals which are not
necessarily disjoint. However, Q(R) can be considered as a union of disjoint prohibited intervals
after merging of the intersecting ones. Therefore, Q(R) can be rewritten as

Q(R) =
(
a1, b1

)
∪
(
a2, b2

)
∪ · · · ∪

(
aH, bH

)
(3.2)

with −∞ = a1 < b1 ≤ a2 < · · · < bi−1 ≤ ai < bi ≤ ai+1 < · · · < bH.

Example 1 (continued)

If R = (r0, r1, r2, r3) = (0, 1, 0, 1), that is, move 0 and move 2 are performed by hoist 0 while
move 1 and move 3 are executed by hoist 1, according to (2.18), the following relation holds

T /∈ Q(R) = (−∞, β) ∪
{(

−∞, t1 + μ1 + ν1 + δ
)
∪
(
−∞, t3 + μ3 + ν3 + δ

)}

∪
{
(
− f0,2,f2,0

)
∪
(−f0,2

2
,
f2,0

2

)
∪
(−f0,2

3
,
f2,0

3

)}

∪
{
(
− f1,2 − δ,f2,1 + δ

)
∪
(−f1,2 − δ

2
,
f2,1 + δ

2

)
∪
(−f1,2 − δ

3
,
f2,1 + δ

3

)}

∪
{
(
− f1,3,f3,1

)
∪
(−f1,3

2
,
f3,1

2

)
∪
(−f1,3

3
,
f3,1

3

)}

= (−∞, 17) ∪
{
(−∞, 18) ∪ (−∞, 16)

}
∪
{
(26, 46) ∪ (13, 23) ∪ (8.66, 15.33)

}

∪
{
(7, 21) ∪ (3.5, 10.5) ∪ (2.33, 7)

}
∪
{
(24, 44) ∪ (12, 22) ∪ (8, 14.66)

}
.

(3.3)

After merging of the intersecting prohibited intervals in Q(R), we have T /∈ Q(R) = (−∞, 23)∪
(24, 46). Hence, a1 = −∞, b1 = 23, a2 = 24, b2 = 46.

We can easily find that the optimal cycle time T ∗(R) is necessarily the upper bound of the
first open prohibited interval, that is, b1, since b1 is the smallest cycle time that is not prohibited
by Q(R). Note that the upper bound of any disjoint prohibited interval, after merging of the
intersecting intervals, is necessarily an upper bound of one of the prohibited intervals before
merging of the intersecting intervals. This means that b1 is necessarily one of the upper bounds
of the prohibited intervals before merging of the intersecting ones. Therefore, it follows from
(2.18) that b1 ∈ A(R). Thus, we have Theorem 3.1.

Corollary 3.2. For any hoist assignment R, A(R) ⊂ AT always holds where

AT ≡ {β} ∪
{
x̂ | x̂ = ti + μi + νi + kδ, x̂ > β, 1 ≤ i ≤N, 1 ≤ k ≤ K − 1

}

∪
{
ŷ | ŷ =

fi,j + kδ
n

, ŷ > β, 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, 0 ≤ k ≤ K − 1, 1 ≤ n ≤ n∗
}
.

(3.4)

The correctness of Corollary 3.2 is straightforward, since we have (ri−ri−1) ∈ {1, 2, . . . , K−
1} for any 1 ≤ i ≤N such that ri−1 < ri, and (rj−ri) ∈ {0, 1, . . . , K−1} for any 0 ≤ j ≤N−1, j+1 ≤
i ≤N such that ri ≤ rj .

By Theorem 3.1 and Corollary 3.2, we have the following corollary.
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Corollary 3.3. The optimal cycle time T ∗ for the problem T ∗ ∈ AT .

By Corollary 3.3, the optimal cycle time T ∗ can be found by detecting the feasibility for
each value of the cycle time in AT in increasing order until the first feasible cycle time is found,
which is the optimal cycle time for the problem. Our problem is thus reduced to the feasibility
checking problem for a given value of T.

Example 1 (continued)

The set AT = {17, 18, 21, 22, 22.5, 23, 23.5, 30, 31, 32, 33, 35, 35.5, 44, 45, 46, 47, 70, 71}. The
optimal cycle time for the problem can be found by checking the feasibility of these values of
the cycle time in increasing order.

4. Feasibility checking for a given value of T

As mentioned in Section 2, for a given hoist assignment R, if T /∈ Q(R), then such a T must be
feasible. Hence, given a value of T, say T0, T0 must be feasible if there exists a hoist assignment R
such that T0 /∈ Q(R). Such an R is accordingly called a feasible hoist assignment for T0. Thus, to
check feasibility for T0, we only need to check whether there exists a feasible hoist assignment
R for T0. If so, then T0 is feasible. Our basic idea is to first derive sufficient and necessary
constraints that R must satisfy in order that T0 /∈ Q(R). By solving the derived constraints for
R, we then detect the feasibility for T0 and obtain a feasible hoist assignment R if T0 is feasible.

Theorem 4.1. For a given cycle time T0, in order that T0 /∈ Q(R), a sufficient and necessary condition
is that R satisfies the following constraints:

ri − ri−1 ≤ k − 1, if T0 ∈
(
−∞, ti + μi + νi + kδ

)
, ∀ 1 ≤ k ≤ K − 1, ∀ 1 ≤ i ≤N, (4.1)

rj−ri ≤ k−1, if
(
ski,j−1

)
T0∈

(
−fj,i−kδ, fi,j+kδ

)
, ∀ 0≤ j ≤N−1, j+1≤ i≤N, 0≤k≤K−1,

(4.2)

ri − r0 ≥ 0, ∀ 1 ≤ i ≤N, (4.3)

ri − r0 ≤ K − 1, ∀ 1 ≤ i ≤N, (4.4)

where ski,j = �(fi,j + kδ)/T0�, where �x� is the smallest integer greater than or equal to x.

Proof. Note that T0 /∈ Q(R) is equivalent to (2.4), (2.15), and (2.16) hold for T0. Constraint
(2.4) means that if T0 < β, then T0 must be infeasible and no further feasibility checking is
needed. Hence, in the remainder, without loss of generality, we assume that T0 ≥ β. With this
assumption, (2.4) is always satisfied. In the following, we will first derive the sufficient and
necessary constraints that R must satisfy in order that (2.15) holds for T0 (Part A), and then
we will derive the sufficient and necessary constraints that R must satisfy in order that (2.16)
holds for T0 (Part B).

Part A. The sufficiency and necessity of (4.1) in order that (2.15) holds for T0.

We first derive the necessary constraints that R must satisfy in order that (2.15) holds for
T0. Since 1 ≤ ri − ri−1 ≤ K − 1 for any 1 ≤ i ≤ N such that ri−1 < ri, in order that (2.15) holds for
T0, the following relation must hold

ri − ri−1 < k, if T0 ∈
(
−∞, ti + μi + νi + kδ

)
, ∀ 1 ≤ k ≤ K − 1, ∀ 1 ≤ j ≤N. (4.5)
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The correctness of (4.5) is clear, since if (4.5) was not satisfied, then we have T0 ∈ (−∞, ti + μi +
νi + kδ) and ri − ri−1 ≥ k, for some 1 ≤ k ≤ K − 1 and 1 ≤ i ≤ N, and consequently (2.15) will
be violated for T0. Since ri takes only integer, (4.5) is equivalent to (4.1). Hence, in order that
(2.15) holds for T0, R must satisfy (4.1).

We now prove the sufficiency of (4.1) in order that (2.15) holds for T0. Assume that
(2.15) does NOT hold for T0 when (4.1) holds. We will show that this assumption will lead to
contradictory facts and thus is incorrect. By assumption, since (2.15) does NOT hold for T0,
there must exists an i such that ri−1 < ri and T0 ∈ (−∞, ti + μi + νi + (ri − ri−1)δ). By letting
m = ri − ri−1, we have T0 ∈ (−∞, ti + μi + νi +mδ) for this specified i. Since, by assumption, (4.1)
holds and T0 ∈ (−∞, ti + μi + νi +mδ), according to (4.1), we must have ri − ri−1 ≤ m − 1. This is
in contradiction with the fact that m = ri − ri−1. This means that the assumption that (2.15) does
NOT hold for T0 when (4.1) holds is incorrect. We, thus, prove the sufficiency of (4.1) in order
that (2.15) holds for T0.

Part B. The sufficiency and necessity of (4.2) in order that (2.16) holds for T0.

We first derive the necessary constraints that R must satisfy in order that (2.16) holds for
T0. Since 0 ≤ rj − ri ≤ K − 1, for any 0 ≤ j ≤ N − 1, j + 1 ≤ i ≤ N such that ri ≤ rj , in order that
(2.16) holds for T0, the following relation must hold

rj − ri < k, if there exists an n, 1 ≤ n ≤ n∗ such that nT0 ∈
(
− fj,i − kδ,fi,j + kδ

)

∀ 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, 0 ≤ k ≤ K − 1.
(4.6)

The correctness of (4.6) is clear, since if (4.6) was not satisfied, then we have nT0 ∈ (−fj,i−
kδ,fi,j +kδ) and rj − ri ≥ k, for some 1 ≤ n ≤ n∗, 0 ≤ k ≤ K − 1, 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, and
consequently (2.16) will be violated for T0. As shown in Appendix B, checking whether there
exists an n, 1 ≤ n ≤ n∗ such that nT0 ∈ (−fj,i − kδ,fi,j + kδ), for all 0 ≤ j ≤ N − 1, j + 1 ≤ i ≤
N, 0 ≤ k ≤ K − 1 is equivalent to checking whether (ski,j − 1) T0 ∈ (−fj,i − kδ,fi,j + kδ), where

ski,j = �(fi,j + kδ)/T0�. As a result, (4.6) can be equivalently expressed as

rj−ri <k, if
(
ski,j−1

)
T0 ∈

(
−fj,i − kδ,fi,j + kδ

)
, ∀ 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, 0 ≤ k ≤ K − 1.

(4.7)

Since rj and ri take only integers, (4.7) is equivalent to (4.2). Hence, in order that (2.16) holds
for T0, R must satisfy (4.2).

We now prove the sufficiency of (4.2) in order that (2.16) holds for T0. Similarly, assume
that (2.16) does NOT hold for T0 when (4.2) holds. We will also show that this assumption will
lead to contradictory facts and thus is incorrect. By assumption, since (2.16) does NOT hold for
T0, we must have nT0 ∈ (−fj,i−(rj−ri)δ,fi,j+(rj−ri)δ) for some 1 ≤ n ≤ n∗, 0 ≤ j ≤N−1, j+1 ≤
i ≤ N, such that ri ≤ rj . By letting m = rj − ri, we have nT0 ∈ ( − fj,i − mδ,fi,j + mδ) for the
specified n, i, and j. Since, by assumption, (4.2) holds and nT0 ∈ ( − fj,i −mδ,fi,j +mδ) for the
specified n, i, and j, according to (4.2), we must have rj − ri ≤ m − 1. This is in contradiction
with the fact that m = rj − ri. This means that the assumption that (2.16) does NOT hold for T0

when (4.2) holds is incorrect. We, thus, prove the sufficiency of (4.2) in order that (2.16) holds
for T0.

Since there are K hoists in the production line, we must have

0 ≤ ri ≤ K − 1, ∀ 0 ≤ i ≤N. (4.8)
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With the line configuration in Figure 2, it is easy to find that move 0 must be performed by hoist
0 in order to avoid collision among the hoists. Thus, without loss of generality, we assume that
r0 = 0. With this assumption, constraints (4.8) can be equivalently written as (4.3) and (4.4).

To sum up, in order that T0 /∈ Q(R), a sufficient and necessary condition is that R satisfies
the constraints (4.1)–(4.4).

Example 1 (continued)

We illustrate the feasibility checking for T0 = 23. According to (4.1)–(4.4), in order that
T0 /∈ Q(R), a sufficient and necessary condition is that R satisfies the following constraints:

r0 − r1 ≤ −1, (4.9)

r0 − r2 ≤ 0, (4.10)

r0 − r3 ≤ −1, (4.11)

r2 − r3 ≤ −1, (4.12)

ri − r0 ≤ 1, ∀ 1 ≤ i ≤ 3. (4.13)

We illustrate how to derive (4.12). By definition, we derive s0
3,2 = 2, s1

3,2 = 2. Hence,
(s0

3,2 − 1)T0 = 23 ∈ (−f2,3,f3,2) = (14, 30); (s1
3,2 − 1)T0 = 23 ∈ (−f2,3 − δ,f3,2 + δ) = (13, 31). This

leads to r2 − r3 ≤ −1 and r2 − r3 ≤ 0 according to (4.2). The latter relation is redundant. We, thus,
derive (4.12). The other constraints can be derived in a similar way. Note that the constraints
ri − r0 ≥ 0, for all 1 ≤ i ≤ 3, are redundant with the consideration of (4.9)–(4.11) and thus were
not shown here.

By Theorem 4.1, (4.1)–(4.4) are the sufficient and necessary constraints that R must
satisfy in order that T0 /∈ Q(R). Note that each constraint in (4.1)–(4.4) can be equivalently
written in the form of rj − ri ≥ cij , where cij is an integer, 0 ≤ i, j ≤ N. Due to this
special structure, solving (4.1)–(4.4) can be transformed into a longest-path problem in a
directed graph, as will be described in detail. In a directed graph G(V, E), where V and E
are, respectively, the set of vertices and the set of arcs, a weight w(e) is associated with each
arc e ∈ E. Let h(e) and t(e) be, respectively, the head and the tail of arc e ∈ E (i.e., arc e goes
from vertex t(e) to vertex h(e)). Let πν denote the potential of vertex ν ∈ V . Thus, each arc e
represents a constraint πh(e) − πt(e) ≥ w(e).

The directed graph constructed from (4.1)–(4.4) contains N + 1 vertices, 0, 1, . . . ,N, the
potentials of which are, respectively, r0, r1, . . . , rN . Each constraint in the form of rj−ri ≥ ci,j , 0 ≤
i, j ≤N from (4.1)–(4.4) is represented by an arc from vertex i to vertex j with weight ci,j . Thus,
the set of constraints in (4.1)–(4.4) can be represented as

rj − ri ≥ ci,j , ∀ (i, j) ∈ E. (4.14)

With the constructed directed graph, a hoist assignment R satisfies (4.1)–(4.4) if and only if all
the arcs in graph G(V, E) satisfy (4.14). Let C be a directed cycle (circuit) on graph G(V, E),
then by (4.14)

∑

∀ (i,j)∈C

(
rj − ri

)
≥

∑

∀ (i,j)∈C
ci,j . (4.15)
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Since
∑

∀ (i,j)∈C(rj − ri) = 0, we have

∑

∀ (i,j)∈C
ci,j ≤ 0. (4.16)

Thus, if there are positive circuits in the associated directed graph, then (4.1)–(4.4) are said to
be infeasible in sense that they cannot lead to any feasible hoist assignment. On the other hand,
if there is no positive circuit in the directed graph, then (4.1)–(4.4) are said to be feasible or self-
consistent and a feasible hoist assignment can be derived from them. The following theorem
gives how to derive a feasible hoist assignment R if (4.1)–(4.4) are feasible or self-consistent
and its complexity.

Theorem 4.2. For a given cycle time T0, if there is no positive circuit in the directed graph constructed
from (4.1)–(4.4), then a feasible hoist assignment R must exist and it can be obtained in O(N3) in the
worst case.

Proof. Let li be the length of the longest path from vertex 0 to vertex i on graph G(V, E)
satisfying

lk +
∥∥Pk,i

∥∥ ≤ li, 0 ≤ i, k ≤N, k /= i, (4.17)

where Pk,i denotes the longest path from vertex k to vertex i. By definition, l0 = 0. It is easy
to see that R = (r0, r1, . . . , rN) = (l0, l1, . . . , lN) satisfies (4.14), which also implies that such an
R satisfies (4.1)–(4.4). By Theorem 4.1, such an R is a feasible hoist assignment for T0. Thus,
solving (4.1)–(4.4) and consequently checking the feasibility for T0 can be transformed into
solving a longest path problem for the corresponding directed graph, which can be solved in
O(|V ‖E|), where |V | and |E| are, respectively, the number of vertices and the number of arcs in
the directed graph. For this problem, we have |V | = N + 1, |E| ≤ (N + 1)(N + 2)/2. Hence, we
have Theorem 4.2.

Example 1 (continued)

The directed graph corresponding to (4.9)–(4.13) is shown in Figure 7. By solving the longest
path problem for this graph, we obtain l0 = 0, l1 = 1, l2 = 0, l3 = 1. We, thus, find a feasible
hoist assignment R = (r0, r1, r2, r3) = (0, 1, 0, 1) for T0 = 23. This implies that T0 = 23 is feasible.
It can be shown that the values of the cycle time less than T0 = 23 in AT are all infeasible.
Therefore, T0 = 23 is the optimal cycle time for the problem. From (2.2), we have Y0 = 0, Y1 =
22, Y2 = 11, Y3 = 6. The optimal cyclic schedule for T0 = 23 is shown in Figure 3. We see from
Figure 3 that hoists 0 and 1 use the overlapping zone from M1 to M3. We also see that there
is sufficient time interval between them in entering into the overlapping zone. Hence, possible
collisions between them are avoided.

5. Algorithm and complexity analysis

The process to solve the hoist scheduling problem considered in this paper can be summarized
as follows.

Step 1. Calculate the completion time Zj , for all j = 0, 1, . . . ,N, according to (2.1).
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Step 2. Calculate fi,j for all 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, and β.

Step 3. Construct set AT .

Step 4. Sort all the values of the cycle time in AT in increasing order. Check the feasibility for
each given value of T, say T0, in AT in increasing order as follows.

Step 4.1. Calculate ski,j , for all 0 ≤ j ≤N − 1, j + 1 ≤ i ≤N, 0 ≤ k ≤ K − 1.

Step 4.2. Using (4.1)–(4.4) to derive the sufficient and necessary constraints that R must satisfy
in order that T0 /∈ Q(R).

Step 4.3. Construct the directed graph and solve the corresponding longest path problem. If T0

is feasible, obtain the corresponding R, and go to Step 5. Otherwise, go to Step 4.1 to check the
feasibility for the next value of the cycle time in AT .

Step 5. Compute the move starting times for the optimal cycle time by using (2.2).

Theorem 5.1. The multihoist scheduling problem with constant processing times is solvable in
O(N6K) time in the worst case.

Proof. Steps 1 and 2, respectively, require O(N) and O(N2) times. By the definition of AT ,
the total number of the values of the cycle time in AT is O(N2Kn∗). Hence, Step 3 can be
implemented in O(N2Kn∗) time. In Step 4, sorting all the values of the cycle time in AT in
increasing order requires O(N2Kn∗(logN + logK + logn∗)) time.

For each given T0, Step 4.1 can be done in O(N2K) time. Step 4.2 can be implemented
in O(N2K). By Theorem 4.2, Step 4.3 can be implemented in O(N3) in the worst case. Without
loss of generality, we assume that each hoist in the line must perform at least one move and
each move can be performed by one and only one hoist. With this assumption, there are at
most (N + 1) hoists really used for material handling in a production line with N processing
tanks. Hence, we assume that K ≤ (N + 1). Thus, for each given T0, Steps 4.1–4.3 can be done
in O(N3). It is known that the total number of the values of the cycle time in AT is O(N2Kn∗).
To sum up, the algorithm runs in O(N5Kn∗) time.

Note that n∗ = min(N + K, �(ZN + θN)/β�) − 1. This leads to n∗ ≤ (N + K) ≤ 2N + 1.
Therefore, the algorithm runs in O(N6K) time in the worst case.

6. Computational results

The proposed algorithm was encoded in C++. In this section, we first use an example to verify
the correctness of the proposed algorithm. Randomly generated instances are then used to
further evaluate the performance of the algorithm. The computational experiment was done
on a PC with a Pentium IV 3.0 GHz processor.

The example has 20 processing tanks numbered from 1 to 20, stations 0 and 21 being the
loading station and the unloading station, respectively. The processing times for tanks 1 to 20
are 160, 180, 90, 150, 200, 190, 290, 170, 290, 230, 240, 86, 180, 300, 240, 180, 310, 200, 170, and
70, respectively. For any i such that 0 ≤ i ≤ N, the time for a void move from Mi to Mi+1, that
is, di,i+1 = 3. The other void move times are obtained accordingly with di,j = dj,i =

∑j−1
k=idk,k+1,

where 0 ≤ i < j ≤N + 1. The move times θi = di,i+1 + 20, where νi = μi = 10 for any 0 ≤ i ≤N.
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Figure 7: The directed graph corresponding to (4.9)–(4.13).

Table 1: Optimal multihoist cycle times for the example.

Number of hoists Proposed algorithm B and B algorithm
T∗ CPU (s) T∗ CPU (s)

K = 1 2316 0.015 2316 0.2
K = 2 1160 0.078 1160 24.6
K = 3 628 0.106 628 143.6
K = 4 358 0.109 358 59.8
K = 5 344 0.156 344 153.1

Note that the problem with constant processing times, as addressed in this study,
can be considered as a special case of the problem with time windows, that is, zero-width
time window. Hence, we can also solve the example using the branch-and-bound algorithm
proposed in [5]. Table 1 gives the computational results for the example using the proposed
algorithm and the branch-and-bound algorithm in [5]. In Table 1, the columns with T ∗ provide
with the optimal multihoist cycle times for the example, while the columns with CPU represent
their corresponding computation times (measured in seconds).

It can be observed from Table 1 that the optimal multihoist cycle times obtained with
the proposed polynomial algorithm are the same as those obtained with the branch-and-
bound algorithm in [5]. However, our polynomial algorithm significantly outperforms the
branch-and-algorithm regarding computation times. This is due to the fact that the algorithm
developed in this study exploits specific properties to the problem with constant processing
times. The optimal 4-hoist schedule for the example is shown in Figure 8.

In addition, randomly generated instances were used to evaluate the performance of
the proposed algorithm. The test instances were generated as follows using integer uniform
distributions. For any i such that 0 ≤ i ≤ N, the time for a void move from Mi to Mi+1, that is,
di,i+1, was randomly generated on [2, 5]. The other void move times are obtained accordingly
with di,j = dj,i =

∑j−1
k=idk,k+1, where 0 ≤ i < j ≤ N + 1. The move times θi is set to θi = di,i+1 + 20,

where νi = μi = 10 for any i such that 0 ≤ i ≤N. The processing times ti were generated on [30,
300]. We fix the value of N = 20, 30, 40, and 50. For each N = 20, 30, 40, and 50, 100 test instances
were generated. We consider five values of K : 1, 2, 3, 4, and 5, and 2000 (= 4 × 100 × 5) test
problems were solved.

Table 2 reports the average reduction in optimal cycle times (or equivalently improve-
ment on the throughput) achieved by the multihoist schedules with respect to the single-hoist
schedules, calculated by the optimal single-hoist cycle time divided by the optimal multihoist
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Figure 8: Optimal 4-hoist schedule for the example.

Table 2: Average reduction in cycle times by using multihoist for test instances.

Problem K = 2 K = 3 K = 4 K = 5
N = 20 2.08 3.98 6.25 7.63
N = 30 2.26 4.39 6.81 9.37
N = 40 2.10 3.89 6.28 8.79
N = 50 2.18 3.81 6.06 8.67

cycle time. We see from Table 2 that the reduction in optimal cycle times achieved by the
multihoist schedules is very significant, ranging from 2.08 to 9.37.

Table 3 gives the average computation times in CPU seconds for test instances. It can
be seen from Table 3 that the algorithm developed in this study is very efficient. Note that
practical electroplating lines generally have 10 to 20 processing tanks and 1 to 3 hoists. For this
size of problems, the computation times are within 80 milliseconds. For the 20-tank and 30-
tank instances with 1 to 5 hoists, our algorithm found optimal cycle times generally within one
second. Even for the very large problem with 50 tanks and 5 hoists, the proposed algorithm
can obtain the optimal solution within 25 seconds.

A further examination of Table 3 reveals that the computation times increase with the
number of tanks and hoists, as the algorithm runs in O(N6K) time in the worst case according
to its complexity estimation, but the computation times increase not so rapidly with the
number of tanks as the complexity of the algorithm indicates. This may be due to the fact that
the complexity analysis is a worst-case estimation and sometimes may be far from the reality.
To find the optimal cycle time, the values of the cycle time in AT are checked in increasing order
until a feasible one is found. In the complexity estimation, the number of values of the cycle
time to be checked is estimated at O(N3K) in the worst case. This estimation is too pessimistic.
In fact, only a small part of the values of the cycle time in AT needs to be checked before the
optimal cycle time is found, and more importantly, the total number of values of the cycle time
in AT is significantly less than its theoretical estimation O(N3K) (less than 10% for most of the
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Table 3: Average computation times for test instances (s).

Problem K = 1 K = 2 K = 3 K = 4 K = 5
N = 20 0.01 0.05 0.08 0.10 0.14
N = 30 0.05 0.22 0.57 0.90 1.30
N = 40 0.13 0.62 1.98 4.11 6.26
N = 50 0.28 1.39 4.46 11.90 23.92

instances), since most values of x̂ and ŷ in AT are less than β and the values of x̂ and/or ŷ may
take the same value.

7. Conclusion

This paper proposed a polynomial algorithm for the no-wait cyclic multihoist scheduling
problem in an electroplating line. Computational results on randomly generated instances
have shown that the algorithm is very efficient. The algorithm developed in this study can
be served as a subroutine or a heuristic in solving the problem with time windows.

An important extension of this study is to develop efficient heuristic for the hoist
scheduling problem with time windows, which is an NP-hard problem, using the algorithm
developed in this study as a subroutine. To achieve this extension, we should take the
processing times, which must be within given time windows, as decision variables of our
problem. If all processing times are fixed, then the corresponding problem can be solved using
the proposed algorithm. Thus, the key to solving the problem with time windows is to design
efficient search strategy to find an optimal combination of fixed processing times within given
time windows. This is our ongoing work.

Appendices

A. Upper bound on the number of parts simultaneously processed in a production line

It is known that part 0 arrives at the unloading station MN+1 at time ZN + θN and part n is
introduced into the system at time nT. In order that when part n enters the system, part 0 has
already left the system, it is sufficient that

nT ≥ ZN + θN. (A.1)

It follows from (2.4) that

⌈(
ZN + θN

)
/β

⌉
T ≥

⌈
ZN + θN

⌉
≥ ZN + θN. (A.2)

This means that (A.1) must hold for n ≥ �(ZN + θN)/β�.
On the other hand, since the K hoists have to perform all the moves within a cycle, we

must also have

T ≥
N∑

i=0

θi/K. (A.3)
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It follows from (2.4) and (A.3) that

(N +K)T ≥Nβ +
N∑

i=0

θi ≥
N∑

i=1

ti +
N∑

i=0

θi = ZN + θN. (A.4)

Hence, (A.1) must hold for n ≥ (N +K).
To sum up, when part n enters the system, for any n ≥ n∗ + 1, where n∗ = min(N +

K, �(ZN + θN)/β�) − 1, part 0 must have left the system; n∗ can be understood as the upper
bound on the number of parts simultaneously processed in a production line.

B. Equivalence of (4.6) and (4.7)

In constraints (4.6), for all 0 ≤ j ≤ N − 1, j + 1 ≤ i ≤ N, 0 ≤ k ≤ K − 1, we must check
whether there exists an n, 1 ≤ n ≤ n∗, such that nT0 ∈ ( − fj,i − kδ,fi,j + kδ). This requires that
nT0 ∈ ( − fj,i − kδ,fi,j + kδ) be checked from n = 1 to n∗. Hence, nT0 ∈ ( − fj,i − kδ,fi,j + kδ) will
be checked for at most n∗ times. In fact, this is not necessary.

By definition, ski,j = �(fi,j + kδ)/T0�, where �x� is the smallest integer greater than or

equal to x. This implies that ski,j is smallest integer such that ski,jT0 ≥ fi,j + kδ. Hence, for any

ski,j ≤ n ≤ n∗, we always have nT0 ≥ fi,j+kδ, that is, nT0 /∈ (−fj,i−kδ,fi,j+kδ) for any ski,j ≤ n ≤ n∗.
On the other hand, since ski,j is the smallest integer n such that nT0 ≥ fi,j + kδ, we must have

(ski,j − 1)T0 < fi,j + kδ. Hence, we check whether (ski,j − 1)T0 ≤ −fj,i − kδ.

Case 1. if (ski,j − 1)T0 ≤ −fj,i − kδ, then for any 1 ≤ n < ski,j − 1, we also have nT0 ≤ −fj,i − kδ. As a
result, in this case, we have nT0 /∈ ( − fj,i − kδ,fi,j + kδ) for any 1 ≤ n ≤ n∗.

Case 2. if (ski,j − 1)T0 > −fj,i − kδ, we find an n = ski,j − 1 such that nT0 ∈ ( − fj,i − kδ,fi,j + kδ).

From this analysis, for all 0 ≤ j ≤ N − 1, j + 1 ≤ i ≤ N, 0 ≤ k ≤ K − 1, checking whether
there exists an n, 1 ≤ n ≤ n∗, such that nT0 ∈ ( − fj,i − kδ,fi,j + kδ) is equivalent to checking
whether (ski,j − 1)T0 ∈ ( − fj,i − kδ,fi,j + kδ).
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