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1. Introduction

In this highly competitive globalized environment, enterprises are forced to pace their supply
according to the requirements of customers. Their initiative to have quick customer response
will help them to occupy the market and become the market leaders. Many enterprises attempt
to manage their supply chain effectively. One useful technique to achieve this target is to use
just-in-time (JIT) and the key to a successful JIT system is to be able to benefit both the vendor
and buyer. This is done through the mutual negotiations and agreements on how the savings
are divided (Hahn et al. [1]). JIT systems in today’s supply chain environment require the
creation of a new spirit of cooperation between the buyer and the vendor to gain and maintain
a competitive advantage. As Ha and Kim [2] have pointed out, the integrated inventory
model can contribute significantly to this vendor-buyer relationship. In Ohta and Furutani’s
[3] model, a supply chain system, which consists of the supplier, the buyer, and the customer,
where the buyer corresponds to a wholesaler, analyzes the effect of customer order cancella-
tions on (s, S) inventory policies for the supplier and the buyer in the supply chain system.
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The spirit of cooperation among enterprises is needed to improve the effectiveness of
the supply chain. One of the common strategies in the business cooperation is that the buyers
are offered a permissible delay period to pay back for the goods bought without paying any
interest. During this period, the buyer does not need to pay interest on goods kept in stock.
However, higher interest is charged if the payment for the goods is not paid by the end of
this period. For the vendor, he has the benefit of attracting the buyer to purchase his goods in
large batches. Therefore, the existence of the permissible delay period will promote a vendor’s
selling and reduce on-hand stock level. Simultaneously, a buyer can earn the interest of the
sales revenue and reduce the holding stock because of the reduced amount of capital invested
in stock for the duration of the permissible delay period. Goyal and Cárdenas-Barrón [4] first
developed an EOQ model with constant demand rate under conditions of permissible delay
in payments. He supposed that no deterioration occurs and the capacity of the warehouse
is unlimited. Besides, he also disregarded the difference between the selling price and the
purchase cost, and concluded that the economic replenishment time interval and order
quantity usually increase marginally under permissible delay in payments. Aggarwal and
Jaggi [5] extended the Goyal’s model to deteriorating items. Jamal et al. [6] farther extended
the model of Goyal [7] to permit shortage and deterioration. Yang and Wee [8] developed a
single-vendor, multibuyers inventory policy of a deteriorating item with a constant demand
rate. Recently, Teng [9] amended the Goyal’s model by considering the difference between the
selling price and the purchase cost, and found an alternative conclusion. Abad and Jaggi [10]
provided an integrated approach to the vendor for determining his pricing and credit policy
when end demand is price sensitive. They considered the vendor-buyer relationship under a
noncooperative as well as a cooperative situation and supposed that the vendor follows a lot-
for-lot shipment policy. Huang and Yao [11] aimed at optimally coordinating inventory for a
deteriorating item among all the partners in a supply chain system with a single vendor and
multiple buyers so as to minimize the average total costs. Teng et al. [12] then improved Teng
[9] by supposing that demand rate is price sensitive. Ouyang et al. [13] proposed a model with
adjustable production rate under the condition of permissible delay in payments. Huang et al.
[14] want to extend that fully permissible delay in payments to the supplier would offer the
retailer partially permissible delay in payments. The retailer must make a partial payment to
the supplier when the order is received. Then the retailer must pay off the remaining balance
at the end of the permissible delay period. Their research showed that the trade credit strategy,
as permissible delay in payments, could be a win-win strategy. Their analysis also identified
that the total channel profit would increase while the vendor and the buyer could cooperate to
share necessary business information with each other and balance the rate between production
and market demand.

It is impractical that the above integrated vendor-buyer inventory models are assumed
that the produced or received products are perfect without any imperfect quality item. In
fact, due to the deteriorating production process of the vendor and the damage during the
transportation process from the vendor to the buyer, an arrival order batch for the buyer may
contain some percentage defectives. Therefore, the conventional integrated inventory model
without quality consideration is inappropriate for the situation in which an arrival batch
contains some imperfect quality items. Porteus [15] first incorporated the effect of defective
items into the classical EOQ model and introduced the alternative of investing in process
quality improvement through reducing uncontrollable process quality parameters. Rosenblatt
and Lee [16] also considered the effect of an unreliable production process into the EPQ model.
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Their results showed that the average percentage of defective items would be increased by
reducing the lot size. Lee and Rosenblatt [17] added process inspection consideration into
production runs so that the change, which could move to the process out of control, could
be inspected and restored earlier than classical EOQ models. Schwaller [18] extended the
EOQ model by joining a known defective rate assumption into the incoming batches and that
fixed and variable screening costs are incurred in finding and expelling. Zhang and Gerchak
[19] considered a joint lot sizing and inspection policy in an EOQ model where a percentage
defective is random. Cheng [20] recommended an EOQ model with demand-dependent
unit production cost and imperfect production processes. He formulated the problem as a
geometric programing and solved it to get closed-form optimal solutions. Recently, Ben-
Daya and Hariga [21] examined the effect of defective items on production scheduling and
established a mathematical model to illustrate the scheduling questions. Salameh and Jaber
[22] considered a joint lot sizing and inspection policy under an EOQ model for items with
imperfect quality. Their results showed that economic lot size quantity tends to increase as
the average percentage of imperfect quality items increase. This contradicts with the finding
of Rosenblatt and Lee [16]. They also considered that poor-quality items should be sold as a
single batch at a discounted price prior to receiving the next shipment. Hayek and Salameh [23]
studied an inventory operating policy under the condition that imperfect quality items would
be reworked where shortages are allowed and backordered. Goyal [7] proposed a simple
approach to determine the economic production quantity for items with imperfect quality.

From the above-mentioned arguments, for advancing practical use in a real world,
this paper develops an integrated inventory model with process unreliability consideration
and permissible delay in payments. Imperfect quality items are handled in the same way as
proposed in Salameh and Jaber [22]. Yu et al. [24] developed a production-inventory model
considering a deteriorating item with imperfect quality and partial backordering. This paper
further extends the model of Ouyang et al. [13] to imperfect quality items. The main purpose
is to maximize the joint total profit from the perspective of both the vendor and the buyer with
the following strategy determining, which includes the buyer’s optimal selling price, order
quantity, and the number of shipments per production run.

The rest of this paper is organized as follows. The following section describes the
notations and assumptions made herein. Section 3 reports on the proposed mathematical
model and Section 4 establishes the solution procedure. Section 5 provides numerical examples
to illustrate the analysis of Sections 3 and 4. The final section draws the research conclusions.

2. Notations and assumptions

To establish the proposed model, the following notations are used.

Notations

D(p): Average demand per year, as a function of the selling price P
A: Vendor’s production rate, A > D

Q: Buyer’s order quantity per order
cV : The unit production cost for the vendor
cB: The unit purchasing cost for the buyer
P : The unit selling price for the buyer, a decision variable



4 Mathematical Problems in Engineering

SV : Setup cost per production run for the vendor
SB: Ordering cost per order for the buyer
hV : The unit holding cost rate for the vendor excluding interest charges
hB: The unit holding cost rate for the buyer excluding interest charges
F: Transportation cost per shipment
n: The total number of shipments per production run from the vendor to the buyer,

a positive integer and a decision variable
L: Buyer’s replenishment time interval between successive deliveries and a decision

variable
m: Buyer’s permissible delay period offered by the vendor per order
IVp: Vendor’s capital opportunity cost per dollar per year
IBP : Buyer’s capital opportunity cost per dollar per year
IBe: Buyer’s interest earned per dollar per year
Z: Percentage of defective items in Q, a random variable
f(z): Probability density function of z
ω: The unit inspecting cost
cR: Repair cost per item of imperfect quality for the vendor
TPV (n, p,Q): The vendor’s total annual profit
TPB(p,Q): The buyer’s total annual profit
JTP(n, p,Q): The joint total annual profit
ETPV (n, p,Q): The expected vendor’s total annual profit with Z
EJTP(n, p,Q): The expected joint total annual profit with Z.

The assumptions made in the paper are as follows.

Assumptions

(1) There is a single vendor and single buyer for a single product.
(2) The isoelastic curve the most conventionally assumed is selected as a price-demand

function form throughout this model and we set D(p) = γp−β, where γ > 0 is a scaling factor,
and β ≥ 1 is an index of price elasticity.

(3) The production rate, A, is adjustable. The ratio between the production rate A and
the demand rate D was set to be A/D = λ, where λ > 1 is a constant and A = λD.

(4) The buyer orders a quantity of Q for each order with an ordering cost SB; the vendor
manufactures at rateA, in batches of size nQ with a lot setup cost SV ; each batch is delivered to
the buyer in n equally sized shipments. For each shipment, the buyer brings a transportation
cost F.

(5) Successive shipments are scheduled so that the next one arrives at the buyer when
his stock from previous shipment has just been consumed.

(6) Shortages are not allowed.
(7) The relationship between the buyer’s selling price p, buyer’s purchasing cost cB and

vendor’s production cost cV is p ≥ cB ≥ cV .
(8) The vendor offers the buyer a permissible delay period m. During this permissible

delay period, the buyer sells the items and uses the sales revenue to earn interest at a rate of
IBe. At the end of this time period, the buyer pays the purchasing cost to the vendor and the
items still in stock bring a capital opportunity cost at a rate of IBp.
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(9) During the vendor’s production process, the produced items are continuously
reviewed.

(10) Under JIT manufacturing concept, defective items are not allowed. For maintaining
JIT spirit and conforming to the truth, we assume that the reworking of defective items starts
instantly they are fund in the same batch cycle and these reworked items are of perfect quality.

(11) In a single batch at the end of the vendor’s 100% inspecting process, if imperfect
quality items are found and the repair cost must be paid.

(12) The time horizon is infinite.

3. Model formulation

In this section, we formulate the model for the reality assuming that the vendor offers the
permissible delay in payments to the buyer and imperfect quality items can be produced
during a production run. We make use of the imperfect quality items consideration to extend
the integrated inventory model established by Ouyang et al. [13]. Imperfect quality items are
occurred in the vendor’s production process, and these items can be reworked immediately
in the same batch cycle. These imperfect quality items being reworked are of perfect quality.
So the vendor delivers an order quantity of Q with perfect quality to the buyer and the buyer
accepts it over n times.

Figure 1 depicts the behavior of inventory levels for both the vendor and the buyer,
which is along the notations and the assumptions shown above. The joint total annual profit
for the vendor and the buyer consists of (3.1) the vendor’s total annual profit, and (3.2) the
buyer’s total annual profit.

3.1. The vendor’s total annual profit

In each production run, the vendor produces the item in the quantity of nQ with the rate of
A and brings a setup cost SV as the buyer places an order of quantity Q over n times. But,
the vendor’s manufacturing will produce some imperfect quality items. It is assumed that
each batch of size Q produced contains percentage defectives ZQ. From assumption 10 stated
above, the quantity of ZQ with imperfect quality must be reworked instantly when they are
fund. These reworked items are excellent in quality. So the vendor’s production quantity can
be divided into two parts: the quantity of n(1 − Z)Q with perfect quality and the reworked
quantity of nZQ with perfect quality. Therefore, the total production quantity for the vendor
is still nQ and the buyer would receive it in n batches, which each has a quantity of Q with no
defect. Following the above notations and assumptions, the components in the vendor’s total
annual profit function are

(i) sales revenue per year = D(cB − cV ),

(ii) setup cost per year = SV/nL = SVD/nQ,

(iii) inventory holding cost including financing cost per year = (cV hV +cV IVp)×(Q/2)[n(1−
1/λ) − 1 + 2/λ],

(iv) opportunity cost per year for offering the permissible delay period m = cBIVp ×Dm,

(v) inspecting cost per year = cR × nZQ/nL = cRZD.
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Figure 1: An integrated inventory system for the vendor and the buyer.

Thus, the vendor’s total annual profit, TPV (n, p,Q), can be shown to be

TPV (n, p,Q)

= sales revenue − setup cost − inspecting cost − holding cost − opportunity cost

= D
(
cB − cV

)
− SVD

nQ
−Dω − cRZD −

cVQ
(
hV + IVp

)

2

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]
− cBIVpDm.

(3.1)

3.2. The buyer’s total annual profit

In this model, the buyer’s replenishment time interval between successive deliveries is L =
Q/D. The buyer brings an ordering cost SB and a transportation cost F for each order of
quantity Q. The buyer’s total annual profit consists of the following components:

(i) sales revenue per year = D(p − cB),
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Figure 2: Inventory systems for the buyer based on the relation between L and m.

(ii) cost of placing orders per year = SB/L = SBD/Q,

(iii) transportation cost per year = F/L = FD/Q,

(iv) inventory holding cost per year = cBhB ×Q/2,

(v) interest earned from the sales revenue received during the permissible delay period
m,

(vi) capital opportunity cost payable for the items unsold after the permissible delay
period m (notice that this cost only exists if L ≥ m).

Considering the components (v) interest earned, and (vi) capital opportunity cost, the
model has the following two possible cases based on the values of L and m. These two cases
are depicted graphically in Figure 2.

Case 1 ( L < m ). We first consider Case 1 in Figure 2, where L < m, the component (v), the
interest earned per year at a rate of IBe in the time span [0, m] is pIBe(Dm −Q/2). In addition,
the component (vi), capital opportunity cost payable per year during the time span [0, m] does
not exist.

From the above discussions, total profit per year for the buyer, TPB1(p,Q), is given by

TPB1(p,Q)

= sales revenue − ordering cost − transportation cost − holding cost + interest earned

= D
(
p − cB

)
− SBD

Q
− FD

Q
− cBhB

Q

2
+ pIBe

(
Dm − Q

2

)
.

(3.2)
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Case 2 (L ≥ m). For Case 2 in Figure 2, where L ≥ m, the component (v), the interest earned per
year at a rate of IBe during the time span [0, m] is pIBe(Dm)2/2Q. Next, the component (vi),
capital opportunity cost payable per year during the time span [m,L] is cBIBp(Q −Dm)2/2Q.

As a result, total profit per year for the buyer, TPB2(p,Q), is

TPB2(p,Q) = sales revenue − ordering cost − transportation cost − holding cost

+ interest earned − opportunity cost

= D
(
p − cB

)
− SBD

Q
− FD

Q
− cBhB

Q

2
+
pIBe(Dm)2

2Q
−
cBIBp(Q −Dm)2

2Q
.

(3.3)

3.3. The expected joint total annual profit

Hence, the joint total annual profit function, JTP(n, p,Q), can be expressed as

JTP(n, p,Q) =

⎧
⎨

⎩

JTP1(n, p,Q) = TPV (n, p,Q) + TPB1(p,Q), if L < m

JTP2(n, p,Q) = TPV (n, p,Q) + TPB2(p,Q), if L ≥ m,
(3.4)

where

JTP1(n, p,Q)=D
(
p − cV −ω − cRZ

)
−D
Q

(
SV
n

+ SB + F
)
−
cVQ

(
hV + IVp

)

2

[
n

(
1 − 1

λ

)
− 1+

2
λ

]

− cBIVpDm − cBhB
Q

2
+ pIBe

(
Dm − Q

2

)
,

JTP2(n, p,Q)=D
(
p − cV −ω − cRZ

)
−D
Q

(
SV
n

+ SB + F
)
−
cVQ

(
hV + IVp

)

2

[
n

(
1 − 1

λ

)
− 1+

2
λ

]

− cBIVpDm − cBhB
Q

2
+
pIBe(Dm)2

2Q
−
cBIBp

(
Q −Dm

)2

2Q
.

(3.5)

To reduce the notations used by (3.5), we set Y ≡ cV (hV + IVp). We also replace Q = DL
and D = D(p) = γp−β into the joint total annual profit function JTP(n, p,Q). Given that Z is
a random variable with a known probability density function f(z). Then we set the expected
value of Z, μ = E(Z) and the expected value of (3.4), EJTP(n, p, L), is given as

EJTP(n, p, L) =

⎧
⎨

⎩

EJTP1(n, p, L) = ETPV (n, p, L) + TPB1(p, L) if L < m,

EJTP2(n, p, L) = ETPV (n, p, L) + TPB2(p, L) if L ≥ m,
(3.6)

where

EJTP1(n, p, L)

=γp−β
{
p−cV −ω−cRμ+

(
pIBe−cBIVp

)
m−L

2

{
cBhB+pIBe+Y

[
n

(
1− 1

λ

)
−1+ 2

λ

]}}
− 1
L

(
SV
n

+SB+F
)
,

(3.7)
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EJTP2(n, p, L)

=γp−β
{
p−cV −ω−cRμ+cB

(
IBp−IVp

)
m−L

2

{
cB
(
hB+IBp

)
+Y

[
n

(
1− 1

λ

)
−1+ 2

λ

]}
+

(
pIBe−cBIBp

)
m2

2L

}

− 1
L

(
SV
n

+ SB + F
)
.

(3.8)

4. Methodology

The objective of this paper is to find an optimal inventory policy to maximize the joint total
annual profit between a vendor and a buyer.

4.1. Determination of the optimal number of shipments n for any given p and L

Firstly, taking the first-order and second-order partial derivatives of EJTPi(n, p, L), for i = 1, 2,
with respect to n, we obtain

∂EJTP(n, p, L)
∂n

=

⎧
⎪⎪⎨

⎪⎪⎩

∂EJTP1(n, p, L)
∂n

∂EJTP2(n, p, L)
∂n

=
−γp−βLY

2

(
1 − 1

λ

)
+
SV
n2L

,

∂2EJTP(n, p, L)
∂n2

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2EJTP1(n, p, L)
∂n2

∂2EJTP2(n, p, L)
∂n2

= −2SV
n3L

< 0.

(4.1)

Therefore, for fixed p and L, EJTPi(n, p, L) is strongly concave on n > 0 for i = 1, 2.
Thus, in each production run, determining the optimal number of shipments n∗, is simplified
to obtain a global optimum.

4.2. Determination of the optimal replenishment time interval L for any given n and p

By taking the first-order and second-order partial derivatives of EJTPi(n, p, L), for i = 1, 2, with
respect to L, we have

∂EJTP1(n, p, L)
∂L

=
−γp−β

2

{
cBhB + pIBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
+

1
L2

(
SV
n

+ SB + F
)
, (4.2)

∂2EJTP1(n, p, L)
∂L2

= − 2
L3

(
SV
n

+ SB + F
)
< 0, (4.3)

∂EJTP2(n, p, L)
∂L

=
−γp−β

2

{
cB
(
hB + IBp

)
+ Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]
+
(pIBe − cBIBp)m2

L2

}
+

1
L2

(
SV
n

+ SB + F
)
,

(4.4)

∂2EJTP2(n, p, L)
∂L2

= − 1
L3

[
γp−βm2(cBIBp − pIBe

)
+ 2

(
SV
n

+ SB + F
)]

. (4.5)
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Consequently, EJTP1(n, p, L) is strongly concave on L for fixed n and p. So there exists a
unique replenishment time interval value of L1, which maximizes EJTP1(n, p, L). The value of
L1 can be found by equating (4.2) to be zero, and we obtain

L1 =

√√√
√

(
SV/n + SB + F

)

(
γp−β/2

){
cBhB + pIBe + Y

[
n(1 − 1/λ) − 1 + 2/λ

]} . (4.6)

To make certain L1 < m, we exchange (4.6) into inequality L1 < m, and get that

iff
(
SV
n

+ SB + F
)
<
γp−βm2

2

{
cBhB + pIBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
, then L1 < m. (4.7)

Then substituting (4.6) into (3.7) and rearranging the result leads to

EJTP1(n, p)

≡ EJTP1
(
n, p, L1

)

=γp−β
[
p−cV −ω−cRμ+

(
pIBe−cBIVp

)
m
]
−
√

2γp−β
(
SV
n

+SB+F
){

cBhB+pIBe+Y
[
n

(
1− 1

λ

)
−1+

2
λ

]}
.

(4.8)

From the inequality (4.7), we know that if L2 ≥ m, it means that

(
SV
n

+ SB + F
)
≥
γp−βm2

2

{
cBhB + pIBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
. (4.9)

Next, we need to check the second-order partial derivative of EJTP2(n, p, L) for concavity
with respect to L. The part Y [n(1− 1/λ)− 1+ 2/λ] = Y [((n− 1)(λ− 1) + 1)/λ], where n ≥ 1 and
λ > 1, so it is certainly positive. Accordingly, it follows that

γp−βm2(cBIBp − pIBe
)
+2

(
SV
n

+ SB + F
)
≥γp−βm2

{
cB
(
hB + IBp

)
+Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
>0,

(4.10)

and the polynomial (4.5) is negative. Therefore, EJTP2(n, p, L) is also strongly concave on L
for fixed n and p. Similarly, we can obtain an optimum of L2 which maximizes EJTP2(n, p, L).
Solving for L2 by equating (4.4) to be zero, we have

L2 =

√√√
√

(
SV/n + SB + F

)
+
(
γp−βm2/2

)(
cBIBp − pIBe

)

(
γp−β/2

){
cB
(
hB + IBp

)
+ Y

[
n(1 − 1/λ) − 1 + 2/λ

]} . (4.11)

To make certain L2 ≥ m, we exchange (4.11) into inequality L2 ≥ m, and get that

iff
(
SV
n

+ SB + F
)
≥
γp−βm2

2

{
cBhB + pIBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
, then L2 ≥ m.

(4.12)
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Substituting (4.11) into (3.8) and rearranging

EJTP2(n, p)

≡EJTP2
(
n, p, L2

)

=γp−β
[
p − cV −ω − cR + cB

(
IBp − IVp

)
m
]

−

√

2γp−β
[(
SV
n

+SB+F
)
+
γp−βm2

2
(
cBIBp−pIBe

)
]{

cB
(
hB+IBp

)
+Y

[
n

(
1− 1

λ

)
−1+

2
λ

]}
.

(4.13)

Hence, the above processes on L lead to the following theorem.

Theorem 4.1. For any given n and p, we can get the following results.

(i) If (SV/n + SB + F) < (γp−βm2/2){cBhB + pIBe + Y [n(1 − 1/λ) − 1 + 2/λ]}, then L∗ = L1.

(ii) If (SV/n + SB + F) ≥ (γp−βm2/2){cBhB + pIBe + Y [n(1 − 1/λ) − 1 + 2/λ]}, then L∗ = L2.

(iii) If (SV/n + SB + F) = (γp−βm2/2){cBhB + pIBe + Y [n(1 − 1/λ) − 1 + 2/λ]}, then L∗ = m.

Proof. The above processes on L imply that Theorem 4.1 holds.

4.3. Determination of the optimal selling price p

According to Theorem 4.1, we set a function of p, ψ(p), as a distinction function which is given
to be

ψ(p) =
γp−βm2

2

{
cBhB + pIBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
. (4.14)

ψ(p) is a monotonically decreasing function of p, and p is a monotonic variable, where
given any p+ > p− such that ψ(p+) < ψ(p−), because

dψ(p)
dp

=
−γp−β−1m2

2

{
β

{
cBhB + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
+ (β − 1)pIBe

}

=
−γp−β−1m2

2

{
β

{
cBhB + Y

[
(n − 1)(λ − 1) + 1

λ

]}
+ (β − 1)pIBe

}
< 0,

(4.15)

where n ≥ 1, λ > 1 and β > 1.
Utilizing the results in Theorem 4.1, we set p0 such that

(
SV
n

+ SB + F
)

= ψ
(
p0
)
=
γp
−β
0 m2

2

{
cBhB + p0IBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
. (4.16)

Then for any given p which is substituting into ψ(p), we get

(
SV
n

+ SB + F
)
⎧
⎨

⎩

< ψ(p), if p < p0

≥ ψ(p), if p ≥ p0.
(4.17)
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By comparing (4.7), (4.12), and (4.17), the following results can be yielded

iff p < p0, then L1 < m.

iff p ≥ p0, then L2 ≥ m.
(4.18)

Consequently, we know from (3.6), (4.8), (4.13), and (4.18) that

EJTP(n, p) =

⎧
⎨

⎩

EJTP1(n, p) = EJTP1
(
n, p, L1

)
if p < p0,

EJTP2(n, p) = EJTP2
(
n, p, L2

)
if p ≥ p0,

(4.19)

where n is fixed.
Solving for the optimal selling price p∗, by taking the first-order partial derivative of

(4.8) with respect to p and equating the result to be zero, we obtain

∂EJTP1(n, p)
∂p

=γp−β(1 − β)
(
1 + IBem

)
+ βγp−β−1(cV +ω + cRμ + cBIVpm

)

+

√
γp−β

(
SV/n+SB + F

)

2
×
(β/p)

{
cBhB + pIBe+Y

[
n(1 − 1/λ)−1 + 2/λ

]}
−IBe

√
cBhB + pIBe+Y

[
n(1 − 1/λ) − 1 + 2/λ

]

=0.
(4.20)

Then we need to verify the second-order partial derivative condition for concavity, as

∂2EJTP1(n, p)
∂p2

= −βγp−β−2[p(1−beta)
(
1+IBem

)
+(β +1)

(
cV +ω+cRμ+cBIVpm

)]
−

√
γp−β−4(SV/n+SB+F

)

8

×
{
(β + 1)pIBe

{
2β

{
cBhB + pIBe + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}
− (β + 1)pIBe

}

+ β(β + 2)
{
cBhB + Y

[
n

(
1 − 1

λ

)
− 1 +

2
λ

]}2}{
cBhB+pIBe+Y

[
n

(
1− 1

λ

)
−1+

2
λ

]}−3/2

<0.

(4.21)

Likewise, taking the first-order partial derivative of (4.13) with respect to p and equating
the result to be zero, we get

∂EJTP2(n, p)
∂p

= βγp−β−1[cV +ω + cRμ + cB
(
IVp − IBp

)
m
]
+ γp−β(1 − β)

+
{
β

p

(
SV
n

+ SB + F
)
+ γp−β−1m2

[
βcBIBp +

(
1
2
− β

)
pIBe

]}

×

√√√
√

(
γp−β/2

){
cB
(
hB + IBp

)
+ Y

[
n(1 − 1/λ) − 1 + 2/λ

]}

(
SV/n + SB + F

)
+
(
γp−βm2/2

)(
cBIBp − pIBe

)

= 0.

(4.22)
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Step 1: set n = 1.

Step 2: determine the p0 by solving (4.16).

Step 3: if there exists a p1 where p1 ≤ p0, and satisfies both the first-order condition as in (4.20) and

the second-order condition as in (4.21), then we compute L1(p1) by (4.6) and EJTP1 (n, p1,

L1(p1)) by (4.8). If not, we set EJTP1(n, p1, L1(p1)) = 0.

Step 4: if there exists a p2 where p2 ≥ p0, and satisfies both the first-order condition as in (4.22) and

the second-order condition as in (4.23), then we compute L2(p2) by (4.11) and EJTP2(n, p2,

L2(p2)) by (4.13). If not, we set EJTP2(n, p2, L2(p2)) = 0.

Step 5: if EJTP1(n, p1, L1(p1)) ≥ EJTP2(n, p2, L2(p2)). Set EJTP(n, p[n], L[n]) = EJTP1 (n, p1, L1(p1)),

then (p[n], L[n]) is an optimal solution for a given n. If not, EJTP(n, p[n], L[n]) = EJTP2(n,

p2, L2(p2)).

Step 6: set n = n + 1, repeat steps 2–5 to obtain EJTP(n, p[n], L[n]).

Step 7: if EJTP(n, p[n], L[n]) ≥ EJTP(n − 1, p[n − 1], L[n − 1]), go to step 6. If not, go to step 8 and

stop.

Step 8: set EJTP(n∗, p∗, L∗) = EJTP(n − 1, p[n − 1], L[n − 1]), so (n∗, p∗, L∗) is an optimal solution.

Consequently, the buyer’s optimal order quantity per order is Q∗ = D(p∗)L∗.

Algorithm 1

The second-order condition for concavity that we need to verify is

∂2EJTP2(n, p)
∂p2

= −γp−β−2
{
β
{
(β + 1)

[
cV +ω + cRμ + cB

(
IVp − IBp

)
m
]
+ (1 − β)p

}

+

√
γp−β

{
cB
(
hB + IBp

)
+ Y

[
n(1 − 1/λ) − 1 + 2/λ

]}

[
2
(
SV/n + SB + F

)
+m2

(
cBIBp − pIBe

)]3/2

×
{
β(β + 2)
γp−β

(
SV
n

+ SB + F
)2

+ 3βm2
(
SV
n

+ SB + F
)
[
cB(β + 1)IBp − βpIBe

]

+ γp−βm4
[(

β2 − 1
4

)
(
pIBe

)2 + β(2β + 1)cBIBppIBe − β(β + 1)
(
cBIBp

)2
]}}

< 0.
(4.23)

4.4. Optimal solution procedure

Thus, we can use the following solution procedure to find optimal values n, p, and L for this
model. The solution procedure is commonly known as dichotomy, as in Algorithm 1.
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5. Numerical examples

Example 5.1. Consider an inventory situation with the following parametric values partially
adopted in Ouyang et al. [13] and Salameh and Jaber [22]:

(i) scaling factor γ = 100000,

(ii) index of price elasticity β = 1.5,

(iii) ratio between the production rate and the demand rate λ = 1.5,

(iv) purchasing cost for the buyer cB = $4.5/unit,

(v) ordering cost for the buyer SB = $10/order,

(vi) buyer’s unit holding cost rate hB = 0.111,

(vii) buyer’s capital opportunity cost IBp = 0.08/$/yr,

(viii) buyer’s interest earned rate IBe = 0.06/$/yr,

(ix) transportation cost F = $50/shipment,

(x) production cost for the vendor cV = $2.2/unit,

(xi) setup cost per production run for the vendor SV = $350/setup,

(xii) vendor’s unit holding cost rate hV = 0.046,

(xiii) vendor’s capital opportunity cost IVp = 0.03/$/yr,

(xiv) inspecting cost ω = $0.5/unit,

(xv) repair cost per imperfect quality item cR = $2/unit.

The percentage defective random variable, Z, is uniformly distributed with its
probability density function (PDF) as

f(z) =

⎧
⎨

⎩

25, 0 ≤ z ≤ 0.04

0, otherwise.
(5.1)

Therefore, μ = E[Z] =
∫0.04

0 25zdz = 0.02.
The above solution algorithm is applied to get the computational results for various

values of permissible delay period m as shown in Table 1.
Table 1 shows that (1) the expected joint total annual profit increases when the

permissible delay period m increases, (2) the optimal selling price p∗ and the optimal
replenishment time interval L∗ are decreasing with the increasing of permissible delay period
m, (3) as the annual demandD(p∗) is increasing with the decreasing of p∗, the buyer’s expected
total annual profit increases as well as the expected joint total annual profit, and (4) the optimal
order quantity Q∗ decreases with the increasing of permissible delay period within the range
of 0 < m ≤ 70. Generally speaking, a longer permissible delay period offered may motivate the
buyer to carry out frequent shipments in small batches. It also can shorten the replenishment
time interval to utilize the credit period in the profit increasing and cost reduction more and
more. In addition, it also can be observed from Table 1 that when m < 44, the vendor’s expected
total annual profit follows the value of permissible delay period m increasing. But when m ≥
44, the expected total annual profit of the vendor decreases as the value of permissible delay
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Table 1: Optimal solutions for various values of permissible delay period m(λ = 1.50).

m n∗ p0 p∗ L∗ (day) D(p∗) Q∗ n∗Q∗ Profit ($/yr)

(day) Vendor Buyer Joint

0 10 — p2 = 8.6191 L2 = 65.9521 3951.9107 714.0734 7140.7344 6542.7743 15639.3831 22182.1574

5 10 0.2313 p2 = 8.6097 L2 = 65.8780 3958.3844 714.4393 7144.3930 6546.5177 15648.1525 22194.6702

10 10 0.5903 p2 = 8.6007 L2 = 65.7660 3964.5993 714.3443 7143.4434 6549.8114 15658.0354 22207.8468

15 10 1.0290 p2 = 8.5920 L2 = 65.6157 3970.6225 713.7949 7137.9488 6552.7706 15668.9163 22221.6869

20 10 1.5361 p2 = 8.5837 L2 = 65.4278 3976.3830 712.7838 7127.8381 6555.2744 15680.9170 22236.1914

25 10 2.1074 p2 = 8.5758 L2 = 65.2024 3981.8788 711.3094 7113.0936 6557.3194 15694.0429 22251.3623

30 10 2.7421 p2 = 8.5683 L2 = 64.9392 3987.1080 709.3688 7093.6881 6558.9020 15708.3011 22267.2031

40 10 4.2066 p2 = 8.5545 L2 = 64.2988 3996.7599 704.0736 7040.7364 6560.6634 15740.2516 22300.9150

41 10 4.3680 p2 = 8.5532 L2 = 64.2263 3997.6711 703.4398 7034.3977 6560.7450 15743.6916 22304.4366

42 10 4.5321 p2 = 8.5519 L2 = 64.1521 3998.5827 702.7877 7027.8768 6560.8266 15747.1593 22307.9859

43 10 4.6991 p2 = 8.5506 L2 = 64.0763 3999.4946 702.1173 7021.1732 6560.9080 15750.6547 22311.5627

44 10 4.8689 p2 = 8.5494 L2 = 63.9994 4000.3367 701.4221 7014.2213 6560.8706(b) 15754.2967 22315.1673

45 10 5.0417 p2 = 8.5482 L2 = 63.9208 4001.1791 700.7085 7007.0854 6560.8330 15757.9668 22318.7998

50 10 5.9502 p2 = 8.5424 L2 = 63.5041 4005.2548 696.8497 6968.4967 6560.4028 15776.9794 22337.3822

60 11 8.4755 p2 = 8.5341 L2 = 60.2724 4011.0993 662.3522 7285.8737 6556.3448 15820.4483 22376.7931

70 11 11.0359 p1 = 8.5309 L1 = 60.2343 4013.3564 662.3060(a) 7285.3655 6545.3169 15872.9112 22418.2281

80 11 14.0380 p1 = 8.5280 L1 = 60.2221 4015.4037 662.5092 7287.6008 6533.9086 15925.7575 22459.6661

90 11 17.5552 p1 = 8.5250 L1 = 60.2094 4017.5234 662.7195 7289.9147 6522.6064 15978.4997 22501.1061
(a)When 0 < m ≤ 70, the optimal order quantity Q∗ is negatively correlated to the length of the permissible delay period m.
(b)When m < 44, the vendor’s expected total annual profit is positively correlated to the length of the permissible delay
period m but as m ≥ 44, it is reverse.

period m increases. These results indicate that the buyer can always profit from the permissible
delay period. For the vendor, he can also profit from the permissible delay in payments
strategy while the credit period of time is not longer than 44 days. But on the contrary, if the
permissible delay period m is greater than 44 days, the vendor’s expected total annual profit
decreases through his sales revenue by permitting the buyer a credit period of time cannot
disburse his opportunity cost. Based on the above discussions, it illustrates that applying the
permissible delay in payments strategy in an integrated inventory model would advance the
profit increasing and cost reduction.

Proceeding to the next, we compare the proposed model herein with the model
established by Ouyang et al. [13]. The two models are mainly different from considering
imperfect quality items or not. These comparison results are presented in Table 2.

Clearly, it is seen that imperfect quality items cause a significant profit loss. The
improvement of the joint profit is greater than 10%. Besides, we also compare the relevant profit
of the vendor and the buyer in the proposed model with Ouyang et al. [13] further. The results
show that the vendor’s profit is downward obviously due to the effect of imperfect quality
items. His profit improvement is very big and the improved range is greater than 45%. Table 1
reveals that the optimal selling prices p∗s in the situations where the values of permissible
delay period m ∈ {0, 10, 30, 60} are all higher than them as in Ouyang et al. [13]. Hence, this
causes the annual demand D(p∗) and the optimal order quantity Q∗ to be smaller than them
as in Ouyang et al. [13], this result also induces the damage of the vendor’s sales revenue.
Furthermore, the process unreliability consideration between the vendor and the buyer will
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Table 2: Comparison results with Ouyang et al. (2005).

Profit ($/yr)

m
(day)

Joint Vendor Buyer

This paper Ouyang
et al.

Improved
(%) This paper Ouyang

et al.
Improved
(%) This paper Ouyang

et al.
Improved
(%)

0 22182.1574 24691.0000 −10.16 6542.7743 12100.0000 −45.93 15639.3831 12591.0000 24.21

10 22207.8468 24725.0000 −10.18 6549.8114 12127.0000 −45.99 15658.0354 12598.0000 24.29

30 22267.2031 24799.0000 −10.21 6558.9020 12157.0000 −46.05 15708.3011 12642.0000 24.25

60 22376.7931 24921.0000 −10.21 6556.3448 12138.0000 −45.98 15820.4483 12783.0000 23.76

λ = 1.50.

Table 3: Optimal solutions for various values of λ (m = 30).

λ n∗ p0 p∗ L∗ (day) D(p∗) Q∗ n∗Q∗ Profit ($/yr)
Vendor Buyer Joint

1.01 61 2.8477 p2 = 8.4577 L2 = 60.9404 4065.5713 678.7876 41406.0421 6986.0330 15571.6602 22557.6932
1.10 20 2.8641 p2 = 8.5068 L2 = 61.9366 4030.4234 683.9196 13678.3915 6794.9584 15632.9216 22427.8800
1.50 10 2.7421 p2 = 8.5683 L2 = 64.9392 3987.1080 709.3688 7093.6881 6558.9020 15708.3011 22267.2031
2.00 8 2.6533 p2 = 8.5947 L2 = 66.8279 3968.7516 726.6397 5813.1179 6459.0245 15739.6967 22198.7212
3.00 7 2.6202 p2 = 8.6158 L2 = 67.7510 3954.1814 733.9719 5137.8034 6380.2218 15764.2464 22144.4682

incur the vendor to bear the warranty cost. So the vendor’s profit in the proposed model
is smaller than it as in Ouyang et al. [13]. But, the buyer’s profit is upward, and his profit
improvement is greater than 23%. The results reveal that the buyer’s profit increment is from
his profit raise owing to the higher optimal selling price p∗ which can pay for the total of
his demand decrement owing to the higher optimal selling price p∗ and the inspecting cost
incurred in finding and expelling imperfect quality items. Therefore, the buyer’s profit in the
proposed model is larger than it as in Ouyang et al. [13]. Then from the above discussions
in Table 2, it demonstrates that the proposed model produces a significant profit loss when
comparing with the joint total annual profit without considering imperfect quality items. These
results have really met the truth.

Example 5.2. We take the same values for the parameters as in Example 5.1. Suppose the value
of permissible delay period m = 30, we investigate the effect of the ratio between the production
rate and the demand rate, λ. Similarly, we also compare the proposed model herein with the
model of Ouyang et al. [13]. Following the above solution procedure, the computational results
for various values of the ratio λ are presented in Table 3.

Table 3 reveals that the expected total annual profit of the vendor and the whole
integrated inventory model increase as the value of the ratio λ is close to 1. On the contrary,
the buyer’s profit decreases. These results are the same as the conclusions in Ouyang et al.
[13]. The results imply that if the JIT cooperation between the vendor and the buyer could be
implemented successfully, the vendor’s profit and the joint profit will increase following that
the vendor can get the real time demand rate through the buyer and adjust his production rate
to the demand rate. Comparison results between the proposed model and the model of Ouyang
et al. [13] are shown in Table 4. The results reveal that the profit improvement of the joint profit
is greater than 10%. Obviously, imperfect quality items can lead to a noticeable profit loss.
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Table 4: Comparison results with Ouyang et al. (2005).

Profit ($/yr)

λ Joint Vendor Buyer

This paper Ouyang
et al.

Improved
(%) This paper Ouyang

et al.
Improved
(%) This paper Ouyang

et al.
Improved
(%)

1.01 22557.6932 25140.0000 −10.27 6986.0330 12758.0000 −45.24 15571.6602 12382.0000 25.76

1.10 22427.8800 24988.0000 −10.25 6794.9584 12489.0000 −45.59 15632.9216 12499.0000 25.07

1.50 22267.2031 24799.0000 −10.21 6558.9020 12157.0000 −46.05 15708.3011 12642.0000 24.25

2.00 22198.7212 24719.0000 −10.20 6459.0245 12017.0000 −46.25 15739.6967 12702.0000 23.92

3.00 22144.4682 24655.0000 −10.18 6380.2218 11906.0000 −46.41 15764.2464 12749.0000 23.65

m = 30 days.

6. Conclusions

This paper investigates a production/inventory situation which producing process would go
out of control under permissible delay in payments. In this research, we assume that in the
vendor’s production process, the imperfect quality items are reworked immediately as they
are found and meantime the vendor must bear the repair cost. This new proposed model
herein shows a different thought on inventory modeling. The expected joint total annual profit
function has been derived. Then by analyzing this derived function, we can obtain the unique
closed-form optimal solution for the replenishment time interval and develop a simple solution
procedure to determine the buyer’s optimal selling price, order quantity, and the number of
shipments per production runs from the vendor to the buyer. Finally, the numerical examples
adopted in the Ouyang et al. [13] and Salameh and Jaber [22] explain the solution algorithm.
These results reveal that applying the permissible delay in payments strategy between the
vendor and the buyer can promote the profit increasing and cost reduction. They also indicate
that the successful implementation of JIT cooperation in an integrated inventory model leads
to the profit rise of the whole inventory model. Besides, the proposed model generates an
impressive profit loss when compared with the joint total annual profit without incorporating
imperfect quality items into consideration.
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