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Correspondence should be addressed to Sébastien Martin, sebastien.martin@math.u-psud.fr

Received 2 November 2007; Accepted 19 March 2008

Recommended by Giuseppe Rega

This paper deals with the coupling of two major problems in lubrication theory: cavitation
phenomena and roughness of the surfaces in relative motion. Cavitation is defined as the rupture
of the continuous film due to the formation of air bubbles, leading to the presence of a liquid-gas
mixture. For this, the Elrod-Adams model (which is a pressure-saturation model) is classically used
to describe the behavior of a cavitated thin film flow. In addition, in practical situations, the surfaces
of the devices are rough, due to manufacturing processes which induce defaults. Thus, we study the
behavior of the solution, when highly oscillating roughness effects on the rigid surfaces occur. In
particular, we deal with the reiterated homogenization of this Elrod-Adams problem, using periodic
unfolding methods. A numerical simulation illustrates the behavior of the solution. Although the
pressure tends to a smooth one, the saturation oscillations are not damped. This does not prevent
us from defining an equivalent homogenized saturation and highlights the anisotropic effects on
the saturation function in cavitated areas.

Copyright q 2008 Sébastien Martin. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

A journal bearing, simply stated, is made of an external cylinder which surrounds a rotating
shaft and is filled with some form of fluid lubricant that supports the shaft preventing metal
to metal contact. In this framework, the Reynolds equation has been used for a long time to
describe the behavior of this type of flows (see Reynolds [1] for historical references) using the
pressure P in the thin film as the leading unknown in the problem.

However, the Reynolds modelling does not take into account cavitation phenomena:
cavitation is defined as the rupture of the continuous film due to the formation of gas bubbles
and makes the Reynolds equation no longer valid in the cavitation area. In order to make it
possible, we use the Elrod-Adams model, which introduces the hypothesis that the cavitation
region is a liquid-gas mixture and an additional unknown θ (the saturation of liquid in the
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mixture) (see Capriz and Cimatti [2], Coyne and Elrod [3, 4], and Elrod and Adams [5]). The
model, which still relies on the Reynolds equation, is widely used in tribology and appears to
give satisfactory results with respect to mechanical experiments. The interest of this model also
relies on the fact that it is a mass-preserving model, unlike some others such as the variational
inequalities model.

Finally, the effects of the surface roughness on the behavior of a thin film flow have
gained an increasing attention from 1960 since it was thought to be an explanation for
the unexpected load support in bearings. The roughness defaults can be modelled with a
parameter ε, which denotes the typical spacing between two patterns; as the number of
patterns increases, numerical costs tend to explode because of mesh refinements required for
the description of the gap. The effect of periodic roughness has been treated by means of a
homogenization procedure in numerous works depending on the lubrication regimes: let us
mention the works of Patir and Cheng [6] for the linear case (without cavitation), Jai [7] for
compressible thin films flows, and Bayada and Faure [8] for a cavitated flow using a variational
inequalities model. Some of these theoretical studies include numerical examples which show
how significant pressure perturbations appear, due to the presence of surface asperities. So
far, in all these works, the roughness patterns were modelled by only one typical pattern,
corresponding to one type of defaults. This assumption is reasonable for many mechanical
applications, but it lacks relevance as manufacturing processes may lead to different defaults
at different lengthscales (namely, ε and ε2, . . .) by using a polishing solution containing metal
oxide abrasive grains to form a surface. Moreover, multiscale roughness patterns may be
introduced in a voluntary way, the motivation for this being related to shape optimization of
the surfaces, load experiments, and control of the friction. Thus, it is the purpose of this paper to
focus on the influence of the roughness effects in the framework of reiterated homogenization
dealing with a more realistic model of cavitated thin films flow.

The paper is organized as follows. Section 2 is devoted to the description of thin film
flows in journal bearings. Section 3 deals with the reiterated homogenization process of the
problem. Section 4 presents a numerical simulation which illustrates the main results of the
previous section. Additionally, Appendix A provides the main tools and results related to the
periodic unfolding method which is used in this paper and Appendix B presents the detailed
procedure for the computation of the homogenized coefficients in a particular but realistic case.

2. Thin film flows in journal bearings

2.1. Hydrodynamic lubrication

Journal bearings are among the most common lubricated devices. A journal bearing (see
Figure 1) is made of an external cylinder which surrounds a rotating shaft (or internal cylinder,
or journal) and is filled with some form of fluid lubricant. The most common fluid used is oil,
with special applications using water or a gas. Geometrical data are the following ones: L is
the length of the cylinders, Rb (resp., Rj) is the section radius for the external cylinder (resp.,
shaft), and Rm = (Rb + Rj)/2 is the average radius. Let us introduce c = Rb − Rj the radial
clearance, e the eccentricity, and ω the angular speed of the rotating shaft. The two cylinders
are closely spaced and the smallness of this ratio allows for a Cartesian coordinate to be located
on the bearing surface. In this fictitious setting (corresponding to an artificial cut located at the
supply groove, which leads to a developed configuration of the device, see Figure 1 on the one
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Figure 1: Journal bearing device: (1) external cylinder, with radius Rb, (2) shaft, with radius Rj , (3)
lubricant, and (4) axial supply groove Γ�.
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Figure 2: Fictitious developed domain in real coordinates.

hand and Figure 2 on the other hand), the gap between the two surfaces is given by

H(X) = c + e cos
(
X1

Rm

)
. (2.1)

The Reynolds equation has been used for a long time to describe the behavior of a viscous
flow between two close surfaces in relative motion (see the work of Reynolds [1] for historical
references). The transition of the Stokes equation to the Reynolds equation has been proved in
a rigorous way by Bayada and Chambat [9]. In real variables, the classical Reynolds problem
should be posed as

div
(
H3

6μ
∇P
)

= v0
∂

∂X1
(H), in ]0, 2πRm[×]0, L[, (2.2)

where P is the (unknown) pressure distribution, μ the lubricant viscosity, v0 = ωRm the
shearing velocity, andH the gap between the surfaces. Now let us introduce the dimensionless
coordinates and quantities that provide the reduced system to solve

x1 =
X1

2πRm
, x2 =

X2

L
, h(x) =

H(X)
c

, p =
c2P

6μv02πRm
, κ =

2πRm

L
.

(2.3)

Then, the dimensionless Reynolds equation becomes

∂

∂x1

(
h3 ∂p

∂x1

)
+ κ2 ∂

∂x2

(
h3 ∂p

∂x2

)
=

∂

∂x1
(h), inΩ =]0, 1[×]0, 1[, (2.4)

where p is the normalized pressure distribution, and h the normalized gap between the two
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surfaces (h is assumed to be a regular positive function). Without loss of generality, we will
assume that κ = 1 (this does not alter the mathematical structure of the problem).

2.2. Cavitation

Let us introduce cavitation phenomena: in diverging profiles of the flow, the pressure may
decrease until it reaches the vapor pressure, thus leading to the formation of gas bubbles at a
near constant pressure (the vapor pressure). In order to take it into account, the Elrod-Adams
model modifies the Reynolds equation by introducing an additional leading unknown θ (the
saturation of liquid in the mixture) (see [2–5]):

div
(
h3∇p

)
=

∂

∂x1
(θh),

p ≥ ps, θ ∈ H(p − ps),
(2.5)

where H denotes the Heaviside graph. Here, the vapor pressure ps will be taken equal to the
ambient pressure pa = 0:this is justified by the fact that hydrodynamic pressure p is high so
that ps − pa can be neglected with respect to p − pa. Notice that the model introduces a free
boundary which separates two different areas:

(a) in the saturated regions, p > ps, θ = 1, (classical Reynolds equation);

(b) in cavitated regions, p = ps, 0 ≤ θ ≤ 1, (partial lubrication).

Thus, θ describes the local ratio of the liquid phase between the two surfaces.

2.3. Boundary conditions

We consider a rectangular domain Ω =]0, 1[×]0, 1[; Γ� denotes the boundary {0}×]0, 1[ and
Γ = ∂Ω \ Γ� (see Figure 2, up to the normalization procedure). The boundary conditions are
strongly related to the following remarks:

(1) the boundary Γ� corresponds to the (left part of the) supply groove; thus, an input
flow (Neumann conditions) is considered, the flow being advected by the shear (from
the left to the right);

(2) the boundary {1} × (0, 1) corresponds to the (right part of the) supply groove: this
open boundary is thus associated to Dirichlet conditions (ambient pressure);

(3) the boundaries (0, 1) × {0} and (0, 1) × {1} are the upper and lower bases of the
surrounding cylinders: open walls impose Dirichlet conditions (ambient pressure).

This configuration is related to the following set of boundary conditions:

p = 0 on Γ, (2.6)

θh − h3 ∂p

∂x1
= Q on Γ�. (2.7)

Here, Q denotes the input flow, which may be classically normalized as

Q = θ�

∫1

0
h(0, ·), with θ� ∈ [0, 1]. (2.8)
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2.4. Variational formulation of (2.5)–(2.7)

The initial problem for (2.5)–(2.7) should be mathematically analyzed with the following
variational formulation:

(Pθ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

find (p, θ) ∈ V × L∞(Ω) such that
∫
Ω
h3∇p∇φ =

∫
Ω
θh

∂φ

∂x1
+
∫
Γ�
Q φ, ∀φ ∈ V,

p ≥ 0, θ ∈ H(p), a.e.,

(2.9)

where the functional space V is defined by

V =
{
v ∈ H1(Ω), v|Γ = 0

}
. (2.10)

Problem (Pθ) is well-posed: it admits a unique solution (see [10–12] for details) and algorithms
are known to solve the problem (see, e.g., the papers by Alt [13], Bayada et al. [14], Marini and
Pietra [15]).

2.5. Influence of roughness defaults

The effects of the surface roughness on the behavior of a thin film flow have long been the
subject of intensive studies. The roughness defaults (whose typical amplitude is given) can
be modelled with the introduction of a small parameter ε, which denotes the typical spacing
between two patterns. In this framework, gap functions become highly oscillating. Of course,
the introduction of small parameters, for the description of the roughness patterns, leads to
heavy computational costs which can be avoided by considering the asymptotic problem as
the so-called homogenization process aims at avoiding those difficulties by considering an
equivalent averaged problem (with smoother coefficients) whose solution can be computed
more easily. In this way, the effect of periodic roughness on the behavior of hydrodynamic
magnitudes has been treated in numerous works depending on the lubrication regimes (see,
e.g., [6–8]). However, in all these works, the roughness patterns were modelled by only
one typical (periodic) pattern, corresponding to one type of defaults. This assumption is not
necessarily reasonable for many mechanical applications as manufacturing processes may lead
to different defaults, characterized by different lengthscales. Typically, we take into account
patterns modelled by two different scales (namely, ε and ε2) so that the gap function takes the
form (see Figure 3)

h := h
(
x,
x

ε
,
x

ε2

)
, (2.11)

leading to coupling effects between the all micro- and macroscales ε2, ε, and 1. Here, we restrict
ourselves to this type of multiscale defaults in order to study the mathematical structure of the
limit problem. However, the generalization to more complicated patterns, involving surface
defaults at scales ε, ε2, ε3, and so forth, will be straightforward.
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Figure 3: Roughness patterns at scales ε and ε2 on a planar one-dimensional surface.

3. Reiterated homogenization of the problem

We now make precise the roughness patterns considered. The effective gap is now described
by a nominal regular thickness to which one adds the roughness defaults around the averaged
gap. We thus consider a gap of the form

hε(x) = h
(
x,
x

ε
,
x

ε2

)
, (3.1)

where h ∈ L∞(Ω, C1
#(]0, 1[)

4) satisfies the additional assumption

∃h, h, 0 < h ≤ hε ≤ h. (3.2)

This assumption leads to consider two roughness scales ε and ε2. The definition of the
gap given by (3.1) leads to the interaction between the scales ε and ε2.

Our goal is to describe the asymptotic behavior of the solution (pε, θε) of problem (Pε
θ
).

For this, we study the convergence of the solution and determine the homogenized equations
satisfied by the limit functions, by means of the periodic unfolding method (see Appendix A).

3.1. Micro-/macrodecomposition

Proposition 3.1. There exist (p0, p1, p2) ∈ V × L2(Ω;H1
#(Y )/R) × L2(Ω × Y ;H1

#(Z)/R) and θ0 ∈
L2(Ω × Y × Z) such that, up to a subsequence, the following convergences hold in L2(Ω × Y × Z):

Tε◦ε(pε) −→ p0,

Tε◦ε(∇pε)⇀ ∇p0 +∇yp1 +∇zp2,

Tε◦ε(θε)⇀ θ0.

(3.3)

Proof. It can be easily proved that pε (resp., θε) is bounded in H1(Ω) (resp., L2(Ω)). Then, by
Proposition A.3, the convergence results are straightforward.
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Proposition 3.2. p0 ≥ 0 and θ0 ∈ H(p0) a.e.

Proof. We proceed in two steps as follows.

Step 1. As pε ≥ 0, 0 ≤ θε ≤ 1 a.e. and using the definition of the unfolding operator, one has
Tε(pε) ≥ 0 and 0 ≤ Tε(θε) ≤ 1 a.e. The convergences’ properties of Proposition 3.1 then imply

p0(x) ≥ 0, 0 ≤ θ0(x, y, z) ≤ 1, for a.e. (x, y, z) ∈ Ω × Y × Z. (3.4)

Step 2. Applying the unfolding operator to each side of the equality pε(1 − θε) = 0 and passing
to the limit, we get p0(1 − θ0) = 0 in L1(Ω × Y × Z). Since p0 ≥ 0 and (1 − θ0) ≥ 0 a.e., we get

p0(x)
(
1 − θ0(x, y, z)

)
= 0, for a.e. (x, y, z) ∈ Ω × Y × Z. (3.5)

Actually, the result holds due to the multiplication of weakly and strongly converging
sequences. Thus, we have the following:

(a) either p0 > 0 and θ0 = 1,

(b) or p0 = 0 and 0 ≤ θ0 ≤ 1,

so that θ0 ∈ H(p0) a.e., which shows the thesis.

Lemma 3.3. The limit functions satisfy the following microdecompositions and macrodecomposition:

(1) macroscopic equation:
∫
Ω
h3
(
∇p0 +∇yp1 +∇zp2

)Z×Y
∇φ =

∫
Ω
θ0h

Z×Y ∂φ

∂x1
+
∫
Γ�
Qφ, ∀φ ∈ V ; (3.6)

(2) microscopic equation at scale ε: for a.e. x ∈ Ω,
∫
Y

h3
(
∇p0 +∇yp1 +∇zp2

)Z
∇ψ =

∫
Y

θ0h
Z ∂ψ

∂y1
, ∀ψ ∈ H1

#(Y ); (3.7)

(3) microscopic equation at scale ε2: for a.e. (x, y) ∈ Ω × Y ,
∫
Z

h3(∇p0 +∇yp1 +∇zp2
)
∇ϕ =

∫
Z

θ0h
∂ϕ

∂z1
, ∀ϕ ∈ H1

#(Z). (3.8)

Here, ·Y (resp., ·Z) denotes the averaged operator on Y (resp., Z) with respect to y (resp., z).

Proof. In the formulation of (Pε
θ
), let us consider a test function Φ defined by

Φ(x) = φ(0)(x) + εφ(1)(x)ψ(1)
(
x

ε

)
+ ε2φ(2)(x)ψ(2)

(
x

ε

)
ϕ(2)
(
x

ε2

)
, (3.9)

with φ(0) ∈ V , φ(i) ∈ D(Ω), ψ(i) ∈ H1
#(Y ) (i ∈ {1, 2}), ϕ(2) ∈ H1

#(Z). Then, using the integration
formula (see Proposition A.4), the limit in ε yields the micro-/macrodecomposition.

Now, the goal is to get the homogenized equations, that is, only macroscopic equations
describing the scale effects on the average flow. The general method relies on the possibility
to solve local problems describing the coupling effects at the different scales. For this, we first
introduce the local problems, whose structure will be justified in the proof of Lemma 3.6.
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Definition 3.4 (local problems at scale ε2). FindV(i) (i = 1, 2), α�, α0 in L2(Ω×Y ;H1
#(Z)/R), such

that, for a.e. (x, y) ∈ Ω × Y :∫
Z

h3∇zV(i)∇zϕ =
∫
Z

h3 ∂ϕ

∂zi
, ∀ϕ ∈ H1

#(Z) (i = 1, 2), (3.10)

∫
Z

h3∇zα�∇zϕ =
∫
Z

h
∂ϕ

∂z1
, ∀ϕ ∈ H1

#(Z), (3.11)

∫
Z

h3∇zα0∇zϕ =
∫
Z

θ0h
∂ϕ

∂z1
, ∀ϕ ∈ H1

#(Z). (3.12)

Definition 3.5 (local problems at scale ε). Introduce the following coefficients:

H(3) = h3(I − ∇zV)
Z

withV =

(
V(1)

V(2)

)
,

H0 =

(
θ0h

0

)
− h3∇zα0

Z

, H� =

(
h
0

)
− h3∇zα�

Z (3.13)

FindW(i) ( i = 1, 2), β�, β0 in L2(Ω;H1
#(Y )/R), such that, for a.e. x ∈ Ω,

∫
Y

H(3)·∇yW(i)∇yψ =
2∑
k=1

∫
Y

H(3)
ki

∂ψ

∂yk
, ∀ψ ∈ H1

#(Y ) (i = 1, 2), (3.14)

∫
Y

H(3)·∇yβ�∇yψ =
∫
Y

H�∇yψ, ∀ψ ∈ H1
#(Y ), (3.15)

∫
Y

H(3)·∇yβ0∇yψ =
∫
Y

H0∇yψ, ∀ψ ∈ H1
#(Y ). (3.16)

In a natural way,Wwill denote
(
W(1)

W(2)

)
.

3.2. Homogenized problem: general case

We first present the following partial homogenization result.

Lemma 3.6 (partial result in the general case). The main unknowns (p0, θ0) ∈ V ×L∞(Ω × Y ×Z)
of the limit problem satisfy the following equations:∫

Ω
A·∇p0∇φ =

∫
Ω
B0∇φ +

∫
Γ�
Qφ, ∀φ ∈ V,

p0 ≥ 0, θ0 ∈ H(p0) a.e.,

(3.17)

with

A = h3(I − ∇zV)(I − ∇yW)
Z×Y

,

B0 =

(
θ0h

0

)
− h3∇zα0 − h3(I − ∇zV)·∇yβ0

Z×Y (3.18)
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Remark 3.7. The proposed result is partial in the sense that it describes the coupling effects
of both microscopic and macroscopic functions (p0 and θ0), instead of purely macroscopic
functions (p0 and a macroscopic saturation function, e.g.). Still, as a first step, it allows to
understand the structure of the limit problem.

Proof. The analysis first deals with the description of the interaction between the scale effects
of order ε2, on the one hand, and the scale effects of orders ε and 1, on the other hand. From
(3.8) and Definition 3.4 of the local problems and related solutions, we have

p2 = −V
(
∇p0 +∇yp1

)
+ α0, inL2(Ω × Y ;H1

#(Z)/R
)
, (3.19)

which describes the coupling of the different scales at the lowest scale ε2.
Then, we deal with the description of the interaction between the scales of orders ε and 1

(still taking into account the scale effects of order ε2). For this, we insert (3.19) into (3.7) which
leads, in a very natural way, to consider the local problems and related solutions described in
Definition 3.5. Moreover, we obtain

p1 = −W∇p0 + β0, inL2(Ω;H1
#(Y )/R

)
. (3.20)

The last step describes the interaction of the scale effects of order ε2 and ε at the
macroscopic level (scale of order 1). For this, we insert (3.19) and (3.20) into (3.6), which
concludes the proof.

Theorem 3.8 (homogenized problem). One possible definition of the homogenized problem is

(P�θ)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

find(p0,Θ1,Θ2) ∈ V × L∞(Ω) × L∞(Ω) such that
∫
Ω
A·∇p0∇φ =

∫
Ω
ΘiB�i

∂φ

∂xi
+
∫
Γ�
Qφ, ∀φ ∈ V,

p0 ≥ 0, p0(1 −Θi) = 0, (i = 1, 2), a.e.,

(3.21)

whereA is defined in Lemma 3.6 and B� =
(
h
0

)
− h3∇zα� − h3(I − ∇zV)·∇yβ�

Z×Y
.

Proof. The result is a corollary of Lemma 3.6, in which the coefficients of the right-hand side
have been renormalized as Θi = B0

i /B
�
i ( i ∈ {1, 2}).

Thus,it appears that the homogenized problem (P�
θ
) deals with saturation functions

which may lack physical properties as we cannot guarantee that they are smaller than 1
in cavitated areas, nor can we treat two different saturation functions with a well-known
numerical procedure. However, we show that it also admits a class of solutions which have
physical relevance.

Theorem 3.9. The homogenized problem (P�
θ
) admits at least one so-called isotropic solution (p0,Θ,Θ)

with Θ ∈ H(p0) a.e.
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Proof. Consider the penalized version of the following problem:

(Pεη)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

find pη,ε ∈ V, such that
∫
Ω
h3
ε∇pη,ε∇φ =

∫
Ω
Hη(pη,ε)hε

∂φ

∂x1
+
∫
Γ�
Qφ, ∀φ ∈ V,

pη,ε ≥ 0, a.e.,

(3.22)

where Hη(z) = (z/η)1[0,η[ + 1[η,+∞[ mimics the Heaviside graph. It can be proved (see [10–12])
that (Pεη) admits a unique solution. Using the same steps as before, the homogenization of this
penalized problem leads to the following asymptotic problem:

(P�η)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

find pη0 ∈ V such that
∫
Ω
A·∇pη0∇φ =

∫
Ω
Hη(p

η

0)B�∇φ +
∫
Γ�
Qφ, ∀φ ∈ V,

p
η

0 ≥ 0, a.e.

(3.23)

The proof is concluded by passing to the limit on η.

Remark 3.10. The difficulties that we have mentioned are related to the ones addressed in
[16, 17] for the dam problem (whose mathematical structure is very close to the lubrication
problem). On the one hand, the right-hand side of the homogenized problem B0 leads to
anisotropic effects on the saturation (see Lemma 3.6 and Theorem 3.8), which lacks physical
simple interpretation. On the other hand, we have been able to build an isotropic solution to
this problem, with more physical properties on the saturation. If (p0,Θ,Θ) denotes an isotropic
solution of the homogenized problem, one cannot, in general, have the convergence of θε to Θ
(see the counter example of Rodrigues [17] for the dam problem, which can be adapted to the
lubrication problem), and the issue of relating B0 (which highly depends on θ0) to ΘB� is not
clear.

In fact, as will be seen further, it is possible to get rid of the mentioned difficulties, under
some additional assumptions on the roughness patterns.

3.3. Homogenized problem: particular cases

Here, we prove that under some assumptions on the roughness patterns, the homogenized
problem is well-posed from both mathematical and physical points of view.

Definition 3.11. Denote h[ij](x, y, z) := h(x, yi, zj), that is, h[ij] only depends on x, yi, and zj
(i, j ∈ {1, 2}).

Notice that although it prevents us from describing all the two-dimensional defaults,
roughness patterns described by Definition 3.11 fall into the scope of typical defaults observed
in many applications. Indeed, the manufacturing processes often involve a tooling of the
cylinders following orthogonal directions (namely, x1 and x2), thus leading to roughness
defaults in the machining directions. Thus, gap functions described by Definition 3.11 are
realistic in many applications.
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Table 1: Homogenized coefficients and link between the micro/ macrosaturations.

h := h[11]h[22] h := h[12]h[21] h := h[12]h[11] h := h[21]h[22]

A1

h3
[22]

Z×Y

h−3
[11]

Z×Y

(
h−3
[21]

Z
)−1

Y

(
h3
[12]

Z
)−1

Y

⎛
⎜⎜⎜⎝
⎛
⎜⎝h−3

[11]

Z

h3
[12]

Z

⎞
⎟⎠

Y
⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎝h3

[22]

Z

h−3
[21]

Z

⎞
⎟⎠

Y

A2

h3
[11]

Z×Y

h−3
[22]

Z×Y

(
h−3
[12]

Z)−1
Y

(
h3
[21]

Z)−1
Y

⎛
⎜⎝h3

[11]

Z

h−3
[12]

Z

⎞
⎟⎠

Y
⎛
⎜⎜⎜⎝
⎛
⎜⎝h−3

[22]

Z

h3
[21]

Z

⎞
⎟⎠

Y
⎞
⎟⎟⎟⎠

−1

B�1
h−2
[11]h[22]

Z×Y

h−3
[11]

Z×Y

(
h[12]h

−2
[21]

Z
/h3

[12]

Z
h−3
[21]

Z)Y

(
h3
[12]

Z)−1
Y

(
h[12]h

−2
[11]

Z
/h3

[12]

Z)Y

(
h−3
[11]

Z
/h3

[12]

Z)Y
⎛
⎜⎝h[22]h

−2
[21]

Z

h−3
[21]

Z

⎞
⎟⎠

Y

Θ
θ0h[22]h

−2
[11]

Z×Y

h[22]h
−2
[11]

Z×Y

(
θ0h[12]h

−2
[21]

Z
/h3

[12]

Z
h−3
[21]

Z)Y

(
h[12]h

−2
[21]

Z
/h3

[12]

Z
h−3
[21]

Z)Y
(
θ0h[12]h

−2
[11]

Z
/h3

[12]

Z)Y

(
h[12]h

−2
[11]

Z
/h3

[12]

Z)Y
(
θ0h[22]h

−2
[21]

Z
/h−3

[21]

Z)Y

(
h[22]h

−2
[21]

Z
/h−3

[21]

Z)Y

Theorem 3.12. Let (i, j) ∈ {1, 2}, i/=j. If h can be identified to a function h[ij], h[ii], h[ij]h[ii], or
h[ji]h[ii], then the homogenized problem is

(P�θ)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

find(p0,Θ) ∈ V × L∞(Ω) such that

∫
Ω

(
A1 0

0 A2

)
·∇p0∇φ =

∫
Ω
ΘB�1

∂φ

∂x1
+
∫
Γ�
Qφ, ∀φ ∈ V,

p0 ≥ 0, Θ ∈ H(p0), a.e.,

(3.24)

the homogenized coefficients being given by Table 1. The link between the microsaturation θ0 and
the macro- (homogenized) saturation Θ is also provided by Table 1. Moreover, (P�

θ
) admits a unique

solution.

Proof. Assumptions on the roughness patterns lead to some particular anisotropy of the scale
effects. It allows us to solve explicitly the local problems by means of integration, using the
separation of microvariables at the different scales. Technical computations are made explicit
in the appendices, for the case h := h[12], and may be easily adapted to the other situations
(computations are omitted for convenience).
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4. A numerical simulation

In this section, the numerical simulation of a hydrodynamic contact is performed to illustrate
the theoretical convergence results proved in the previous section. To this aim, we use the
Bermudez-Moreno algorithm coupled to a characteristics’ method, the combination of these
numerical techniques being proved to be rigorous and efficient (see [14, 18]). In particular, the
basic principles of the algorithm (and related proofs of convergence) may be found in [14] for
the lubrication problem.

We address the numerical simulation of dimensionless journal bearing contacts so that,
for a domain Ω =]0, 1[×]0, 1[, problem (Pε

θ
) is considered. The datum hε is given by

hε(x) = 1 + ρcos(2πx1) + 0.35(1 − ρ) sin
(

2π
x1

ε2

)
+ 0.35(1 − ρ) sin

(
2π

x2

ε

)
, (4.1)

where ρ denotes the average eccentricity of the device.
Additionally, the input flow Q has been taken to

Q = θ�(1 + ρ), (4.2)

where θ� denotes the saturation at the supply groove. In the numerical tests, the following
values have been considered:

ρ = 0.5, θ� = 0.375. (4.3)

Notice that the corresponding gap h only depends on the variables x, y2, and z1. As a
consequence, it can be identified to some function h[21] (see Definition 3.11), which satisfies the
hypotheses of Theorem 3.12. Corresponding homogenized coefficients are provided by Table 1
and may be easily computed.

Although numerical tests have been performed for different spatial meshes in order to
control the convergence of the method, we just present the results corresponding to a mesh
size 900 × 100. Computations have been made for different values of ε (namely, 1/4, 1/6,
1/8) and for the corresponding homogenized case. The numerical experiments illustrate the
convergence results proved in the previous sections.

(A) Figures 4–6 show the pressure (left) and saturation (right) distribution in different
cases as follows:

(i) Figure 4: ε = 1/4;
(ii) Figure 5: ε = 1/6;
(iii) Figure 6: homogenized case.

In particular, oscillatory effects induced by the roughness patterns may be easily
observed.

(B) As the introduction of the oscillating gap hε leads to oscillatory effects in both
transverse and longitudinal directions, we study some particular curves at different
sections in order to observe the following oscillations:
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Figure 4: Pressure (a) and saturation (b) in the whole domain for ε = 1/4.

0

1

x
2

0 1
x1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a)

0

1
x

2

0 1
x1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

Figure 5: Pressure (a) and saturation (b) in the whole domain for ε = 1/6.
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Figure 6: Homogenized pressure (a) and saturation (b) in the whole domain.
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Figure 7: Pressure distribution at fixed x0
2 = 0.5.
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Figure 8: Pressure distribution at fixed x0
2 = 0.5.

(1) Figures 7 and 8 (resp., Figures 9 and 10) correspond to pressure (saturation) plots at
x0

2 = 0.5 (midsection containing the homogenized peak pressure, for geometrical reasons). We
show the convergence of the pressure to the homogenized (smooth) one, as ε tends to 0. Unlike
the behavior of the pressure, the behavior of the saturation is more complicated. Oscillations
are not damped, thus illustrating the weak convergence of the saturation. However, this does
not prevent us from defining an equivalent homogenized saturation.

(2) Figures 11 and 12 correspond to pressure plots at x0
1 = 0.4118 (section containing the

homogenized peak pressure). The convergence of the pressure to the homogenized (smooth)
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Figure 9: Pressure distribution at fixed x0
2 = 0.5.
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Figure 10: Saturation distribution at fixed x0
2 = 0.5.

one is also illustrated. Corresponding saturation curves are omitted (since no cavitation
appears in this section).

Thus, the convergence of the solution to the homogenized solution, with respect to the
roughness parameter ε, is illustrated in this section. In particular, the asymptotic study allows
us not only to determine the effective pressure but also to highlight the anisotropic effects on
the saturation. Although highly oscillating in cavitated areas, an effective saturation weighting
the roughness effects in each direction can be computed.
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Figure 11: Saturation distribution at fixed x0
1 = 0.4118.
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Figure 12: Saturation distribution at fixed x0
1 = 0.4118.

5. Conclusion

The influence of roughness patterns on a thin film flow in a journal bearing has been
investigated in this paper. In the most general case (i.e., without any assumption on the
roughness geometry), a so-called “isotropic” asymptotic solution can be computed. Moreover,
under specific additional assumptions which are realistic in terms of mechanical applications,
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the limit problem is well-posed, and anisotropic effects on the asymptotic flow are fully
detailed, in particular, in cavitated areas.

The use of abrasive grains to form a surface in manufacturing processes may
lead to different default scales ε, ε2, ε3, and so forth, which can be taken into account
without additional theoretical difficulty. A computational procedure in order to derive the
homogenized coefficients can be used from the smallest scale to the macroscopic one, by using
successive solutions of local problems.

Appendices

A. The periodic unfolding method

The periodic unfolding method has been introduced by Cioranescu et al. [19]. It combines a
dilatation technique, which was used by Arbogast et al. [20], and averaging approximations,
thus reducing the asymptotic analysis to the study of weak convergences in appropriate spaces.
This mathematical tool, which applies to multiscale problems in a very simple way, has strong
links with the multiscale convergence technique introduced by Nguetseng [21], and further
developed by Allaire [22], Allaire and Briane [23], and Lukkassen et al. [24].

Let Ω be an open-bounded subset of R
d, d ∈ N

�, and let Y=]0, 1[d denote the reference
cell (eventually, Z will also denote the reference cell). Then, for any x ∈ R

d, [x]Y ∈ Z
d denotes

the unique element such that x − [x]Y belongs to Y .

Definition A.1. Let Ω̃n = Ω × Yn, n ∈ N, with Ω̃0 = Ω. The unfolding operator

Tε : L2
(
Ω̃n

)
−→ L2

(
Ω̃n+1

)

w −→ Tε(w)
(A.1)

modifies any function w ∈ L2(Ω̃n), extended by 0 outside Ω̃n, as follows:

(a) if n = 0, Tε(w)(x, y) = w(ε[x/ε]Y + εy);

(b) if n ≥ 1, Tε(w)(x, y(1), . . . , y(n+1)) = w(x, y(1), . . . , y(n−1), [y(n)/ε]Y + εy(n+1)).

This definition leads, in a natural way, to reiterated unfolding operators (of any order k ∈ N
�)

Tδk◦δk−1◦···◦δ1 : L2(Ω̃n) −→ L2(Ω̃n+k
)
, (A.2)

defined by

Tδk◦δk−1◦···◦δ1 = Tδk ◦ Tδk−1 ◦ · · · ◦ Tδ1 . (A.3)

Example A.2. Let us consider some function f ∈ L2(Ω;C1
#(Y × Y )) and define fδε by

fδε(x) = f
(
x,
x

ε
,
x

δε

)
. (A.4)

Then, we may observe the following.
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(a) The unfolding operator Tε : L2(Ω)→L2(Ω × Y ) does not see the oscillations at scale
δε. Indeed,

Tε(fδε)(x, y) = f
(
x, y,

y

δ

)
, (A.5)

which does not outline the oscillating periods induced by the parameter δ.

(b) The reiterated unfolding operator Tδ◦ε : L2(Ω)→L2(Ω × Y × Z) allows to capture the
oscillatory effects at both scales ε and δε. Indeed,

Tδ◦ε(fδε)(x, y, z) = fδε
(
ε

[
x

ε

]
Y

+ εδ
[
y

δ

]
Z

+ εδz
)

= f(x, y, z), (A.6)

leading to an effective (but artificial) separation of the scale effects.

Proposition A.3 (see [19]). (i) Let uε be a bounded sequence in L2(Ω). Then, there exists u0 ∈
L2(Ω × Y ) such that, up to a subsequence,

Tε(uε)⇀ u0, in L2(Ω). (A.7)

(ii) Let uε be a bounded sequence in H1(Ω), which weakly converges to a limit u0 ∈ H1(Ω).
Then, with Tε◦···◦ε denoting the reiterated unfolding operator of order k ∈ N

�, one has, up to an
extraction,

Tε◦···◦ε(uε) −→ u0, in L2(Ω̃k), (A.8)

and there exist functions ui ∈ L2(Ω̃i−1;H1
#(Y )/R) (i ∈ {1, . . . , k}), such that

Tε◦···◦ε(∇uε)⇀ ∇u0 +
k∑
i=1

∇y(i)ui in L2(Ω̃k). (A.9)

Proposition A.4 (see [19]). One has the following integration formulas:∫
Ω̃n

w =
∫
Ω̃n+1

Tδ1(w) = · · · =
∫
Ω̃n+k

Tδk◦···◦δ1(w), ∀w ∈ L1(Ω̃n

)
. (A.10)

B. Computation of the homogenized coefficients

Let us assume that h := h[12] meaning that h only depends on x, y1, and z2. We compute the
homogenized coefficients under this specific assumption. Let us recall the way these effective
coefficients describing the average flow are defined.

(a) We first introduce the coefficients averaged with respect to the z variable (lowest
scale):

H(3) := h3(I − ∇zV)
Z
,

H0 :=

(
θ0h

0

)
− h3∇zα0

Z

,

H� :=

(
h
0

)
− h3∇zα�

Z

,

(B.1)

where V(i), α0, and α� are defined by (3.10)–(3.12).
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(b) Then we introduce the coefficients averaged with respect to the y variable
(intermediary scale):

A:= h3
(
I − ∇zV

)(
I − ∇yW

)Z×Y
=H(3)

(
I − ∇yW

)Y
,

B0 :=

(
θ0h

0

)
− h3∇zα0 − h3

(
I − ∇zV

)
·∇yβ0

Z×Y

=H0 −H(3)·∇yβ0
Y
,

B� :=

(
h
0

)
− h3∇zα� − h3

(
I − ∇zV

)
·∇yβ�

Z×Y

=H� −H(3)·∇yβ�
Y
,

(B.2)

whereW(i), β0, and β� are defined by (3.14)–(3.16).

Now let us compute the following coefficients.

Step 1 (computation of the matrixH(3) := h3(I − ∇zV)
Z
). By definition, V(i) (i = 1, 2) satisfies,

for a.e. (x, y) ∈ Ω × Y ,
∫
Z

h3∇zV(i)∇zϕ =
∫
Z

h3 ∂ϕ

∂zi
, ∀ϕ ∈ H1

#(Z) (i = 1, 2). (B.3)

If we use a test function only depending on zi or zj (by convention, j/=i), we get

∫
Zi

h3∂V
(i)

∂zi

Zj

dϕ

dzi
=
∫
Zi

h3
Zj dϕ

dzi
, ∀ϕ ∈ H1

#(Zi),

∫
Zj

h3∂V
(i)

∂zj

Zi

dϕ

dzj
= 0, ∀ϕ ∈ H1

#(Zj).

(B.4)

These two equations lead to the following equalities, which hold for a.e. (x, y) ∈ Ω × Y :

h3
[12]

∂V(i)

∂zi

Zj

= h3
[12]

Zj

− Cx,y, (B.5)

h3
[12]

∂V(i)

∂zj

Zi

= −Cx,y, (B.6)

where Cx,y denotes any constant with respect to z. Now, let us analyze each equality.

(i) Equality (B.5) with (i, j) = (1, 2). We average the equality with respect to z1 so that

h3
[12]

Z
− C(1)

x,y = h3∂V
(1)

∂z1

Z

= h3
[12]

∂V(1)

∂z1

Z1
Z2

= 0, (B.7)

due to the periodicity of V(1) in the z1 variable. We thus obtain C(1)
x,y = h3

[12]

Z
.



20 Mathematical Problems in Engineering

(ii) Equality (B.5)with (i, j) = (2, 1). Dividing the equality by h3
[12] (which does not depend

on z1), we get

∂V(2)

∂z2

Z1

= 1 − C(2)
x,yh

−3
[12]. (B.8)

Integrating with respect to z2, we get

1 − C(2)
x,yh

−3
[12]

Z
=
∂V(2)

∂z2

Z

= 0, (B.9)

due to the periodicity of V(2) in the z2 variable. Thus,

C
(2)
x,y =

(
h−3
[12]

Z
)−1

. (B.10)

(iii) Equality (B.6)with (i, j) = (1, 2). Dividing the equality by h3
[12] (which does not depend

on z1) and integrating with respect to z2, we get

−C(3)
x,yh

−3
[12]

Z2

=
∂V(1)

∂z2

Z

= 0, (B.11)

due to the periodicity of V(1) in the z2 variable. We conclude that C(3)
x,y = 0.

(iv) Equality (B.6) with (i, j) = (2, 1). Integrating the equality with respect to z1, we get

−C(4)
x,y = h3

[12]
∂V(2)

∂z1

Z

= h3
[12]

∂V(2)

∂z1

Z1
Z2

= 0, (B.12)

due to the periodicity of V(2) in the z1 variable. We conclude that C(4)
x,y = 0.

The coefficients C(i)
x,y exactly define the matrixH(3) and we have

H(3) :=

⎛
⎝C

(1)
x,y C

(4)
x,y

C
(3)
x,y C

(2)
x,y

⎞
⎠ =

⎛
⎜⎝h3

[12]

Z
0

0
(
h−3
[12]

Z
)−1

⎞
⎟⎠ . (B.13)

Step 2 (computation of the vector H0 =
(
θ0h

0

)
− h3∇zα0

Z
). By definition, α0 satisfies, for a.e.

(x, y) ∈ Ω × Y ,

∫
Z

h3∇zα0∇zϕ =
∫
Z

θ0h
∂ϕ

∂z1
, ∀ϕ ∈ H1

#(Z). (B.14)
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If we use a test function only depending on z1 or z2, we get

∫
Z1

h3∂α
0

∂z1

Z2
dϕ

dz1
=
∫
Z1

θ0h
Z2 dϕ

dz1
, ∀ϕ ∈ H1

#(Z1),

∫
Z2

h3∂α
0

∂z2

Z1
dϕ

dz2
= 0, ∀ϕ ∈ H1

#(Z2).

(B.15)

These two equations lead to the following equalities, which hold for a.e. (x, y) ∈ Ω × Y :

h3
[12]

∂α0

∂z1

Z2

= θ0h[12]
Z2 −Dx,y, (B.16)

h3
[12]

∂α0

∂z2

Z1

= −Dx,y, (B.17)

where Dx,y denotes any constant with respect to z. Now, let us analyze each equality.

(a) Equality (B.16). We average the equality with respect to z1 so that

θ0h[12]
Z
−D(1)

x,y = h3∂α
0

∂z1

Z

= h3
[12]

∂α0

∂z1

Z1
Z2

= 0, (B.18)

due to the periodicity of α0 in the z1 variable. We thus obtain D(1)
x,y = θ0h[12]

Z
.

(b) Equality (B.17). Dividing the equality by h3
[12] and integrating with respect to z2, we

get

−D(2)
x,yh

−3
[12]

Z2 =
∂α0

∂z2

Z

= 0, (B.19)

due to the periodicity of α0 in the z2 variable. We conclude that D(2)
x,y = 0.

The coefficients D(i)
x,y exactly define the vectorH0 as

H0 :=

⎛
⎝D

(1)
x,y

D
(2)
x,y

⎞
⎠ =

⎛
⎝θ0h[12]

Z

0

⎞
⎠ . (B.20)

Step 3 (computation of the vector H� =
(
h
0

)
− h3∇zα�

Z
). The procedure follows the one

explained in Step 2 (replacing θ0 by 1 and α0 by α�). We obtain

H� :=

(
h[12]

Z

0

)
. (B.21)
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Step 4 (computation of the matrix A := H(3)(I − ∇yW)
Y
). Let us recall that, by definition,

W(i) (i = 1, 2) satisfies, for a.e. x ∈ Ω,

∫
Y

H(3)·∇yW(i)∇yψ =
2∑
k=1

∫
Y

H(3)
ki

∂ψ

∂yk
, ∀ψ ∈ H1

#(Y ) (i = 1, 2). (B.22)

Due to the simplifications based on the particular choice for h, we obtain

∫
Y

H(3)·∇yW(i)∇yψ =
∫
Y

H(3)
ii

∂ψ

∂yi
, ∀ψ ∈ H1

#(Y ) (i = 1, 2). (B.23)

If we use a test function only depending on yi or yj , we get

∫
Y i

H(3)
ii

∂W(i)

∂yi

Yj
dψ

dyi
=
∫
Y i

H(3)
ii

Yj dψ

dyi
, ∀ψ ∈ H1

#(Yi),

∫
Yj

H(3)
jj

∂W(i)

∂yj

Yi
dψ

dyj
= 0, ∀ψ ∈ H1

#(Yj).

(B.24)

These two equations lead to the following equalities, which hold for a.e. x ∈ Ω:

H(3)
ii

∂W(i)

∂yi

Yj

=H(3)
ii

Yj

− Cx (B.25)

H(3)
jj

∂W(i)

∂yj

Yi

= −Cx, (B.26)

where Cx denotes any constant with respect to y. Now, let us analyze each equality.

(i) Equality (B.25) with (i, j) = (1, 2). We divide the previous equality byH(3)
11 (which does

not depend on y2) and get

∂W(1)

∂y1

Y2

= 1 − C(1)
x

(
H(3)

11

)−1
. (B.27)

Integrating with respect to y1, we get

1 − C(1)
x

(
H(3)

11

)−1
Y

=
∂W(1)

∂y1

Y

= 0, (B.28)

due to the periodicity ofW(1) in the y1 variable. Thus,

C
(1)
x =

((
H(3)

11

)−1
Y)−1

=

⎛
⎝(h3

[12]

Z
)−1

Y⎞
⎠
−1

. (B.29)
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(ii) Equality (B.25) with (i, j) = (2, 1). We average the equality with respect to y2 so that

H(3)
22

Y

− C(2)
x

=H(3)
22
∂W(2)

∂y2

Y

=H(3)
22
∂W(2)

∂y2

Y2
Y1

= 0, (B.30)

due to the periodicity ofW(2) in the y2 variable. We thus obtain

C
(2)
x =H(3)

22

Y

=
(
h−3
[12]

Z
)−1

Y

. (B.31)

(iii) Equality (B.26) with (i, j) = (1, 2). Integrating the equality with respect to y2, we get

−C(3)
x =H(3)

22
∂W(1)

∂y2

Y

=H(3)
22
∂W(1)

∂y2

Y2
Y1

= 0, (B.32)

due to the periodicity ofW(1) in the y2 variable. We conclude that C(3)
x = 0.

(iv) Equality (B.26) with (i, j) = (2, 1). Dividing the equality by H(3)
11 (which does not

depend on the variable y2) and integrating with respect to y1, we get

−C(4)
x (H(3)

11 )
−1
Y

=
∂W(2)

∂y1

Y

= 0, (B.33)

due to the periodicity ofW(2) in the y1 variable. We conclude that C(4)
x = 0.

The coefficients C(i)
x exactly define the matrixA as

A :=

⎛
⎝C

(1)
x C

(4)
x

C
(3)
x C

(2)
x

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎝(h3

[12]

Z
)−1

Y⎞
⎠
−1

0

0
(
h−3
[12]

Z
)−1

Y

⎞
⎟⎟⎟⎟⎟⎟⎠
. (B.34)

Step 5 (computation of the vector B0 = H0 −H(3)·∇yβ0
Y
). Let us recall that, by definition, β0

satisfies, for a.e. x ∈ Ω,

∫
Y

H(3)·∇yβ0∇yψ =
∫
Y

H0∇yψ, ∀ψ ∈ H1
#(Y ). (B.35)

Due to the simplifications based on the particular choice for h, we obtain

∫
Y

H(3)·∇yβ0∇yψ =
∫
Y

H0
1

∂ψ

∂y1
, ∀ψ ∈ H1

#(Y ). (B.36)
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If we use a test function only depending on y1 or y2, we get

∫
Y 1

H(3)
11

∂β0

∂y1

Y2
dψ

dy1
=
∫
Y 1

H0
1

Y2 dψ

dy2
, ∀ψ ∈ H1

#(Y1),

∫
Y 2

H(3)
22
∂β0

∂y2

Y1
dψ

dy2
= 0, ∀ψ ∈ H1

#(Y2).

(B.37)

These two equations lead to the following equalities, which hold for a.e. x ∈ Ω:

H(3)
11

∂β0

∂y1

Y2

=H0
1

Y2

−Dx, (B.38)

H(3)
22
∂β0

∂y2

Y1

= −Dx, (B.39)

where Dx denotes any constant with respect to y. Now, let us analyze each equality.

(a) Equality (B.38). We divide the previous equality byH(3)
11 and get

∂β0

∂y1

Y2

=

(
H0

1

H(3)
11

)Y2

−D(1)
x

(
H(3)

11

)−1
. (B.40)

Integrating with respect to y1, we get

(
H0

1

H(3)
11

)Y

−D(1)
x

(
H(3)

11

)−1
Y

=
∂β0

∂y1

Y

= 0, (B.41)

due to the periodicity of β0 in the y1 variable. Thus,

D
(1)
x =

(
H0

H(3)
11

)Y((
H(3)

11

)−1
Y)−1

=

⎛
⎜⎝θ0h[12]

Z

h3
[12]

Z

⎞
⎟⎠

Y⎛
⎝(h3

[12]

Z
)−1

Y⎞
⎠
−1

. (B.42)

(b) Equality (B.39). Integrating the equality with respect to y2, we get

−D(2)
x =H(3)

22
∂β0

∂y2

Y

=H(3)
22
∂β0

∂y2

Y2
Y1

= 0, (B.43)

due to the periodicity of β0 in the y2 variable. We conclude that D(2)
x = 0.
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The coefficients D(i)
x exactly define the vector B0 as

B0 :=

⎛
⎝D

(1)
x,y

D
(2)
x,y

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎝θ0h[12]

Z

h3
[12]

Z

⎞
⎟⎠

Y⎛
⎝(h3

[12]

Z
)−1

Y⎞
⎠
−1

0

⎞
⎟⎟⎟⎟⎠ . (B.44)

Step 6 (computation of the vector B� = H� −H(3)·∇yβ�
Y
). The procedure follows the one

explained in Step 5 (replacingH0 byH� and β0 by β�). We obtain

B� =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎝h[12]

Z

h3
[12]

Z

⎞
⎟⎠

Y⎛
⎝(h3

[12]

Z
)−1

Y⎞
⎠
−1

0

⎞
⎟⎟⎟⎟⎠ . (B.45)

As a consequence, the definition of the macroscopic saturation Θ = B0
1/B

�
1 allows to

recover the formula given in Table 1.
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