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The aim of distributed denial-of-service (DDOS) flood attacks is to overwhelm the attacked site
or to make its service performance deterioration considerably by sending flood packets to the
target from the machines distributed all over the world. This is a kind of local behavior of traffic
at the protected site because the attacked site can be recovered to its normal service state sooner
or later even though it is in reality overwhelmed during attack. From a view of mathematics, it
can be taken as a kind of short-range phenomenon in computer networks. In this paper, we use
the Hurst parameter (H) to measure the local irregularity or self-similarity of traffic under DDOS
flood attack provided that fractional Gaussian noise (fGn) is used as the traffic model. As flood
attack packets of DDOS make the H value of arrival traffic vary significantly away from that of
traffic normally arriving at the protected site, we discuss a method to statistically detect signs of
DDOS flood attacks with predetermined detection probability and false alarm probability.

Copyright q 2008 M. Li and W. Zhao. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

IP Networks are subject to electronic attacks [1]. An intrusion detection system (IDS) collects
information from a variety of systems and network sources to analyze the information of
attack signs. A network-based IDS monitors the traffic on its network as a data source [2]. For
distributed denial-of-service (DDOS) flood attack, an intruder bombs attack packets upon a
site (victim) with a huge amount of traffic the sources of which are distributed over the world
[3]. Hence the pattern of traffic under DDOS flood attack may suddenly differ significantly
from the normal pattern of the arrival traffic. From the perspective of dynamical aspects
for limited time interval in physics [4], one may regard this sudden change as a specific
“pulse.” Though DDOS flood attack may not be a sole factor to make traffic pattern vary
significantly, we assume that secure officers can distinguish significant variation of monitored
traffic pattern caused by other known factors (e.g., normally heavy traffic) from DDOS flood
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attack. Without confusions causing, the term abnormal traffic used in this paper specifically
implies a traffic series that has significant variation of traffic pattern caused by DDOS flood
attack.

In this research, we ponder two fundamental issues in detection. One is feature
extraction of monitored traffic time series. The other is detection scheme that can be used
to assure predetermined detection probability (Pd) and false alarm probability (Pf). The
first issue will be discussed in Section 2 from a view of feature extraction of traffic based
on self-similarity of traffic. The second will be dissertated in Section 3 based on statistical
detection. Section 4 will explain the performance analysis of the present detection system. A
case study is demonstrated in Section 5. Discussions are given in Section 6, which is followed
by conclusions.

2. Feature extraction of traffic

2.1. Self-similar traffic

Computer scientists in the last decade discovered that traffic is a type of fractal time series. It
has the properties of self-similarity, long memory, and multiscales (see e.g., [5]). A commonly
used model in traffic engineering is fractional Gaussian noise (fGn) (see e.g., [6–8]).

Let B(t), t ∈ (0,∞) be Wiener Brownian motion. Let BH(t) be fractional Brownian
motion with the Hurst parameter H ∈ (0, 1) [9]. Let Γ(·) be Gamma function. Then by using
fractional calculus, BH(t) is expressed by

BH(t) − BH(0) =
1

Γ(H + 1/2)

{∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5]dB(u) +

∫ t

0
(t − u)H−0.5 dB(u)

}
.

(2.1)

Let G(t) be the increment series of BH(t):

G(t) = BH(t + a) − BH(t), (2.2)

where a is a real number. Then G(t) is fGn [9]. The autocorrelation function (ACF) of fGn in
the discrete case is given by

ρ(τ) =
σ2

2

[∣∣|τ | + 1
∣∣2H − 2|τ |2H +

∣∣|τ | − 1
∣∣2H

]
, (2.3a)

where σ2 = Γ(2 −H)cos(πH)/πH(2H − 1) is the intensity of fGn [10]. The normalized ACF
of fGn is given by

R(τ) =
1
2

[∣∣|τ | + 1
∣∣2H − 2|τ |2H +

∣∣|τ | − 1
∣∣2H

]
. (2.3b)

The relationship between the fractal dimension of fGn and H is given by

D = 2 −H. (2.4)

Approximating the right side of (2.3b) with the second-order differential of 0.5(τ)2H ,
see [9, H15, page 350], for τ ≥ 0, yields

0.5
[
(τ + 1)2H − 2τ2H + (τ − 1)2H] ≈ H(2H − 1)τ2H−2. (2.5)
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Let y and R be a traffic series and its ACF, respectively. Then according to (2.5),

R(τ)∼ cτ2H−2, H ∈ (0.5, 1), (2.6)

where ∼ implies the asymptotical equivalence under the limit τ→∞ and c > 0 is a constant
[11].

The ACF (2.5) is nonsummable for H > 0.5, implying long-range dependence (LRD).
Hence H is a measure of LRD of traffic. It is kindly noted that LRD of traffic does not
mean that DDOS attacking is a long-range phenomenon. On the contrary, DDOS attacking
and its detection are short-range phenomena since both sides, namely, an attacker and its
opponent, are engaged with each other during a short period of time. Such a battle makes
local irregularity of traffic vary dramatically [12].

Without losing generality, we consider traffic series y in the discrete case. By dividing y
into nonoverlapping blocks of size L and averaging over each block, we obtain another series
given by

y(i)(L) =
1
L

(i+1)L∑
j=iL

y(j). (2.7)

According to the analysis in [5, 9, 11], in the fGn sense, one has

Var
(
y(L)) = L2H−2 Var(y), (2.8)

where Var implies the variance operator. Thus the self-similarity is measured by H.
A series encountered in engineering is usually of finite length. Let y be a series

of P length. Divide it into N nonoverlapping sections. Each section is divided into M
nonoverlapping segments. Divide each segment into K nonoverlapping blocks. Each block
is of L length. Let y(i)(L)m (n) be the series with aggregated level L in the mth segment of the
nth section (m = 0, 1, . . . ,M − 1; n = 0, 1, . . . ,N − 1). Let Hm(n) be the H value of y(i)(L)m (n).
Let r(k;Hm(n)) be the measured ACF of y(i)(L)m (n) in the normalized case. The theoretic ACF
form corresponding y(i)(L)m (n) in the fGn sense is given by

R
(
k;Hm(n)

)
= 0.5

[∣∣|k| + 1
∣∣2Hm(n) − 2|k|2Hm(n) +

∣∣|k| − 1
∣∣2Hm(n)

]
. (2.9)

The above expression exhibits the multifractal property of traffic as can be seen from [13].
Let

J
(
Hm(n)

)
=
∑
k

[
R
(
k;Hm(n)

) − r(k;Hm(n)
)]2 (2.10)

be the cost function. Then one has

Hm(n) = arg min J
[
Hm(n)

]
. (2.11)

Averaging Hm(n) in terms of index m yields

H(n) =
1
M

M−1∑
m=0

Hm(n), (2.12)

representing the H estimate of the series in the nth section.
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Figure 1: Normal traffic at input of a server.
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Figure 2: Illustration of abnormal traffic.

Usually, H(n1) /=H(n2) for n1 /= n2. However, stationarity of traffic time series implies
that H(n) at a specific site is a number falling within a certain confidence interval [5,
Paragraph 5, Section 5, page 966]. In practical terms, a normality assumption for H(n) is
quite accurate in most cases for M > 10 regardless of probability distribution function of H
[14]. Thus we take

Hx = E
[
H(n)

]
(2.13)

as a mean estimate of H of x, where E is the mean operator. It can be taken as a template of H
of x for the purpose of statistical detection. The appendix gives a case of the H estimation of
a real-traffic series to clarify the reasonableness of H in featuring traffic time series.

2.2. Characterizing traffic time series with H

Let x be normal traffic time series. Normally, the site serves x peacefully though x may
sometimes be unpleasantly delayed because of the normal traffic jam. The arrival traffic x is
contributed by many connections distributed all over the world. Figure 1 shows x contributed
by traffic from d connections. From previous discussions, we see that x can be characterized
by the Hurst parameter and we denote it as Hx.

Assume that the site is intruded by DDOS flood attacking. Then actual arrival traffic
(abnormal traffic) consists of normal traffic x and attack traffic a, see Figure 2, where a is
contributed by e connections. We use Hy as a feature of y.

3. Detection method and system structure

To explain our detection principle, we introduce three terms. Correctly recognizing an
abnormal sign is termed detection; failing to recognize it, miss; mistakenly recognizing a
normal as abnormal is a false alarm.
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Figure 3: System diagram.

Let ξ = ‖Hx − Hy‖. Then ξ represents the deviation of H of monitored traffic time
series. Let V > 0 be the threshold. Then the detection hypotheses are as follows. ξ > V ,
implies detection, while ς = ‖Hx −Hxl‖ > V represents false alarm, where Hxl stands for H
which is not used as the template but obtained when there is no attacking. Clearly, ξ and ζ are
random variables. Mathematically, there are many distance measures available [15–17], but
the following works well:

ξ = E

[∑
k

∣∣∣∣Hy

Hx
− log

Hy

Hx
− 1

∣∣∣∣
]
. (3.1)

According to the previous discussions, we give the system diagram in Figure 3. The
measured arrival traffic first passes through an H estimator. The result of H estimator goes
to template database to produce the template Hx. In addition, it outputs an online estimate
of Hy. Hx and Hy are compared in the distance detector. The comparison result ξ is fed into
threshold detector to compare with a given threshold V. In the stage of decision analysis, the
output of the threshold detector is analyzed and its output gives a sign of detection according
to preset detection probability and false alarm probability.

4. Performance analysis

With the partition explained in Section 2, we see that there is a value of ξ representing the
deviation of H of y in each segment. Therefore, in each section, ξ is a random sequence of M
length. Denote ξ as the expectation of ξ in each section. Then ξ is a random sequence of N
length. In the case of N ≥ 10, ξ well obeys Gaussian distribution [14]. For the simplicity, we
still denote ξ as ξ.

4.1. Detection probability

Let μξ and σ2
ξ be the expectation and the variance of ξ, respectively. Then

ξ∼N(
μξ, σ

2
ξ

)
=

1√
2πσξ

e−(ξ−μξ)
2/2σ2

ξ . (4.1)

Let

Φ(t) =
∫ t

−∞

1√
2π

e−t
2/2 dt. (4.2)
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Figure 4: Detection probability.

Then detection probability is given by

Pd = P{V < ξ <∞} =
∫∞

(V−μξ)/σξ

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μξ
σξ

]
. (4.3)

4.2. False alarm probability

Let μζ and σ2
ς be the mean and the variance of ζ. Then false alarm probability is given by

Pf = P{V < ζ <∞} =
∫∞

(V−μς)/σς

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μζ
σζ

]
. (4.4)

4.3. Miss probability

Let Pm be miss probability. Then

Pm = P{−∞ < ξ < V } =
∫ (V−μξ)/σξ

−∞

1√
2π

e−t
2/2 dt = Φ

[
V − μξ
σξ

]
. (4.5)

Generally, μζ = 0. Besides, the numeric computation in data processing can be
arranged such that σζ = σξ = σ. In this case, three probabilities are given by

Pd =
∫∞

(V−μξ)/σ

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μξ
σ

]
,

Pf =
∫∞

V/σ

1√
2π

e−t
2/2 dt = 1 −Φ

(
V

σ

)
,

Pm =
∫ (V−μξ)/σ

−∞

1√
2π

e−t
2/2 dt = 1 −Φ

[
V − μξ
σ

]
.

(4.6)

Figures 4–6 show the curves of three distributions, respectively. As Pd + Pm = 1, high Pd
implies low Pm and vice versa.
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Figure 5: Miss probability.
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Figure 6: False alarm probability.

4.4. Threshold and detection region

As can be seen from the previous discussions, the selection of a threshold value is crucial to
our system. In fact, given a false alarm probability f, we want to find the threshold Vf such
that P(Vf) ≤ f . Clearly,

Vf ≥ −σΦ−1(f). (4.7)

If f = 0 and when the selected precision is 4, we obtain

Vf ≥ 4σ. (4.8)

Given a detection probability d, we want to find the threshold Vd such that Pd(Vd) ≥ d.
Clearly,

Vd ≤ μξ − σΦ−1(d), if μξ − σΦ−1(d) > 0. (4.9)

In the case of d = 1,

Vd ≤ μξ − 4σ, ifμξ − 4σ > 0. (4.10)

Therefore, when −σΦ−1(f) < μξ − σΦ−1(d) and V ∈ [−σΦ−1(f), μξ − σΦ−1(d)], Pd ≥ d and
Pf ≤ f are assured. That is,

Pd ≥ d,
Pf ≤ f,

if V ∈ [ − σΦ−1(f), μξ − σΦ−1(d)
]
, μξ − σΦ−1(d) > 0. (4.11)
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Figure 7: Intersection of three probability distributions: detection region.
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In the case of d = 1 and f = 0,

Pd = 1,

Pf = 0,
if V ∈ [

4σ, μξ − 4σ
]
, μξ − 4σ > 0. (4.12)

The constraint of (4.12) is given by μξ > 8σ.
Obviously, the detection region is the intersection of three probability functions. Under

the condition of μξ = 80 and σ = 10, the detection region is shown in Figure 7.

5. A case study

Suppose the template H0 = 0.7671 as described in the appendix. Assume that the confidence
level is 99.9999%. Thus we suppose y′s H ∈ (0.5000, 0.7669) or (0.7673, 0.9900) during the
transition process of intrusion. In this case study, 1000 points of Hs in (0.5000, 0.7669) or
(0.7673,0.9900) are randomly selected to simulate the abnormal traffic deviating from the
normal one. The error sequence is indicated in Figure 8. By the numeric computation, we
obtain μξ = 210.3011 and σ = 7.7490. Therefore, we obtain the probability distributions
for detection, false alarm and miss as shown in Figure 9. Under the conditions of Pd = 1
and Pf = 0, we obtain Vmin = 30.9951 and Vmax = 179.3052. Hence when we select
V ∈ [30.9951, 179.3052], we have 99.9999% confidence to say that Pd = 1 and Pf = 0 are
assured, which can be easily observed from Figure 9.

6. Discussions

Since Yahoo servers were successfully attacked in 2001, the issue of detecting DDOS
flood attacking has been paid much attention to. Various methods and systems have been
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proposed, see, for example, [18–25]. As known, traffic under DDOS flood attack must be
significantly different from that of normal one [25]. Otherwise, DDOS flood attack would
have no effect. From this point of view, the value of H of traffic under DDOS flood attacks is
considerably different from that of normal one, see [12] for details.

For a stationary random time series of finite length, ACF and power spectrum
density (PSD) function are commonly used in engineering for feature extraction in statistical
classifications [16, 17]. However, the PSD of traffic does not exist in the domain of
ordinary functions since it has long memory [8]. To avoid such a difficulty in mathematics,
consequently, ACF of traffic is considered for feature extraction in our early work [25]. This
paper focuses on detection of local variations of traffic based on the self-similarity of traffic.
Thus it suggests a new method that substantially develops the work of [25], from the point
of view of traffic pattern matching, because feature extraction of traffic time series by using a
single parameter H makes pattern matching more efficient.

7. Conclusions

We have discussed the characterization of the local irregularity of traffic by H(n). We have
explained a principle of statistical detection to capture signs of DDOS flood attacking with
predetermined detection probability and false alarm probability based on the variation of the
local irregularity of traffic.

Appendix

Demonstration of H estimation of a real-traffic series

This appendix gives a demonstration with a real-traffic series, named LBL-PKT-4 [26, 27].
Denote x(i) as the series of LBL-PKT-4, indicating the number of bytes in the ith packet. The
length of that series is 1.3 million. The first 1024 points of that series is plotted in Figure 10(a).
Divide x(i) into 32 nonoverlapping sections. Computing H in each section yields H(n) (n =
0, 1, . . . , 31) as shown in Figure 10(b). Its histogram is indicated in Figure 10(c).

According to (2.13), we have Hx = 0.7671. The confidence interval with 95%
confidence level is [0.7670,0.7672]. Hence we have 95% confidence to say that the H estimate
in each section of that series takes Hx = 0.7671 as its approximation with fluctuation not
greater than 1 × 10−4. Further, it is easy to obtain that the confidence interval with 99.9999%
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Figure 10: Verification of statistical invariable H. (a) A real-traffic time series; (b) estimate H(n); (c)
histogram of H(n).

confidence level is [0.7669, 0.7673]. Hence we have 99.9999% confidence to say that the H
estimate in each section of that series takes Hx = 0.7671 as its approximation with fluctuation
not greater than 2 × 10−4.
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