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optimization problem is formulated as a Mayer problem of optimal control theory with Cartesian
elements—position and velocity vectors—as state variables. After applying the Pontryagin
maximum principle and determining the maximum Hamiltonian, classical orbital elements are
introduced through a Mathieu transformation. The short periodic terms are then eliminated from
the maximum Hamiltonian through an infinitesimal canonical transformation built through Hori
method. Closed-form analytical solutions are obtained for the average canonical system by solving
the Hamilton-Jacobi equation through separation of variables technique. For transfers between
close orbits a simplified solution is straightforwardly derived by linearizing the new Hamiltonian
and the generating function obtained through Hori method.
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1. Introduction

In the general analysis of optimal space trajectories, two idealized propulsion models are of
most frequent use [1]: LP and CEV systems. In the power-limited variable ejection velocity
systems—LP systems—the only constraint concerns the power, that is, there exists an upper
constant limit for the power. In the constant ejection velocity limited thrust systems—CEV
systems—the magnitude of the thrust acceleration is bounded. In both cases, it is usually
assumed that the thrust direction is unconstrained. The utility of these idealized models is
that the results obtained from them provide good insight about more realistic problems.

The purpose of this work is to present a complete first-order analytical solution,
which includes the short periodic terms, for the problem of optimal low-thrust limited-power
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transfers (no rendezvous) between arbitrary elliptic coplanar orbits in a Newtonian central
gravity field. This analysis has been motivated by the renewed interest in the use of low-
thrust propulsion systems in space missions verified in the last two decades.

The optimization problem is formulated as a Mayer problem of optimal control
theory with Cartesian elements—position and velocity vectors—as state variables [1]. After
applying the Pontryagin Maximum Principle and determining the maximum Hamiltonian,
classical orbital elements are introduced through a canonical Mathieu transformation. The
short periodic terms are then eliminated from the maximum Hamiltonian through an
infinitesimal canonical transformation built through Hori method—a perturbation canonical
method based on Lie series [2]. The new maximum Hamiltonian, resulting from the
infinitesimal canonical transformation, describes the extremal trajectories associated with the
long duration maneuvers.

Closed-form analytical solutions are obtained for the average canonical system
governed by this new Hamiltonian. The separation of variables technique is applied to
solve the Hamilton-Jacobi equation associated to the average canonical system [3]. For long
duration maneuvers, the existence of conjugate points is investigated through the Jacobi
condition and the envelope of extremals is obtained considering different configurations of
initial and final orbits. Curves representing maneuvers with same fuel consumption for a
specified duration, called isocost curves, are presented for several configurations of initial and
final orbits. An iterative algorithm based on the first-order analytical solution is described for
solving the two-point boundary value problem of going from an initial orbit to a final orbit.

For transfers between close coplanar elliptic orbits, a simplified solution is straight-
forwardly derived by linearizing the new Hamiltonian and the generating function obtained
through Hori method. Since this solution is given by a linear system of algebraic equations in
the initial value of the adjoint variables, the two-point boundary value problem is solved by
simple techniques.

Some of the results presented in the paper are very similar to the ones obtained by
Edelbaum [4] and Marec and Vinh [5] through different approaches based on the concept
of mean Hamiltonian. We note that the theory described in the paper includes directly the
periodic terms such that it can be applied to any transfer independently of its duration. On
the other hand, since the theory is based on canonical transformations, a first-order solution
for the Cartesian elements can also be easily obtained from Lie theorem [2].

2. Optimal space trajectories

A low-thrust limited-power propulsion system, or LP system, is characterized by low-thrust
acceleration level and high specific impulse [1]. The ratio between the maximum thrust
acceleration and the gravity acceleration on the ground, γmax/g0, is between 10−4 and 10−2.
For such system, the fuel consumption is described by the variable J defined as

J =
1
2

∫ tf
t0

γ2 dt, (2.1)

where γ is the magnitude of the thrust acceleration vector γ , used as control variable. The
consumption variable J is a monotonic decreasing function of the massm of the space vehicle,

J = Pmax

(
1
m
− 1
m0

)
, (2.2)
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where Pmax is the maximum power and m0 is the initial mass. The minimization of the final
value of the fuel consumption Jf is equivalent to the maximization of mf .

Let us consider the motion of a space vehicleM, powered by a limited-power engine in
a Newtonian central gravity field. At time t, the state of the vehicle is defined by the position
vector r(t), the velocity vector v(t) and the consumption variable J(t). This set of variables
provides a straightforward physical interpretation to the optimal thrust acceleration.

The problem of general optimal low-thrust limited-power transfer can be formulated
as a Mayer problem of optimal control as follows [1]. It is proposed to transfer the space
vehicle M from the initial state (r0,v0, 0) at time t0 to the final state (rf ,vf , Jf) at time tf , such
that the final consumption variable Jf is a minimum (Figure 1).

For coplanar transfer problem, the initial and final conditions are specified in terms of
orbital elements—semimajor axis, eccentricity, and pericenter argument—introduced in the
next section. It is also assumed that tf − t0 and the position of the vehicle in the initial orbit
are specified. The state equations are

dr
dt

= v,

dv
dt

= −
μ

r3
r + γ ,

dJ

dt
=

1
2
γ2,

(2.3)

where μ is the gravitational parameter. It is assumed that the thrust direction and magnitude
are unconstrained [1].

According to the Pontryagin Maximum Principle [6], the optimal thrust acceleration
γ ∗ must be selected from the admissible controls such that the Hamiltonian H reaches its
maximum. The Hamiltonian is formed using (2.3),

H = pr•v + pv•
(
−
μ

r3
r + γ

)
+

1
2
pJγ

2, (2.4)

where pr , pv, and pJ are the adjoint variables and dot denotes the dot product. Since the
optimization problem is unconstrained, it follows that

γ ∗ = −pv
pJ
. (2.5)

The optimal thrust acceleration γ ∗ is modulated [1]. Then, the optimal trajectories are
governed by the maximum Hamiltonian H∗,

H∗ = pr•v − pv•
μ

r3
r −

p2
v

2pJ
. (2.6)

Since J is an ignorable variable, it is determined by simple integration, and its adjoint pJ is a
first integral, whose value is obtained from the transversality conditions: pJ = −1. Thus,

H∗ = pr•v − pv•
μ

r3
r +

p2
v

2
. (2.7)
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Figure 1: Geometry of the transfer problem.

This Hamiltonian can be decomposed into two parts:

H0 = pr•v − pv•
μ

r3
r,

Hγ∗ =
p2
v

2
,

(2.8)

where H0 is the undisturbed Hamiltonian and Hγ∗ is the disturbing function concerning the
optimal thrust acceleration. The undisturbed HamiltonianH0 plays a fundamental role in the
canonical transformation theory described in the next section.

3. Transformation from cartesian elements to orbital elements

In order to obtain a first-order analytical solution for transfers between arbitrary elliptic
coplanar orbits, the set of classical orbital elements is introduced through a canonical
transformation by using the properties of generalized canonical systems [7].

Consider the extended two-body problem defined by the canonical system of
differential equations governed by the undisturbed Hamiltonian H0, that is, the problem
defined by the differential equations for the state variables r and v, which describe the
classical two-body problem, and the differential equations for the adjoint variables pr and
pv. These equations are given by

dr
dt

= v
dpr

dt
=
μ

r3

(
pv − 3

(
pv•er

)
er
)
,

dv
dt

= −
μ

r3
r

dpv
dt

= −pr ,
(3.1)

where er is the unit vector pointing radially outward of the moving frame of reference.
The general solution of the differential equations for the state variables r and v is well-

known from the classical two-body problem [8]. In the coplanar case, it is given by

r =
a
(
1 − e2)

1 + e cos f
er, (3.2)

v =

√
μ

a
(
1 − e2

)[e sin f er +
(
1 + e cos f

)
es
]
, (3.3)
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where es is the unit vector along circumferential direction of the moving frame of reference;
a is the semimajor axis, e is the eccentricity, and f is the true anomaly. The unit vectors er and
es are written as function of the orbital elements as follows:

er = cos(ω + f)i+ sin(ω + f)j,

es = − sin(ω + f)i+cos(ω + f)j
(3.4)

where i and j are the unit vectors of a fixed frame of reference (Figure 1) and ω is the
pericenter argument.

The general solution of the differential equations for the adjoint variables pr and pv
is obtained by computing the inverse of the Jacobian matrix of the point transformation
between the Cartesian elements and the orbital ones, defined by (3.2) and (3.3). This matrix
is obtained through the variations of the orbital elements induced by the variations in the
Cartesian elements, as described in the next paragraphs.

Let us consider the inverse of the point transformation defined by (3.2) and (3.3):

a =
r

2 −
(
rv2/μ

) , (3.5)

e2 = 1 − h2

μa
, (3.6)

cosω =
i•e
e
, (3.7)

cosE =
1
e

(
1 − r

a

)
, (3.8)

where the eccentricity vector e and the angular momentum vector h, shown in Figure 2, are
given, as function of the Cartesian elements r and v, by the following equations:

e =
1
μ

[(
v2 −

μ

r

)
r − (r•v)v

]
,

h = r × v.
(3.9)

Here, the symbol × denotes the cross product. The true anomaly f has been replaced by
eccentric anomaly E. These anomalies are related through the equation

tan
f

2
=

√
1 + e
1 − e tan

E

2
. (3.10)

Now, consider the variations in the Cartesian elements, δr and δv, given in the moving
frame of reference by

δr = δξ er + δη es,

δv = δu er + δv es.
(3.11)
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Figure 2: The vectors e and h.

The variations of the orbital elements—a, e, ω, and E—induced by the variations in
the Cartesian elements, δr and δv, are obtained straightforwardly from (3.5) through (3.8)
and are given by

δa = 2
(
a

r

)2 r•δr
r

+
2a2

μ
v•δv,

δe = −h•δh
μae

+
h2

2μa2e
δa,

δω =
δe

e
cot ω − i•δe

e sin ω
,

δE =
1

e sin E

[
r•δr
ra
− r

a2
δa + cosE δe

]
,

(3.12)

where the variations of the vectors e and h are written as

μδe =
(
v2
sδξ − vsvrδη + 2rvsδv

)
er +

(
− vsvrδξ +

(
v2
r −

μ

r

)
δη − rvsδu − rvrδv

)
es, (3.13)

δh =
(
vsδξ − vrδη + rδv

)
ew, (3.14)

being the unit vector ew normal to the plane of the orbit. Here, vr and vs denote the radial
and circumferential components of the velocity vector, respectively (see (3.3)).

From (3.2), (3.3), and (3.9) through (3.14), one gets the explicit form of the variations
of the orbital elements—a, e, ω, and E—induced by the variations in the Cartesian elements,
δr and δv. At this point, it is useful to replace the variation in the eccentric anomaly E by the
variation in the mean anomaly M, obtained from the well-known Kepler equation

M = E − e sin E. (3.15)
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This variation is given by

δM =
(
r

a

)
δE − sin Eδe. (3.16)

Thus,

δa = 2
(
a

r

)2

δξ +
2e sin f

n
√

1 − e2
δu +

2
√

1 − e2

n

(
a

r

)
δv,

δe =
a
(
1 − e2)
r2

cosE δξ +
sin f

a
δη +

√
1 − e2

na
sin f δu +

√
1 − e2

na
(cosE + cos f)δv,

δω =
sin f

er
δξ −

e + cos f
ae
(
1 − e2

)δη −
√

1 − e2

nae
cos f δu +

√
1 − e2

nae
sin f

(
1 +

1
1 + ecos f

)
δv,

δM = −1 − e3cosE

er
√

1 − e2
sin f δξ +

√
1 − e2

ae
cos f δη

+

(
1 − e2)
nae

(
cos f − 2e

1 + ecos f

)
δu −

(
1 − e2)
nae

sin f

(
1 +

1
1 + ecos f

)
δv,

(3.17)

where n =
√
μ/a3 is the mean motion.

Equation (3.17) can be put in the form

⎡
⎢⎢⎢⎢⎢⎣

δa

δe

δω

δM

⎤
⎥⎥⎥⎥⎥⎦

= Δ−1

⎡
⎢⎢⎢⎢⎢⎣

δξ

δη

δu

δv

⎤
⎥⎥⎥⎥⎥⎦
, (3.18)

where the matrix Δ−1 is inverse Jacobian matrix of the point transformation between the
Cartesian elements and the orbital ones, defined by (3.2) and (3.3).

Following the properties of generalized canonical systems [7], the general solution of
the differential equations for the adjoint variables pr and pv is given by

[
pr

pv

]
=
(
Δ−1)T

⎡
⎢⎢⎢⎢⎢⎣

pa

pe

pω

pM

⎤
⎥⎥⎥⎥⎥⎦
, (3.19)
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with pr and pv expressed in the moving frame of reference. Thus, it follows from (3.17)
through (3.19) that

pr =
a

r2

{
2apa +

((
1 − e2)cosE

)
pe +

(
r

a

)
sin f

e

(
pω −

(
1 − e3cosE

)
√

1 − e2
pM

)}
er

+
{

sin f

a
pe −

(e + cos f)
ae
(
1 − e2

)pω +

√
1 − e2 cos f

ae
pM

}
es,

pv =
1

na
√

1 − e2

{{
2ae sin f pa +

((
1 − e2) sin f

)
pe −

(
1 − e2) cos f

e
pω

+

(
1 − e2)3/2

e

(
cos f − 2e

1 + e cos f

)
pM

}
er

+
{

2a
(
1 − e2)(a

r

)
pa +

(
1 − e2)(cos f + cosE)pe

+

(
1 − e2) sin f

e

(
1 +

1
1 + e cos f

)(
pω −

√
1 − e2pM

)}
es
}
.

(3.20)

(r/a), (r/a) sin f , and so forth are known functions of the elliptic motion, which can be
written explicitly in terms of eccentricity and mean anomaly through Lagrange series [8].

Equations (3.2), (3.3), and (3.20) define a canonical Mathieu transformation between
the Cartesian elements (r,v,pr,pv) and the orbital ones (a, e,ω,M, pa, pe, pω, pM). The
Hamiltonian H∗ is invariant with respect to this canonical transformation. Thus,

H0 = npM, (3.21)

Hγ∗ =
1

2n2a2
(
1 − e2

)

×
{

1
2
(1 − cos 2f)

[
2aepa +

(
1 − e2)pe]2

+ 2
(
1 − e2) sin 2f

[
− apapω −

(
1 − e2)

2e
pepω

]

+ 4
(
1 − e2)3/2

sin f

( −2e
1 + e cos f

+ cos f
)[

apapM +

(
1 − e2)

2e
pepM

]

+

(
1 − e2)2

2e2
(1 + cos 2f)p2

ω −
2
(
1 − e2)5/2

e2

( −2e
1 + e cos f

+ cos f
)

cos fpωpM

+

(
1 − e2)3

e2

( −2e
1 + e cos f

+ cos f
)2

p2
M + 4a2(1 − e2)2

(
a

r

)2

p2
a

+ 4a
(
1 − e2)2

(
a

r

)
(cosE + cos f)pape +

(
1 − e2)2

(cosE + cos f)2p2
e
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+
4a
(
1 − e2)2

e

(
a

r

)
sin f

(
1 +

1
1 + e cos f

)[
papω −

√
1 − e2papM

]

+
2
(
1 − e2)2

e
(cosE + cos f)

(
1 +

1
1 + e cos f

)
sin f

[
pepω −

√
1 − e2pepM

]

+
[(1 − e2)

e

(
1 +

1
1 + e cos f

)
sin f

[
pω −

√
1 − e2pM

]]2}
.

(3.22)

The new Hamiltonian function H∗, defined by (3.21) and (3.22), describes the optimal
low-thrust limited-power trajectories in a Newtonian central gravity field for transfers
between arbitrary elliptic coplanar orbits. It should be noted that H∗ becomes singular for
circular orbits and, thus, the theory developed in the paper cannot be applied to transfers
involving orbits with very small eccentricities.

A first-order analytical solution for the canonical system described by the Hamiltonian
function H∗ will be derived in the next sections through canonical transformation theory.

4. A first-order analytical solution

In order to get an approximate formal solution to the problem of transfers between arbitrary
elliptic coplanar orbits, a perturbation technique based on Lie series—Hori method—will
be applied. For completeness, a brief description of Hori method [2] is presented in the
appendix.

In this study, for low-thrust propulsion systems, it is assumed that the functions H0

and Hγ∗ have different order of magnitude: H0 has zero order and Hγ∗ has first order in a
small parameter associated to the magnitude of the thrust acceleration.

Consider an infinitesimal canonical transformation built through Hori method,(
a, e,ω,M, pa, pe, pω, pM

)
−→
(
a′, e′, ω′,M′, p′a, p

′
e, p

′
ω, p

′
M

)
. (4.1)

Following the algorithm described in the appendix, at order 0 one gets

F0 = n′p′M. (4.2)

Now, consider the undisturbed canonical system described by F0 :

da′

dt
= 0,

dp′a
dt

=
3
2
n′

a′
p′M,

de′

dt
= 0,

dp′e
dt

= 0,

dω′

dt
= 0,

dp′ω
dt

= 0,

dM′

dt
= n,

dp′M
dt

= 0,

(4.3)

general solution of which is given by

a′ = a′0, e′ = e′0, ω′ = ω′0, M′ =M′
0 + n

′(t − t0),

p′a = p
′
a0
+

3
2
n′
(
t − t0

)
a′

p′M, p′e = p
′
e0
, p′ω = p′ω0

, p′M = p′M0
.

(4.4)

The subscript 0 denotes the constants of integration.
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Introducing the general solution defined by (4.4) in the equation of order 1 of the
algorithm (A.6), one gets

∂S1

∂t
= Hγ∗ − F1. (4.5)

The functions Hγ∗ and F1 are written in terms of the constants of integration. According to
(A.11), the mean value of Hγ∗ must be calculated. After lengthy calculations, one gets

F1 =
a′

2μ

{
4a′2p′2a +

5
2
(
1 − e′2

)
p′

2
e +

(
5 − 4e′2

)
2e′2

p′
2
ω

}
, (4.6)

S1 =
1
2

√√√a′5

μ3

{
8e′ sin E′ a′

2
p′2a + 8

(
1 − e′2

)
sin E′ a′p′ap

′
e − 8

(
1 − e′2

)1/2

e′
cosE′ a′p′ap

′
ω

+
(
1 − e′2

)[
− 5

4
e′ sin E′ +

3
4

sin 2E′ − 1
12
e′ sin 3E′

]
p′2e

+
2
(
1 − e′2

)1/2

e′

[
5
4
e′ cosE′ +

1
4
(
e′

2 − 3
)

cos 2E′ +
1
12
e′ cos 3E′

]
p′ep

′
ω

+
1
e′2

[(
5
4
− e′2

)
e′ sin E′ − 1

2

(
3
2
− e′2

)
sin 2E′ +

1
12
e′ sin 3E′

]
p′2ω

}
.

(4.7)

Terms factored by p′M have been omitted in equations above, since only transfers (no
rendezvous) are considered [4]. But, it should be noted that mixed secular terms can arise in
the new Hamiltonian in the case of rendezvous maneuvers. For a first-order solution, F ′ = F1

and S = S1.
The new Hamiltonian F ′ governs the optimal long duration transfers between

arbitrary elliptic coplanar orbits. The general solution of the canonical system described by
this Hamiltonian will be obtained through two canonical transformations.

First, consider the Mathieu transformation:

(
a′, e′, ω′, p′a, p

′
e, p

′
ω

)
−→
(
a′′, φ, ω′′, p′′a, pφ, p

′′
ω

)
, (4.8)

defined by the following equations:

a′ = a′′, p′a = p
′′
a,

e′ = sin φ, p′e =
pφ

cosφ
,

ω′ = ω′′, p′ω = p′′ω.

(4.9)

The Hamiltonian function F ′ is invariant with respect to this transformation. Thus,

F ′′ =
a′′

2μ

{
4a′′2p′′2a +

5
2
p′′2φ +

(
5
2

csc2φ − 2
)
p′′2ω

}
. (4.10)
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The canonical system governed by the new Hamiltonian function F ′′ has three first
integrals (t and ω are ignorable variables),

p′′ω = C1, (4.11)

p2
φ + p

′′2
ω csc2φ = C2

2, (4.12)

a′′

2μ

{
4a′′2p′′2a +

5
2
p′′2φ +

(
5
2

csc2φ − 2
)
p′′2ω

}
= E. (4.13)

(Constant E should not be confused with the eccentric anomaly E.) These first integrals play
important role in determining the general solution of the canonical system governed by the
new Hamiltonian function F ′′ through Hamilton-Jacobi theory.

Let us consider the problem of determining a canonical transformation defined by a
generating function W such that C1, C2, and E become the new generalized coordinates,

(
a′′, φ, ω′′, p′′a, pφ, p

′′
ω

) W−→
(
C1, C2,E, pC1 , pC2 , pE

)
. (4.14)

Since the new Hamiltonian function F ′′ is a quadratic form in the conjugate momenta, the
separation of variables technique will be applied for solving the Hamilton-Jacobi equation
[3].

Consider the transformation equations

p′′a =
∂W

∂a′′
, pφ =

∂W

∂φ
, p′′ω =

∂W

∂ω′′
,

pC1 = −
∂W

∂C1
, pC2 = −

∂W

∂C2
, pE = −∂W

∂E
,

(4.15)

where W = W(a′′, φ, ω′′, C1, C2,E) is the generating function. The corresponding Hamilton-
Jacobi equation is then given by

a′′

2μ

{
4a′′2

(
∂W

∂a′′

)2

+
5
2

(
∂W

∂φ

)2

+
(

5
2

csc2φ − 2
)(

∂W

∂ω′′

)2}
= E. (4.16)

Following the separation of variables technique, it is assumed that the generating function W
is equal to a sum of functions, each of which depends on a single old variable, that is,

W
(
a′′, φ, ω′′, C1, C2,E

)
=W1

(
a′′, C1, C2,E

)
+W2

(
φ,C1, C2,E

)
+W3

(
ω′′, C1, C2,E

)
. (4.17)

Therefore, from (4.11) through (4.17), it follows that

∂W3

∂ω′′
= C1,

(
∂W2

∂φ

)2

+
(
∂W3

∂ω′′

)2

csc2φ = C2
2,

a′′

2μ

{
4a′′2

(
∂W1

∂a′′

)2

+
5
2

(
∂W2

∂φ

)2

+
(

5
2

csc2φ − 2
)(

∂W3

∂ω′′

)2}
= E.

(4.18)
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A complete solution of these equations is given by

W1 = −

√
5C2

2

{[
4μE

5C2a′′
− 1
]1/2

− tan−1
[

4μE

5C2a′′
− 1
]1/2}

,

W2 =
∫ √

C2
2 − C

2
1csc2φ dφ,

W3 = C1ω
′′,

(4.19)

with 5C2
2 − 4C2

1 = 5C2. We note that W2 is given as indefinite integral, since only its partial
derivatives are needed (4.15), as shown in the next paragraphs.

Now, consider the differential equations for the conjugate momenta of the canonical
system governed by the new Hamiltonian F ′′′ = E, that is,

dpC1

dt
= 0,

dpC2

dt
= 0,

dpE

dt
= −1,

(4.20)

whose solution is very simple:

pC1 = α1, pC2 = α2, pE = α3 − t, (4.21)

where αi, i = 1, 2, 3, are arbitrary constants of integration.
Introducing the generating function W , defined by (4.17) and (4.19), into the

transformation equation (4.15), and taking into account the general solution defined by (4.21)
for the conjugate momenta, one gets

p′′a =
1

2
√

2a2

[
4μEa − 5C2a2]1/2

,

pφ =
√
C2

2 − C
2
1csc2φ,

p′′ω = C1,

α1 = −ω − 2

√
2
5
C1

C
tan−1

((
4μE

5C2a
− 1
)1/2)

+ C1

∫
csc2φ√

C2
2 − C

2
1csc2φ

dφ,

α2 = −

√
5
2
C2

C
tan−1

((
4μE

5C2a
− 1
)1/2)

+ sin −1
(

C2√
C2

2 − C
2
1

cosφ
)
,

t − α3 = − 1

2
√

2Ea

[
4μEa − 5C2a2]1/2

.

(4.22)
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From equations above, one finds the solution of the canonical system governed by the
Hamiltonian F ′′ for a given set of initial conditions:

a′′(t) =
a′′0

1 +
(
4a′′0/μ

)(
(1/2)Et2 − a′′0p′′a0t

) , (4.23)

a′′sin 2k0 = a′′0sin 2(√2ψ + k0
)
, (4.24)

ψ =
1
5
(
τ − τ0

)√
1 + 4 cos2k1, (4.25)

cosφ = cos k1 cos τ, (4.26)

ω′′ = k2 + tan−1( tan τ csc k1
)
− 4

5
τ sin k1, (4.27)

p′′2a =
(
a′′0
a′′

)3

p′′2a0
+

1
8
p′′2ω0

(
5csc2k1 − 4

)( a′′0
a′′3
− 1
a′′2

)
, (4.28)

p2
φ = p′′2ω0

(
csc2k1 − csc2φ

)
, (4.29)

p′′ω = p′′ω0
, (4.30)

with the auxiliary constants k0, k1, and k2 defined as functions of the initial value of the
adjoint variables (conjugate momenta) by

csc2k0 =
8
(
a′′0p

′′
a0

)2 + p′′2ω0

(
5csc2k1 − 4

)
p′′2ω0

(
5csc2k1 − 4

) ,

csc2k1 =
p2
φ0

+ p′′2ω0
csc2φ0

p′′2ω0

,

k2 = ω′′0 +
4
5
τ0 sin k1 − tan−1( tan τ0 csc k1

)
.

(4.31)

The constants C, C1, C2, and E in (4.22) can also be written as functions of the initial value of
the adjoint variables as follows:

C2 =
1
5
p′′2ω0

(
5csc2k1 − 4

)
,

C1 = p′′ω0
,

C2
2 = p2

φ0
+ p′′2ω0

csc2φ0,

4μE = a′′0
(
8
(
a′′0p

′′
a0

)2 + p′′2ω0

(
5csc2k1 − 4

))
.

(4.32)

The initial conditions for the state variables (generalized coordinates) are given by a′′(0) = a′′0,
e′′(0) = sin φ0, and ω′′(0) = ω′′0, and τ0 is obtained from cosφ0 = cos k1 cos τ0.

Equation (4.23) through (4.30) represents the solution of the canonical system
concerning the problem of optimal long duration low-thrust limited-power transfers between
arbitrary elliptic coplanar orbits in a Newtonian central field.
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For maneuvers with arbitrary duration, the periodic terms must be included [9].
Following Hori method and applying the initial conditions, one gets a first-order analytical
solution:

a(t) = a′(t) +

√√√a′5

μ3

[
8e′ sin E′a′

2
p′a + 4

(
1 − e′2

)
sin E′a′p′e − 4

(
1 − e′2

)1/2

e′
cosE′a′p′ω

]E′

E′0

e(t) = e′(t) +

√√√a′5

μ3

[
4
(
1 − e′2

)
sin E′a′p′a

+
(
1 − e′2

)[
− 5

4
e′ sin E′ +

3
4

sin 2E′ − 1
12
e′ sin 3E′

]
p′e

+

(
1 − e′2

)1/2

e′

[
5
4
e′ cosE′ +

1
4
(
e′

2 − 3
)

cos 2E′ +
1

12
e′ cos 3E′

]
p′ω

]E′

E′0

,

ω(t) = ω′(t) +

√√√a′5

μ3

[
− 4

(
1 − e′2

)1/2

e′
cosE′a′p′a

+

(
1 − e′2

)1/2

e′

[
5
4
e′ cosE′ +

1
4
(
e′

2 − 3
)

cos 2E′ +
1
12
e′ cos 3E′

]
p′e

+
1
e′2

[(
5
4
− e′2

)
e′ sin E′ − 1

2

(
3
2
− e′2

)
sin 2E′ +

1
12
e′ sin 3E′

]
p′ω

]E′
E′0

,

(4.33)

with a′, e′, . . . , p′ω given by (4.9). As mentioned before, these equations cannot be applied to
transfers involving very small eccentricities.

A complete first-order analytical solution for the consumption variable is obtained
through a different procedure as described in [9]. This procedure is based on the linearized
solution for transfers between close orbits and it involves the generating function S. The
expression of J can be put in a compact form as follows:

J = E
(
t − t0

)
+ ΔS, (4.34)

with ΔS = S(E′) − S(E′0).
Equations (4.33) are in agreement with the ones obtained in [9] through Bogoliubov-

Mitropolsky method, a noncanonical perturbation technique. But it should be noted that in
[9] terms in cos2E′ appear instead of terms in cos 2E′; the other terms are equivalent. The
eccentric anomaly E′ is computed from Kepler’s equation with the mean anomaly M′ given
by

M′(t) =M′
0 +
∫ t
t0

[√
μ

a′3
−
(

5 + 2e′2

2

)√√√a′5

μ3

√
1 − e′2

e′2
p′ω

]
dt, (4.35)

where M′
0 = M′(t0). The differential equation for the mean anomaly M′ is derived from the

undisturbed Hamiltonian F0 and an additional term ΔF ′ factored by p′M,

F ′ =
(
n′ −

(
5 + 2e′2

2

)√√√a′5

μ3

√
1 − e′2

e′2
p′ω

)
p′M + · · · , (4.36)

where dots denote the terms defined by (4.6).
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Table 1: Set of initial conditions and transfer duration.

Set 1 Set 2
a0 1.0 1.0
e0 0.20 0.20
ω0 0.0 0.0
pa0 2.9326 × 10−4 1.4663 × 10−4

pe0 2.9625 × 10−5 1.4812 × 10−5

pω0 0.0 0.0
tf − t0 500 1000

For transfers between coaxial orbits, with no change in the pericenter argument, the
analytical solution described in the preceding paragraphs simplifies. Since p′ω0

= 0, some
equations must be rewritten:

a′′sin 2k0 = a′′0sin 2

(√
2
5
(
φ − φ0

)
+ k0

)
, (4.37)

p′′2a =
(
a′′0
a′′

)3

p′′2a0
+

5
8
p2
φ

(
a′′0
a′′3
− 1
a′′2

)
, (4.38)

pφ = pφ0 = C, (4.39)

with csc2k0 = (8(a′′0p
′′
a0
)2 + 5p2

φ
)/5p2

φ
and 4μE = a′′0(8(a

′′
0p
′′
a0
)2 + 5p2

φ
).

Figures 3, 4, and 5 show a comparison between the complete first-order analytical
solution, the average solution, and a numerical solution. The numerical solution has been
obtained through integration of the set of canonical equations which describes the optimal
trajectories (system of differential equations governed by new Hamiltonian function H∗,
defined by (3.21)–(3.22)). Two sets of initial conditions and transfer duration defined in
Table 1 (in canonical units) are used in the comparison. In Table 2, final values of state
variables are shown. A Runge-Kutta-Fehlberg method of orders 4 and 5, with step-size
control, relative error tolerance of 10−11, and absolute error tolerance of 10−12, as described
in [10, 11], has been used in the numerical integrations. Note that there exists an excellent
agreement between the complete analytical solution and the numerical one. Figures 3 and
4 show that the difference between these solutions is lesser than 10−4 for semimajor axis
and eccentricity; but the analytical solution for pericenter argument loses accuracy for large
values of time. Figure 5 shows the results for the consumption variable. On the other hand,
by comparing the analytical or numerical solution with the average solution, we see that the
amplitudes of the short periodic terms are small, but they can be significant for transfers with
moderate duration. Note that the difference between the numerical and average solutions
decrease as the transfer duration increases. The good agreement between the numerical and
the complete analytical solution suggest that the latter can be used in the solution of the two-
point boundary value problem of going from an initial orbit to a final orbit, as described in
Section 6.
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Figure 3: Comparison between numerical, analytical, and average solutions for a transfer between coaxial
orbits—set 1 of initial conditions and tf − t0 = 500.
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Figure 4: Comparison between numerical, analytical, and average solutions for a transfer between coaxial
orbits—set 2 of initial conditions and tf − t0 = 1000.
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Figure 5: Comparison between numerical, analytical, and average solutions for a transfer between coaxial
orbits—consumption variable.



S. da Silva Fernandes and F. das Chagas Carvalho 19

Table 2: Final state variables.

Final state variables
Analytical theory Numerical solution

Secular solution Complete solution
tf − t0 500 1000 500 1000 500 1000
af 2.0000 2.0000 1.9967 1.9973 1.9968 1.9973
ef 0.2500 0.2500 0.2475 0.2480 0.2476 0.2480
ωf 0.0000 0.0000 −0.0094 −0.0010 −0.0237 −0.0081
Jf 8.5417 × 10−5 4.2913 × 10−5 8.6327 × 10−5 4.3182 × 10−5 8.6332 × 10−5 4.3182 × 10−5

5. Analysis of long duration transfers

In this section, a complete analysis of long duration transfers described by the Hamiltonian
F ′ is presented. The investigation of conjugate points and the solution of the two-point
boundary value problem are considered.

To perform this analysis, a new consumption variable is introduced [4], u =
√

2E t, and
(4.23) and (4.24) can be put in the form

a′′

a′′0
=
[

1 − 2
(
u

v0

)
cosk0 +

(
u

v0

)2]−1

, (5.1)

(
u

v0

)
=

sin(
√

2ψ)

sin
(√

2ψ + k0

) , (5.2)

where v0 =
√
μ/a′′0. By eliminating k0 from these equations, one finds

(
u

v0

)
=

√√√√
1 − 2

√
a′′0
a′′

cos (
√

2ψ) +
(
a′′0
a′′

)
. (5.3)

On the other hand, J = Et, thus

J =
v2

0

2t

[
1 − 2

√
a′′0
a′′

cos (
√

2ψ) +
(
a′′0
a′′

)]
. (5.4)

Note that t0 = 0 in equations above.
Now, consider (4.24)–(4.27) which define a two-parameter family of extremals in the

phase space (a′′, φ, ω′′) for a given initial phase point (a′′0, φ0, ω
′′
0) corresponding to an initial

orbit. By eliminating the auxiliary variables τ and ψ, α = a′′/a′′0 and ω′′ can be written as
explicit functions of φ, that is, α = α(φ, φ0, k0, k1) and ω′′ = ω′′(φ, φ0, ω0, k1). The conjugate
points to the phase point (a′′0, φ0, ω

′′
0) are determined through the roots of the equation [12]

∂α

∂k0

∂ω′′

∂k1
− ∂α

∂k1

∂ω′′

∂k0
= 0. (5.5)

Since ω′′ does not depend on k0, ∂ω′′/∂k0 = 0. On the other hand, from (4.24) and (5.2), one
finds

∂α

∂k0
= − 2α

sin k0

(
u

v0

)
/= 0 (5.6)
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Thus, the problem of determining the conjugate points reduces to the analysis of the roots of
the following equation:

∂ω′′

∂k1
= 0. (5.7)

From (4.26) and (4.27), one finds the explicit form of ω′′ = ω′′(φ, φ0, ω0, k1), that is,

ω′′ = ω′′0 −
4
5

sin k1

{
cos−1

(
cosφ
cos k1

)
− cos−1

(
cosφ0

cos k1

)}
+ cos−1

(
cotφ
cot k1

)
− cos−1

(
cotφ0

cot k1

)
.

(5.8)

The partial derivative ∂ω′′/∂k1 is given by

∂ω′′

∂k1
= −4

5
cos k1

(
τ − τ0

)
− 4

5
tan2k1

[
cosφ0

sin τ0
−

cosφ
sin τ

]

+ sec2k1

[
1√

tan2φ0 − tan2k1

− 1√
tan2φ − tan2k1

]
.

(5.9)

The auxiliary variable τ is reintroduced to simplify the expression.
Therefore, from (5.7) and (5.9), after some simplifications, it follows that the conjugate

points are given by the roots of following equation [4]:(
1 − 4

5
sin 2k1

)
sin
(
τ − τ0

)
− 4

5
cos2k1

(
τ − τ0

)
sin τ sin τ0 = 0. (5.10)

As discussed in [13, 14], the conjugate points determined through (5.10) occur for transfers
during which the direction of motion in the orbit reverses; that is, for transfers between direct
orbits (no direction reversals) the extremals computed for the canonical system governed by
the Hamiltonian F ′ are globally minimizing.

Some numerical results are presented through Figures 6–9. Figures 6 and 7 show
the field of extremals and isocost curves for long duration transfers between coaxial orbits,
considering two cases: in the first one, the space vehicle departs from a circular orbit and, in
the second one, it departs from an elliptic orbit with eccentricity e0 = 0.4. In both cases, the
semimajor axis is a0 = 1, such that the results are presented in canonical units. The extremals
are plotted for different values of the constant k0 and the isocost curves for different values
of the new consumption variable u/v0. Only transfers between direct orbits are considered.

Figures 8 and 9 show the field of extremals and isocost curves for long duration
transfers between noncoaxial orbits. Note that in the general case the family of extremals
is described by two constants k0 and k1. In the plots of Figure 8, k0 = 18◦ has been chosen in
order to illustrate the general aspect of the field of extremals and compare the results with the
ones obtained in [4, 5, 13, 14]. The projection of extremals on the (e,ω) -plane shows clearly
the nonexistence of conjugate points for the extremals computed from (4.6)–(4.11) in the case
of transfers between direct orbits (no direction reversals).

Figure 9 shows a sample of isocost curves for different values of the new consumption
variable u/v0 and a fixed value of k1 = 18◦. Note that these curves lie on an isocost
surface with complex geometry. For simplicity, the symmetric interval [−180◦, 180◦] for ω
is considered in this representation.

To complete the analysis, a brief description of an iterative algorithm for solving the
two-point boundary value problem of going from an initial orbit O0 : (a′′0, e

′′
0, ω

′′
0) to a final

orbit Of : (a′′
f
, e′′

f
, ω′′

f
) is presented. The steps of this algorithm can be described as follows.
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Figure 7: Field of extremals and isocost curves for transfers between coaxial orbits for e0 = 0.4.

(1) Guess a starting value of k1,

(2) Determine φ0, φf , τ0, and τf through (4.9) and (4.26).

(3) Compute ω′′ through (4.27).

(4) If ω′′ /=ω′′f , adjust the value of k1 and repeat steps (2) and (3) until |ω′′ − ω′′f | < δ,
where δ is a prescribed small quantity.

(5) Compute ψf and (uf/v0) through (4.25) and (5.3).

(6) Compute k0 using equation tan k0 = sin(
√

2ψf)/(
√
αf − cos (

√
2ψf)), where αf =

a′′
f
/a′′0.
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Figure 8: Field of extremals for transfers between noncoaxial orbits for e0 =
√

3/2 with k0 = 18◦.

(7) Compute successively p′′a0
, p′′ω0

, and p′′
φ0

through the following equations:

p′′a0
=

v2
0

2a′′0tf

(
uf

v0

)
cos k0,

p′′ω0
=

2
√

2a′′0p
′′
a0

cot k0
√

5csc2k1 − 4
,

p2
φ0

= p′′2ω0

(
csc2k1 − csc2φ0

)
.

(5.11)
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Figure 9: Isocost curves for a0 = 1.0, e0 = 0.5, and ω0 = 0◦, with k1 = 18◦.

The adjust of the value of k1 can be obtained through the well-known Newton-Raphson
method, that is,

k1n+1 = k1n −
ω′′
(
k1n
)
−ω′′f(

∂ω′′/∂k1
)
k1=k1n

, (5.12)

with the partial derivative (∂ω′′/∂k1)k1=k1n
computed from (5.9).

In the case of coaxial orbits, k1 = 0 and the solution of the two-point boundary value
problem involves only the solution of (4.37), which is given through step (6) with ψ replaced
by (1/

√
5)(φ−φ0). The initial value of the adjoint variables is given as follows: p′′a0

is computed
through step (7) and pφ0 is given by

p2
φ0

=
8 tan2k0

(
a′′0p

′′
a0

)2

5
. (5.13)

With the solution of the two-point boundary value problem, the optimal thrust
acceleration required to perform the maneuver can be determined through (2.5) and (3.22),
that is,

γ ∗ =
1

na
√

1 − e2

{{
2ae sin f pa+

((
1 − e2) sin f

)
pe−
(
1 − e2) cos f

e
pω

}
er

+
{

2a
(
1 − e2)(a

r

)
pa+
(
1−e2)(cos f+cosE)pe+

(
1 − e2) sin f

e

(
1+

1
1+e cos f

)
pω

}
es
}

.

(5.14)

The state and adjoint variables are computed from (4.23) through (4.30). For simplicity, prime
denoting the average variables is omitted.
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Figure 10: Complete and average solutions of the two-point boundary value problem for tf − t0 = 500 and
tf − t0 = 1000.

6. Solution of the two-point boundary value problem

In this section, an iterative algorithm based on the approximate analytical solution defined by
(4.33) is briefly described for solving the two-point boundary value problem of going from
an initial orbit O0 : (a0, e0, ω0) to a final orbit Of : (af , ef , ωf) at the prescribed final time tf .

For a given time, (4.33) can be represented as follows:

yi(t) = gi
(
t, p′a, p

′
e, p

′
ω

)
, i = 1, 2, 3, (6.1)

where y1(t) = a(t), y2(t) = e(t), and y3(t) = ω(t). Note that p′a, p′e, and p′ω appear explicitly
in the short periodic terms, but they also appear implicitly through a′, e′, ω′, and E′. Thus,
functions gi, i = 1, 2, 3, are nonlinear in these variables.

So, the two-point boundary value problem can be stated as follows: find p′a, p′e, and
p′ω such that y1(tf) = af , y2(tf) = ef , and y3(tf) = ωf . This problem can be solved through a
Newton-Raphson algorithm [10, 11] which uses the algorithm described in the preceding
section (for long duration transfers) to generate a starting approximation of the adjoint
variables.

Figure 10 shows a comparison between the solution of the two-point boundary value
problem based on the average and complete solutions for a transfer between coaxial orbits
with the departure orbit O0 defined by the set of initial conditions a0 = 1.0, e0 = 0.20, ω0 = 0◦

and the arrival orbit defined by the set of terminal conditions af = 2.0, ef = 0.25, ωf = 0◦,
and two transfer durations tf − t0 = 500 and tf − t0 = 1000. All variables are represented in
canonical units.

From results above, we note that average solution of the TPBVP does not represents
a mean solution of the complete solution of the same TPBVP; that is, these solutions have
different values for the initial adjoint variables, and, the solution of the TPBVP based on the
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average solution becomes closer to the solution based on the complete analytical one, as the
transfer duration increases.

7. Transfers between close elliptical coplanar orbits

For transfers between close elliptical coplanar orbits, an approximate solution of the system
of differential equations governed by the Hamiltonian H∗, defined through (3.21) and (3.22),
can be straightforwardly obtained by linearizing the functions F1 and S1 about a reference
elliptic orbit O defined by a nominal set of orbital elements a, e, and ω. This solution is very
similar to the complete solution given by (4.33), with a, e, and ω replacing a′, e′, ω′, and can
be put in a suitable matrix form

Δx = Ap0, (7.1)

where Δx = [Δα Δe Δω]T denotes the imposed changes on orbital elements (state variable),
α = a/a, pα = apa, p0 is the 3 × 1 matrix of initial values of the adjoint variable and A is 3 × 3
symmetric matrix. The adjoint variables are constant, and the matrix A is given by

A =

⎡
⎢⎢⎣
aαα aαe aαω

aeα aee aeω

aωα aωe aωω

⎤
⎥⎥⎦ , (7.2)

where

aαα = 4

√√√a 5

μ3

(
E + e sin E

)∣∣∣∣
Ef

E0

,

aαe = aeα = 4

√√√a 5

μ3

(
1 − e2) sin E

∣∣∣∣
Ef

E0

,

aαω = aωα = −4

√√√a 5

μ3

(
1 − e2)1/2

e
cosE

∣∣∣∣
Ef

E0

,

aee =

√√√a 5

μ3

(
1 − e2)[5

2
M − 5

4
e sin E +

3
4

sin 2E − 1
12
e sin 3E

]∣∣∣∣
Ef

E0

,

aeω = aωe =

√√√a 5

μ3

(
1 − e2)1/2

e

[
5
4
e cosE +

1
4
(
e2 − 3

)
cos 2E +

1
12
e cos 3E

]∣∣∣∣
Ef

E0

,

aωω =

√√√a 5

μ3

1

e2

[(
5
2
− 2e2

)
M + e

(
5
4
− e2
)

sin E − 1
2

(
3
2
− e2
)

sin 2E +
1

12
e sin 3E

]∣∣∣∣
Ef

E0

,

(7.3)

where E is calculated by solving Kepler’s equation for M = n(t − τ), with n =
√
μ/a3. Here,

τ is the time of pericenter passage. The overbar denotes the reference orbit.
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Table 3: Set of terminal orbits.

Initial orbit 1 Final orbit 1 Initial orbit 2 Final orbit 2 Initial orbit 3 Final orbit 3
a 1.000 1.050 1.000 1.050 1.000 1.050
e 0.100 0.105 0.200 0.210 0.500 0.525
ω 0.0 0.0 0.0 0.0 0.0 0.0

Equations (7.1)–(7.3) represent an approximate first-order solution for optimal low-
thrust limited-power transfers between close elliptic coplanar orbits. The initial value of the
adjoint variables must be determined to satisfy the two-point boundary value problem of
going from an initial orbit O0 : (a0, e0, ω0) to a final orbit Of : (af , ef , ωf) at the prescribed
final time tf . In this case, the vector p0 can be determined by simple techniques since (7.1)
defines a linear system of algebraic equations [15–17]; no iterative method such as Newton-
Raphson is needed.

Figure 11 shows a comparison between the complete (nonlinear) first-order solution
defined by (4.33) and the approximate (linearized) first-order solution defined by (7.1)–(7.3)
for three set of terminal orbits described in Table 3, with tf − t0 = 5 and 100 canonical
units. Note that linearized solution provides a good approximation for the nonlinear first-
order solution. This approximation is better for transfers with larger duration. For transfers
with moderate duration corresponding to some revolutions, the amplitude of periodic terms
decreases as the eccentricities of terminal orbits increase.

8. Conclusion

A first-order analytical solution for the problem of optimal low-thrust limited-power
transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field has
been obtained through Hamilton-Jacobi theory and a perturbation method based on Lie
series. A complete analysis of long duration transfers, which includes the investigation of
conjugate points and the solution of the two-point boundary value problem, is presented.
Results show the good agreement between the complete analytical solution and the one
obtained through numerical integration of the set of canonical equations which describes
the optimal trajectories for a transfer between coaxial orbits. On the other hand, the average
solution provides a good approximation for large values of the time when compared to the
complete analytical solution. For transfers between close coplanar elliptic orbits, a linearized
solution is straightforwardly obtained by linearizing the new Hamiltonian function F1 and
the generating function S1 about a reference elliptic orbitO. Numerical results show the good
agreement between the linearized solution and the complete (nonlinear) analytical solution
for such transfers. Finally, we note that a first-order solution for the Cartesian elements can
also be easily obtained from Lie theorem [2], since the theory presented in the paper is based
on canonical transformations.

Appendix

Hori method is based on Lie theorem [2].
Let H(x, y, ε) be a Hamiltonian written as a power series of a small parameter ε:

H(x, y, ε) = H0(x, y) +
∑
k=1

εkHk(x, y), (A.1)
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Figure 11: Linearized and nonlinear solutions for transfers between close orbits.
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where the undisturbed Hamiltonian H0(x, y) describes an integrable system. Here, x and y
are n-vectors of generalized coordinates and conjugate momenta, respectively.

Consider an infinitesimal canonical transformation (x, y)→(x′, y′) defined by a
generating function S(x′, y′, ε), also developed as a power series of the small parameter ε,

εS
(
x′, y′, ε

)
=
∑
k=1

εkSk
(
x′, y′

)
. (A.2)

This transformation is such that the new dynamical system has some advantages for the
solution. Here, prime denotes the new variables, and x′ and y′ are also n-vectors. The new
Hamiltonian F(x′, y′, ε), resulting from this canonical transformation, is also developed as a
power series of the small parameter ε,

F
(
x′, y′

)
= F0

(
x′, y′

)
+
∑
k=1

εkFk
(
x′, y′

)
. (A.3)

The transformation equations are given explicitly by

xi = x′i +
∞∑
n=1

εn

n!
Dn−1
S

∂S

∂y′i
,

yi = y′i +
∞∑
n=1

εn

n!
Dn−1
S

∂S

∂x′i
, i = 1, . . . , n,

(A.4)

whereD0
Sf = f ,D1

Sf = {f, S},Dn
Sf = Dn−1

S (DSf), n ≥ 2, f(x′, y′) denotes an arbitrary function
and braces stand for Poisson brackets.

According to the algorithm of Hori method, the new Hamiltonian F(x′, y′, ε) and the
generating function S(x′, y′, ε) are obtained, at each order of the small parameter ε, from the
equations:

(i) order 0:

H0
(
x′, y′

)
= F0

(
x′, y′

)
, (A.5)

(ii) order 1:

{
H0, S1

}
+H1 = F1, (A.6)

(iii) order 2:

{
H0, S2

}
+

1
2
{
H1 + F1, S1

}
+H2 = F2, . . . . (A.7)

All functions in above equations are written in terms of the new set of canonical variables
(x′, y′).

The mth order equation of the algorithm can be put in the form

{
H0, Sm

}
+ Θm = Fm, (A.8)
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where Θm is a function obtained from the preceding orders, involving H0, Hm, Sk, Fk, and
Hk, k = 1, . . . , m − 1.

The determination of the functions Fm and Sm is based on the general solution of the
undisturbed system

dx′i
dt

=
∂F0

∂y′i
,

dy′i
dt

= −∂F0

∂x′i
, i = 1, . . . , n, (A.9)

and it is performed through an averaging principle. Following the integration theory
proposed in [18], (A.8) can be put in the form

∂Sm
∂t

= Θm − Fm, (A.10)

with Θm written in terms of the arbitrary constants of integration, c1, . . . , c2n, of the general
solution of the canonical system (A.9). Sm and Fm are unknown functions.

Following Hori [2], suppose that the canonical transformation generated by the
function S is such that the time t is eliminated from the new Hamiltonian F. This is
accomplished taking Fm as the mean value of the function Θm. Therefore, functions Sm and
Fm are given through the equations

Fm =
〈
Θm

〉
,

Sm =
∫ [

Θm −
〈
Θm

〉]
dt,

(A.11)

where 〈·〉 stands for the mean value of the function. It should be noted that the averaging
process and the integration in (A.11) are performed considering the explicit dependence on
time of the functions.
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