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The Rayleigh-Stokes problem for a generalized Maxwell fluid in a porous half-space with a heated
flat plate is investigated. For the description of such a viscoelastic fluid, a fractional calculus
approach in the constitutive relationship model is used. By using the Fourier sine transform and the
fractional Laplace transform, exact solutions of the velocity and the temperature are obtained. Some
classical results can be regarded as particular cases of our results, such as the classical solutions of
the first problem of Stokes for Newtonian viscous fluids, Maxwell fluids, and Maxwell fluids in a
porous half-space.
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1. Introduction

Many materials such as clay coatings, drilling mud, suspensions, certain oils and greases,
polymer melts, elastomers, and many emulsions have been treated as non-Newtonian fluids.
It is difficult to suggest a single model which can exhibit all properties of non-Newtonian
fluids as is done for Newtonian fluids. They cannot be described in a simple model as
for the Newtonian fluids, and there has been much confusion over the classification of the
non-Newtonian fluids. For this reason, many models of constitutive equations have been
proposed. Recently, fractional calculus has encountered much success in the description of
constitutive relations of viscoelastic fluids. The starting point of the fractional derivative model
of viscoelastic fluids is usually a classical differential equation which is modified by replacing
the time derivative of an integer order with the so-called Riemann-Liouville fractional calculus
operator. This generalization allows one to define precisely noninteger order integrals or
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derivatives. Bagley and Torvik [1], Friedrich [2], Huang et al. [3], He et al. [4], Xu and Tan
[5–7], Tan [8–12], and Shen et al. [13, 14] have sequentially introduced the fractional calculus
approach into various rheology problems. Fractional derivatives have been found to be quite
flexible in describing viscoelastic behaviors.

The first problem of Stokes for the flat plate, like the Rayleigh-Stokes problem for
an edge, has received much attention because of its practical importance [15–18]. This
unsteady flow problem examines the diffusion of vorticity in a half-space filled with a viscous
incompressible fluid that is set to motion when an infinite flat plate suddenly assumes a
constant velocity parallel to itself from the rest. By using similarity transformation of variables,
the exact solution corresponding to a Newtonian fluid was obtained in an elegant form
by Stokes. But for a Maxwell fluid, it is difficult to obtain such a strict similarity solution.
Further, the order of the equation of motion for such a fluid is higher than that of the Navier-
Stokes equation and thus, in general, one needs conditions in addition to the usual adherence
boundary condition. Friedrich first investigated this problem and gave a few exact solutions
[19].

On the other hand, the problems of the fluid through porous media play an important
role in various practical applications. But very little efforts have so far been made to discuss
these problems. Recently, based on the local volume averaging technique and the balance of
forces acting on a volume element of viscoelastic fluids in porous media, Tan and Masuoka
[20–23] developed a modified Darcy-Brinkman model for viscoelastic fluid flows in porous
media. Based on their works, in this paper, we extend Stokes’ first problem to that of a heated
generalized Maxwell fluid with fractional derivative in a porous half-space. Exact solutions
of the velocity and the temperature are obtained by using the Fourier sine transform and the
fractional Laplace transform. Some previous classical results can be recovered from our results,
such as the classical solutions of the first problem of Stokes for Newtonian viscous fluids and
those for Maxwell fluids.

2. Basic equations

The well-known Darcy law states that, in the flow of a Newtonian fluid through a porous
medium, the pressure gradient ∇p caused by the friction drag is directly proportional to the
velocity, namely,

∇p = − μ

K
VD, (2.1)

where VD is the Darcian velocity, μ is the dynamic viscosity of the fluid, and K is the
permeability of the porous medium, respectively. The Darcy law, however, does not consider
the boundary effect on the flow, which unfortunately cannot be ignored in many applications.
In 1947, Brinkman proposed an equation to describe the locally averaged flow in a porous
medium [24]. In the Brinkman equation, the pressure gradient, the divergence of the viscous
stress tensor, and the friction force exerted by the porous medium satisfy

−∇p + μe∇2VD − μ

K
VD = 0, (2.2)

where μe is the effective dynamic viscosity of the medium. Although the Brinkman equation
takes the boundary effect on the flow into account, it is justified for and can thus be applied to
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only steady-state flows of a Newtonian fluid in porous media. For viscoelastic fluid flows in
porous media, on the other hand, only a few mathematical macroscopic filtration models have
been proposed. In particular, by analogy with the constitutive equation of a Maxwell fluid
[25, 26], the following phenomenological model has been introduced:

(
1 + tαm

∂α

∂tα

)
∇p = − μ

K
VD, (2.3)

where tm is the relaxation time of the generalized Maxwell fluid, α (0 < α ≤ 1) is fractional
coefficient, and ∂ατ/∂tα = Dα

t is Riemann-Liouville fractional derivative, which is defined as
in [27]

aD
α
t

[
f(t)

]
=

1
Γ(k − α)

dk

dtk

∫ t

a

(t − τ)k−α−1f(τ)dτ (k − 1 ≤ α < k), (2.4)

where Γ(·) is the gamma function.
Let us now follow the same procedure as used in [22] to investigate the flow of a

generalized Maxwell fluid in a porous half-space. With the positive y-axis of the rectangular
coordinate system pointing up, a generalized Maxwell fluid flows through the porous half-
space (y > 0) above and in contact with a flat plate occupying the xz-plane. At time t = 0,
both the fluid and the plate are at rest. At time t = 0+, the flat plate suddenly starts to slide in
its plane with a constant speed U0. Under these conditions, no flow occurs in the y- and the
z-directions, and the flow velocity at a given point in the porous half-space depends only on
its y-coordinate and time t, that is, the intrinsic velocity field takes the form

V = u(y, t)i, (2.5)

where i represents the unit vector in the x-direction. The intrinsic velocity V, averaged over
the pore space, is related to the Darcian velocity by VD = φV , where φ is the porosity of the
porous medium. In this work, employing a local volume averaging technique [20, 28–30], we
will consider a modified, more rigorous Darcy law for Stokes’ first problem with a generalized
Maxwell fluid in the porous half-space. In fact, in terms of the pressure gradient, the local
volume-averaged balance of linear momentum can be given by

ρ
∂V

∂t
= −∇p +∇τ + r, (2.6)

where ρ is the fluid density, τ is the viscous stress tensor, and r is the Darcy resistance, namely,
the viscous damping force caused by themicropore structure of a porousmedium, respectively.
Under the assumption that

τ + tαm

[
∂ατ

∂tα
+ (V · ∇)τ − (∇V )Tτ − τ(∇V )

]
= μ

[∇V + (∇V )T
]
, (2.7)

as in [23, 31], next we discuss the viscoelastic properties of the fluid using the upper convected
derivative generalized Maxwell fluid.
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It should be pointed out that the classical viscous Newtonian fluid is just a special case
of this model at tm = 0. Inserting (2.5) into (2.7) and using the initial condition τ(y, 0) = 0, we
get τxz = τyy = τyz = τzz = 0 and

τxx + tαm
∂ατxx
∂tα

= 2τxy
∂u

∂y
, (2.8)

τxy + tαm
∂ατxy

∂tα
= μ

∂u

∂y
. (2.9)

Note that the pressure gradient ∇p given in (2.3) can be taken as a measure of the same
resistance to flow in the bulk of the porous medium [26]. Since the Darcy resistance r in (2.6)
is also in effect a measure of the flow resistance offered by the solid matrix, from (2.3) we get

(
1 + tαm

∂α

∂tα

)
r = − μ

K
VD. (2.10)

Using (2.9) and (2.10) to eliminate τ and r in (2.6) and recalling that VD = φV , we have
the momentum equation of Stokes’ first problem for a generalized Maxwell fluid in the porous
half-space

ρ

(
1 + tαm

∂α

∂tα

)
∂u

∂t
= −

(
1 + tαm

∂α

∂tα

)
∂p

∂x
+ μ

∂2u

∂y2
− μφ

K
u. (2.11)

Ignoring the pressure gradient in the x-direction finally leads to the equation of motion
as follows:

ρ

(
1 + tαm

∂α

∂tα

)
∂u

∂t
= μ

∂2u

∂y2
− μφ

K
u. (2.12)

In addition, the initial and the boundary conditions are

u(y, 0) = 0,

u(0, t) = U0,
(2.13)

respectively, and the natural condition is

u(y, t) −→ 0,
∂u(y, t)

∂y
−→ 0 as y −→ ∞. (2.14)

We will assume that there is a local thermal equilibrium. Then, Ts = Tf = T , where Ts
and Tf are the temperatures of the solid and the fluid phases in porous media, respectively.
The thermal energy equation is then [32, 33]

(ρc)fs
∂T

∂t
= λe

∂2T

∂y2
+QT, (2.15)

where (ρc)fs is the specific heat capacity of the system formed by both the fluid and the solid
phases. More precisely, (ρc)fs = (1 − φ)ρscs + φcfρ, where ρs is the density of the solid phase,
cs is the specific heat capacity of the solid phase, and cf is the specific heat capacity of the fluid
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at a constant pressure, respectively. λe is the equivalent thermal conductivity of the fluid in the
porous half-space, and QT is the contribution due to viscous dissipation [34, 35]

QT =
μφ2

K
u2 + μ

(
∂u

∂y

)2

. (2.16)

Equation (2.16) is a unified form compatible with an expression derived from theNavier-
Stokes equation for a fluid clear of solid [36, 37].

The corresponding initial and boundary conditions are

T(y, 0) = T1,

T(0, t) = T0(t).
(2.17)

Moreover, the natural conditions are

T(y, t) −→ T1,
∂T(y, t)

∂y
−→ 0 as y −→ ∞. (2.18)

3. Exact solutions

Employing the nondimensional quantities

u∗ =
u

U0
, y∗ =

yU0

v
, t∗ =

tU2
0

v
, T ∗ =

T − T1
T0(0) − T1

, (3.1)

the dimensionless motion and energy equations can be written as (for brevity the dimension-
less marks “∗” are omitted here)

(
1 + γ

∂α

∂tα

)
∂u

∂t
=

∂2u

∂y2
− β2u, (3.2)

u(y, 0) = 0, (3.3)

u(0, t) = 1, (3.4)

u(y, t) −→ 0,
∂u(y, t)

∂y
−→ 0 asy −→ ∞, (3.5)

∂T

∂t
= ξ

∂2T

∂y2
+Qt(y, t), (3.6)

T(y, 0) = 0, (3.7)

T(0, t) = f(t), (3.8)

T(y, t) −→ 0,
∂T(y, t)

∂y
−→ 0 as y −→ ∞. (3.9)

where γ = (tmU2
0/v)

α, β = v/(U0
√
K/φ), ξ = De/v, f(t) = (T0(t) − T1)/(T0(0) − T1), De =

λe/(ρc)fs. v = μ/ρ is the kinematic viscosity. The dimensionless viscous dissipation, namely,
Qt(y, t), has the following form:

Qt(y, t) =
φ2μ2

(ρc)fsK
(
T0(0) − T1

)
ρ
u2 +

U2
0ρ

(ρc)fs
(
T0(0) − T1

)
(
∂u

∂y

)2

. (3.10)
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3.1. Solution of the velocity field

Multiplying both sides of (3.2) and (3.3) by integrating with respect to y from 0 to∞, and then
using the boundary conditions of (3.4) and (3.5), in fact we have

∂U(ζ, t)
∂t

+ γ
∂αU(ζ, t)

∂tα
= −ζ2U(ζ, t) + ζ − β2U(ζ, t), (3.11)

U(ζ, 0) = 0, (3.12)

where U(ζ, t) denotes the Fourier sine transform of U(y, t) with respect to y. In order to
obtain an exact solution of (3.11) subject to the initial condition of (3.12), the fractional Laplace
transform is used. Let

U(ζ, s) = L
{
U(ζ, t)

}
=
∫∞

0
e−stU(ζ, t)dt (3.13)

be the image function of U(ζ, t), where s is the transform parameter. Using Laplace transform
principle of sequential fractional derivatives [27], we get

U(ζ, s) =
ζ

s
[
γsα+1 + s +

(
ζ2 + β2

)] . (3.14)

In order to avoid the burdensome calculations of residues and contour integrals, we
apply the discrete inverse Laplace transform method here. First, we rewrite (3.14) in a series
form

U(ζ, s) =
ζ

ζ2 + β2

∞∑
k=0

(−1)k
(
ζ2 + β2

γ

)k+1
s−k−2(

sα + γ−1
)k+1 . (3.15)

Then, applying the inversion formulae term by term for the Laplace transform, (3.15)
becomes

U(ζ, t) =
ζ

ζ2 + β2

∞∑
k=0

(−1)k
k!

(
ζ2 + β2

γ

)k+1

t(k+1)(α+1)E
(k)
α,α+k+2

(−tα
γ

)
, (3.16)

in which

Eα,β(t) =
∞∑
k=0

tk

Γ(αk + β)
(3.17)

denotes the generalized Mittag-Leffler function. Here, we use the following property of the
generalized Mittag-Leffler function’s inverse Laplace transform [27]

L−1
[

n!sλ−μ(
sλ ∓ c

)n+1
]
= tλn+μ−1E(n)

λ,μ

( ± ctλ
) (

Re(s) > |c|1/λ). (3.18)
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Inverting (3.18) by the Fourier sine inverse transform, we obtain an exact solution to the
velocity field as follows:

u(y, t) =
2
π

∫∞

0

ζ sin(ζy)
ζ2 + β2

∞∑
k=0

(−1)k
k!

(
ζ2 + β2

γ

)k+1

t(k+1)(α+1)E
(k)
α,α+k+2

(−tα
γ

)
dζ. (3.19)

In a special case, when α = 1, corresponding to Stokes’ first problem for a Maxwell fluid
in a porous half-space, (3.14) can be written as

U(ζ, s) =
ζ

s
[
γs2 + s +

(
ζ2 + β2

)] . (3.20)

Correspondingly, (3.19) can be written as

u(y, t) =
2
π

∫∞

0

ζ sin(ζy)
ζ2 + β2

∞∑
k=0

(−1)k
k!

(
ζ2 + β2

γ

)k+1

t2(k+1)E
(k)
1,k+3

(−t
γ

)
dζ, (3.21)

which is just the dimensionless velocity solution of a Maxwell fluid in a porous half-space
obtained in another form by Tan [22].

In a special case, when α = 1 and β = 0, we have

u(y, t) =
2
π

∫∞

0

sin(ζy)
ζ

∞∑
k=0

(−1)k
k!

(
ζ2

γ

)k+1

t2(k+1)E
(k)
1,k+3

(−t
γ

)
dζ, (3.22)

which is just the dimensionless velocity solution of a clear Maxwell fluid obtained in another
form by Jordan et al. [38].

In another special case, when α = 1, β = 0, and γ = 0, corresponding to the classical
version of Stokes’ first problem for a Newtonian fluid, (3.14) can be written as

U(ζ, s) =
ζ

s
(
s + ζ2

) . (3.23)

Correspondingly, (3.19) can be written as

u(y, t) = 1 − 2
π

∫∞

0

sin(ζy)
ζ

exp
( − ζ2t

)
dζ. (3.24)

Equation (3.24) can be simplified further as follows:

u(y, t) = 1 − erf
(

y

2
√
t

)
, (3.25)

where erf(x) is the error function of Gauss. This is just the well-known result of Stokes’ first
problem for a clear Newtonian fluid.
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3.2. Solution of temperature field

In order to determine the temperature distribution in the porous half-space, we multiply both
sides of (3.6) and (3.7) by sin(sy) and then integrate with respect to y from 0 to∞. Using (3.8)
and (3.9), we get

∂T(s, t)
∂t

+ ξs2T(s, t) = ξsf(t) + g(s, t), (3.26)

T(s, 0) = 0, (3.27)

where T(s, t) and g(s, t) denote the Fourier sine transforms of T(y, t) and Qt(y, t) with respect
to y, respectively. Since the solution of velocity u(y, t) is obtained by (3.21), g(s, t) is a known
function. The solution of the ordinary differential equation (3.26) subject to the initial condition
(3.27) can be easily obtained as

T(s, t) = exp
( − ξs2t

)∫ t

0

(
ξsf(τ) + g(s, τ)

)
exp

(
ξs2t

)
dτ. (3.28)

Inverting (3.28) by the Fourier sine inverse transform, and integrating by parts the term
containing f(τ), we get

T(y, t) = f(0)
(
1 − erf

(
y

2
√
ξt

))
+
∫ t

0
f ′(τ)

(
1 − erf

(
y

2
√
ξ(t − τ)

))
dτ

+
2
π

∫∞

0

∫ t

0
g(s, t) exp

( − ξs2(t − τ)
)
sin(sy)dτds.

(3.29)

In a special case, whenU0 = 0, the fluid is at rest, and the temperature distribution is the
same for both a Maxwell fluid and a Newtonian one. Then, (3.29) takes the form

T(y, t) = f(0)
(
1 − erf

(
y

2
√
ξt

))
+
∫ t

0
f ′(τ)

(
1 − erf

(
y

2
√
ξ(t − τ)

))
dτ. (3.30)

From (3.30), we easily obtain that

T(y, t) −→ T0(∞) as t −→ ∞. (3.31)

If, moreover, the plate is kept at a constant temperature, (3.31) reduces to a well-known
form,

T(y, t) = f(0)
(
1 − erf

(
y

2
√
ξt

))
. (3.32)

4. Conclusion

In this work, we have presented some results about the generalized Maxwell fluid in a porous
half-space on a heated flat plate. An exact solution of the velocity field was obtained by using
the Fourier sine transform and the fractional Laplace transform. The temperature distribution
in the generalized Maxwell fluid in the porous half-space subject to a linear flow on a heated
flat plate was determined. Some classical results can be considered as particular cases of our
results, such as the solutions corresponding to a Newtonian viscous fluid, a clear Maxwell
fluid, and a Maxwell fluid in a porous half-space. They can be easily obtained from the results
presented in this paper by letting α = 1, β = 0, γ = 0; α = 1, β = 0, and α = 1, respectively.
It has also been shown that the fractional constitutive relationship model is more flexible than
the conventional model in describing the properties of viscoelastic fluids.
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