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1. Introduction

The realization theory is a very basic issuein theory of linear dynamic systems. It basically
consists of a state-space realization from available external description as, for instance, a trans-
fer matrix model or models based on measured sets of input-output data. The minimal real-
ization problem of dynamic linear time-invariant delay-free systems is to find a linear state-
space description of the minimal possible dimension whose associate transfer matrix exactly
matches a proper predefined rational matrix with entries over a field. Any proper, that is, re-
alizable, rational transfer matrix can be expanded in a formal Laurent series at infinity re-
sulting in a formal identity of the Laurent series and the transfer matrix. The coefficients of
the Laurent series form an infinite sequence of matrices which are the block matrices of the
infinite block Hankel matrix. The minimal realization problem in the delay-free case may be
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focused on finding a state-space realization on minimal order, that is, as small as possible, so
that the above-mentioned identity holds. The classical related problem was firstly formulated
by Kalman [1, 2] for the single-input single-output case. The minimal partial realization prob-
lem of any approximation is formulated in terms of a certain finite-order truncation of the
identity of the Laurent series expansion with the transfer matrix [3–7]. In this paper, this for-
malism is extended to linear time-invariant systems subject to any finite number of, in general,
incommensurate internal (i.e., in the state) and external (i.e., in the input and/or output) point
delays; namely, they are not all an integer multiple of a base delay, contrary to commensu-
rate delays. These systems are very common in the real life, like, for instance, in biological
problems, transportation problems, signal transmission, war/peace models, and so forth [8].
There is a wide recent interest in studying the properties of time-delay systems as associated
to either linear dynamics or nonlinear dynamics or even to dynamics described by differen-
tial equations in partial derivatives [9–22]. Impulsive time-delay systems have been studied
recently in [9, 12, 16, 19]. In particular, impulses may be associated with the singularity of
the dynamics and the loss of uniqueness of the solution as a result [16] or to the fact that
the forcing terms are impulsive. The robust stability problem has been studied in [11] via lin-
ear matrix inequalities and Lyapunov’s functions. The oscillatory behavior under delays and
possible unmodeled dynamics is investigated in [10, 21]. Different aspects and conditions of
positivity of the solutions and equilibrium points have been recently described in [16–18, 22],
either in the first orthant or in generic cones. The central purpose of this paper is concerned
with the realization theory and associated properties of controllability and observability of dy-
namic systems under linear delayed dynamics. An infinite polynomial block Hankel matrix,
as well as its associate τ-finite polynomial block Hankel matrices, is defined in order to relate
the spectral controllability and observability properties of minimal realizations [3, 4, 8, 23–31]
with the minimum feasible finite rank of such a Hankel matrix. Then, such a rank is proved to
equalize that of its associate finite polynomial block matrices whose orders exceed a minimum
lower bound related to the minimal realization to be synthesized. Potential extensions of the
obtained results might be addressed to investigate controllability and observability and then
minimal and partial minimal realizations of expanded composite systems [23, 24] and hybrid
systems [25, 31, 32], including systems subject to switches betweenmultiple parameterizations.
Therefore, problems related to properties of dynamic systems like, for instance, controllability,
observability, or realizability have received important attention from years up till now. An im-
portant point of view for modeling dynamic systems is to synthesize both nonparametric and
parametric models which describe the mappings relating collections of measured input/output
data as closely as possible. The Hankel matrix-based models are appropriate to describe linear
input/outputmappings by infinitelymany parameters, in general, since theymight be obtained
directly from available input/output data on the system. In a second step, those models may
be mapped either exactly or approximately into finitely parameterized models, for instance,
via transfer matrices and associate state-space realizations [1–4, 6, 7]. In particular, the point
of view of starting from Hankel matrices-based models formulated in rings, in general, has
been discussed in [3, 4]. Note that realizability results and related properties formulated over
rings lead only to sufficiency-type conditions when applied to time-delay systems. The reason
is that those systems are modeled by transfer matrices involving rational entries being quo-
tients of quasipolynomials or their associate matrix impulse responses, infinite series, and so
forth. It is known that bijective mappings exist between such quasipolynomials and their cor-
responding polynomials of several variables depending on the number of delays. However,
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quasipolynomials are in fact transcendent functions which depend only on one variable since
there is a precise functional dependence on the remaining independent variables in the poly-
nomial context and that one. Such a variable is, roughly speaking, the argument of the Laplace
transform. In this paper, stronger results are obtained since the fact that only one independent
variable exists is taken into account.

The paper is organized as follows. Section 2 deals with proper transfer matrix descrip-
tions of linear time-invariant time-delay systems from their state-space realizations in the gen-
eral case where delays are incommensurate. Section 3 establishes connections to the level of
appropriate isomorphisms between formal Laurent expansions at infinity as well as their fi-
nite truncations of a certain finite order, rational transfer matrices, and rings of polynomials.
It turns out that Laurent expansions at infinity are equivalent to transfer matrices while their
truncations of a certain finite order are related to Hankel matrices. Such formalism is applied
to linear time-invariant systems subject to internal incommensurate point delays. In particu-
lar, the properties of spectral controllability and observability are investigated together with
the associated problems of minimal realizations for simultaneously controllable and observ-
able systems and minimal partial state-space realizations. Related results are obtained for the
independence of the delay case as well as for the dependence on the delay case. The related
problems of synthesis of minimal state-space realizations and minimal partial realizations are
dealt with in Section 4 with special emphasis on the single-input single-output case. The for-
mulation is made in terms of finding a state-space realization such that it matches a certain
transfer matrix which is formally identical to a series Laurent expansion at infinity. Finally, a
section of concluding remarks ends the paper.

1.1. Some basic state-space realization concepts and related notations

The following concepts about state-space realizations,minimal realizations, and minimal par-
tial realizations are dealt with through the manuscript.

(1) A proper rational transfer matrix G(s) over a filed K takes values in Kp×m(s), where s
is the Laplace transform variable.

(2) Any proper rational G(s) ∈ Kp×m(s) can be expanded in a formal Laurent series at
infinity leading to the formal identityG(s) =

∑∞
i=0His

−i with {Hi}i∈N0
being an infinite

sequence of matrices which are the block matrices of the infinite block Hankel matrix.

(3) The infinite block Hankel matrix is often denoted as {Hi}∞0 , with N0 = N ∪ {0} and N

being the set of the natural numbers.

(4) The minimal realization problem in the delay-free system consists in finding astate-
space realization (A,B,C,D), with A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, and D ∈ R
p×m,

of order n ∈ N being minimal, that is, as small as possible, so that, given the infinite
sequence {Hi ∈ Kp×m}∞0 , the identity of the proper rational transfer matrix with the
formal Laurent series at ∞ holds, that is, G(s) =

∑∞
i=0His

−i = C(sI −A)−1B + D and
then H0 = D and Hi = CAi−1B, i ∈ N. A realization is minimal if and only if it is both
controllable and observable.

(5) If D = 0, then G(s) is strictly proper; that is, the number of poles exceeds strictly the
number of zeros at any entry of the transfer matrix.
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(6) The so-called minimal partial realization problem of any approximation τ is formu-
lated as follows. Given a finite sequence {Hi ∈ Kp×m}τ0 with some τ ∈ N, satisfy-
ing H0 = D, Hi = CAi−1B, for all i ∈ τ := {1, 2, . . . , τ}, there exists a quadruple
(A,B,C,D), with A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, and D ∈ R
p×m, of minimal order

n ∈ N (the order of A) such that C(sI −A)−1B +D =
∑τ

i=0His
−i + 0(s−τ−1).

2. State-space and transfer matrix descriptions of time-delay systems

Consider the linear time-invariant dynamic system in state-space form:

ẋ(t) =
q∑
i=0

Aix
(
t − hi

)
+

q′∑
i=0

Biu
(
t − h′

i

)
, (2.1)

y(t) = Cx(t) +Du(t), (2.2)

where x : R+ × Σ × U → Σ ⊂ R
n, u : R+ → U ⊂ R

m, y : R+ × Σ × U → Y ⊂ R
p are the state,

input, and output vector functions in their respective state, input, and output spaces Σ, U,
and Y, where R+ := {t ∈ R : t ≥ 0}, h0 = h′

0 = 0, and hi(> 0) ∈ R+ (i ∈ q := {1, 2, . . . , q}),
h′
i(> 0) ∈ R+ (i ∈ q ′) are the internal and external point delays. If the input is generated

via state feedback, then u : R+ × Σ → U ⊂ R
m. If it is generated via output feedback, then

u : R+ × Y → U ⊂ R
m. The internal delays (hi), which are assumed to be pairwise distinct, and

the external ones (h′
j), which are also assumed to be pairwise distinct, are both incommensu-

rate delays; that is, they are not necessarily equal to ihb and jh′
b (i ∈ q, j ∈ q ′), with some hb > 0,

h′
b
> 0; Ai ∈ R

n×n (i ∈ q ∪ {0}), Bi ∈ R
n×m (i ∈ q ′ ∪ {0}), C ∈ R

p×n, and D ∈ R
p×m are matrices

of real entries which parameterize (2.1)-(2.2). The dynamic system is subject to initial condi-
tions, ϕ : [−h, 0] → R

n, where h := Maxi∈q(hi) is piecewise continuous possibly with bounded
discontinuities on a subset of zero measures of its definition domain. Closed formulas for the
unique state and output trajectory solutions of (2.1)-(2.2) are provided in [33, 34], although the
dynamic system is infinite-dimensional by nature. One of these formulas is based on defining
a C0-semigroup generated by the infinitesimal generator of the delay—free matrix A0—which
is trivially valid for the time-invariant case only. An alternative second formula is based on
an evolution operator which satisfies the unforced differential system (2.1)which may be gen-
eralized to the linear time-varying case. Both formulas are equivalent since the solutions are
unique.

By taking right Laplace transforms in the state-space description (2.1)-(2.2) with ϕ ≡ 0,
a transfer matrix exists, which is defined by

G(s) :=
Y (s)
U(s)

=

[
Lap+

(
y(t)

)
Lap+

(
u(t)

)]
ϕ≡0

= C

(
sIn −

q∑
i=0

Aie
−his

)−1( q′∑
j=0

Bie
−h′

is

)
+D, (2.3)

where Lap+(v(t)) is the right Laplace transform of v : R+ → R
s provided that it exists. Note

that G(s) is a complex matrix function in Cp×m in the complex indeterminate s whose (i, j)th
entry is

Gij(s) =
cTi Adj

(
sIn −

∑q

k=0Aie
−hks

)(∑q

j=0b�je
−h′

�
s
)

Det
(
sIn −

∑q

k=0Aie−hks
) +Dij , (2.4)



M. De la Sen 5

where Adj(·) and Det(·) stand for the adjoint matrix and the determinant of the (·)-matrix,
respectively, and cTi and b�j are the ith row of C(i ∈ p) and the jth column of B� (� ∈ q ′ ∪ {0}),
respectively. Define complex (q + q′) and (q̂ + q̂ ′) tuples as follows:

z :=
(
zI, zE

)
=
(
z1, . . . , zq, zq+1, zq+q′

)
∈ Cq+q′ ,

ẑ :=
(
ẑI , ẑE

)
=
(
z1, . . . , zq̂, zq̂+1, zq̂+q̂ ′

)
∈ Cq̂+q̂ ′

,
(2.5)

where

q ≤ q̂ ≤ q̂0 := n

(
q∑
i=1

(
q
i

))
, q′ ≤ q̂ ′ ≤ q̂ ′

0 := q̂0(q′ + 1) (2.6)

so that the components zi and zj correspond to e−his and e−h
′
j s (i ∈ q, j ∈ q ′), respectively, in a

multiargument description, where s and all the components zi and zj are taken as independent
variables. The components ẑi of the extended ẑ are associated with combined delays ĥi which
are formed with all the combinations of sums of the internal delays hi and their respective in-
teger multiplicities. The components ẑj and associated delays ĥ ′

i are formed with all the above
combinations of sums of the internal delays hi and their respective integer multiplicities with
the various external delays. The appearance of these delays arises in a natural way in the trans-
fer function and then, roughly speaking, in the input/output data model via direct calculation
in the numerator and denominator of (2.4). Intuitively, that means there are usually muchmore
delays in the external system representation than in the internal one due to the evaluation of
the adjoint matrix and the determinant and the products in the numerator of (2.4). This feature
leads to inequalities with upper bounds in (2.6) so that if identical internal/external delays ap-
pear as a result of calculations in the transfer functions (see (2.4)), the resulting coefficients are
regrouped so that each of the identical delays appears only once. As intuitive related example,
one single internal delay h in the state-space representation generates, up till n commensurate
delays, hj = jh (j ∈ n) in a single-input single-output transfer function. Then, R

p×m(s, z), the
space of realizable rational transfer p×mmatrices of real coefficients in the complex (q̂+ q̂ ′+1)-
tuple (s, ẑ) of numerator and denominator being, respectively, a quasipolynomial matrix and
a quasipolynomial, is isomorphic (in the sequel denoted by the symbol “≈”) to R

p×m(s) so that
there is a natural bijective mapping between each entry Gij(s) and

Gij

(
s, ẑ

)
=
Nij

(
s, ẑ

)
M

(
s, ẑ

) =

∑nij

k=0Nijk

(
ẑ
)
sk∑n

k=0Mk

(
ẑ
)
sk

=

∑q̂+q̂ ′

�=0 Nij�(s)ẑ�∑q̂

�=0M�(s)ẑ�
=

∑nij

k=0

∑q̂+q̂ ′

�=0 Nijk�s
kẑ�∑n

k=0
∑q̂

�=0Mk�skẑ�
(2.7)

whose numerator Nij

(
s, ẑ

)
and denominator M(s, ẑ) are, respectively, polynomials in several

variables of respective real coefficientsNijk� andMk� , andNijk(Ẑ),Mk(ẑ),Nijk(s), andMk(s)
are also polynomials in their respective single or multiple arguments.

3. Analysis of minimal realizations and formal series descriptions

Note that the numerator and denominator of Gij

(
s, ẑ

)
are, respectively, in the polynomial

additive groups (rings if p = m) R
p×m[s, ẑ] and R[s, ẑ] generated by (s, ẑ). By using a for-

mal Laurent series expansion at ∞ in the variable s of the form G(s, ẑ) =
∑∞

i=0Hi(ẑ)s−i with
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Hi(ẑ) ∈ R
p×m[ẑ], it follows thatR

p×m(s, ẑ) ≈ R
p×m[[s]][ẑ], the additive group of formal Laurent

power series with matrices over R
p×m at ∞ in the polynomial multiple indeterminate defined

by the components of the ẑ-tuple. Note that the formal series additive group R
p×m[[s]][ẑ] is

the completion of the polynomial matrix additive group R
p×m[s][ẑ] (≈ R

p×m[s, ẑ])with respect
to the I-adic topology, where I is the ideal of the polynomial matrix additive group R

p×m[s][ẑ]
generated by the indeterminate complex (q̂ + q̂ ′ + 1)-tuple (s, ẑ). The above discussion is for-
malized as follows.

Theorem 3.1. The following properties hold for any positive integers p, m, and n.

(i) R
n×n[e−his : i ∈ q∪{0}] ≈ R

n×n[zI] if hi ∈ R+\{0} for all i, j ∈ q, and hi /=hj for all i, j(/= i) ∈
q; R

n×m[e−h
′
is : i ∈ q ′ ∪ {0}] ≈ R

n×m[zE].

(ii) R
p×m(s, ẑ) ≈ R

p×m[[s]][ẑ] ≈ R
p×m[s, ẑ] if h′

i ∈ R+ \ {0} for all i, j ∈ q ′, and hi /=hj for all
i, j(/= i) ∈ q ′.

(iii) R
p×m[s][ẑ] is a dense subspace of R

p×m[[s]][ẑ], which is a complete topological additive
group with respect to the I-adic topology, where I is the ideal of the additive group R

p×m[s][ẑ]
generated by the indeterminate complex (q̂ + q̂ ′ + 1)-tuple (s, ẑ).

Note that the isomorphisms of Theorem 3.1(i) are useful to formulate controllabil-
ity/observability and minimal realizations for the dynamic system (2.1)-(2.2) since the only
delays which are zero are h0 = h′

0 = 0 and all the remaining internal delays are pairwise dis-
tinct while all the remaining external delays are pairwise distinct as well.

From Theorem 3.1(i), the following bijections may be established:

q∑
i=0

Aie
−his ←→ A

(
zI
)
:=

q∑
i=0

Aiz
I
i ∈ R

n×n[zI];
q′∑
i=0

Bie
−h′

is ←→ A
(
zE

)
:=

q∑
i=0

Aiz
E
i ∈ R

n×n[zI]
(3.1)

so that via (3.1) the controllability and observability matrices of the nth realization (2.1)-(2.2)
result:

Cn

(
A(z), B(z)

)
= Cn

(
A
(
zI
)
, B

(
zE

))
:=

(
B
(
zE

)
, A

(
zI
)
B
(
zE

)
, . . . , An−1(zI)B(zE)),

On

(
C,A(z)

)
= On

(
C,A

(
zI
))

:=
(
CT,AT

(
zI
)
CT, . . . , An−1T(zI)CT

)T (3.2)

in R
n×(n+m)[ẑ] and R

p×(p+m)[ẑ], respectively. Note that if some of the above matrices are full
rank, then the state-space realization (2.1)-(2.2) is controllable (resp., observable) in an ad-
ditive group. However, the respective full-rank conditions are not necessary for controllabil-
ity/observability since the additive group isomorphism defined by (3.1) does not preserve the
metric and topologic properties. In particular, the loss of rank of any of the polynomial matrices
(see (3.2)) for some delays hi ≥ 0 (i ∈ q), hj ≥ 0 (j ∈ q ′), and h0 = h′

0 = 0 in the indeterminate z
does not imply that the rank is lost for some complex indeterminate s satisfying the constraints
zi = e−his, zq+j = e−h

′
j s (i ∈ q, j ∈ q ′) for some predefined delays.Define the following control-

lability and observability testing sets SCn
(h) and SOn

(h), respectively, depending on the real
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(q + q′)-tuple of delays:

h =
(
h1, h2, . . . , hq, hq+1 = h′

1, hq+2 = h′
2, . . . , hq+q′ = h′

q′

)
∈ R

q+q′
+ , (3.3)

which is the closed first orthant in R
q+q′ , and the associated sets of delays are Huc and Huo,

where controllability and, respectively, observability are lost:

SCn
(h) :=

{
z =

(
z1, z2, . . . , zq

) ∈ Cq+q′ : zi =
∣∣zi∣∣≺θi = e−his, σC =

ln
∣∣zi∣∣
hi

∈ R,

ωC =
tg
(
θi
)

hi
∈ R ∀ i ∈ q + q′, rank

[
Cn

(
A
(
zI
)
, B

(
zE

))]
< n

}
,

SOn
(h) :=

{
z =

(
z1, z2, . . . , zq

) ∈ Cq : zi =
∣∣zi∣∣≺θi = e−his, σO =

ln
∣∣zi∣∣
hi

∈ R,

ωO =
tg
(
θi
)

hi
∈ R ∀ i ∈ q, rank

[
On

(
C,A

(
zI
))]

< n

}
,

Huc :=
{
h ∈ R

q+q′
+ : SCn

(h)/=∅
}
,

Huo :=
{
h ∈ R

q+q′
+ : SOn

(h)/=∅
}
.

(3.4)

Note that if the full ranks in the polynomial matrices (see (3.2)) are lost for some h such that
the respective testing set in (3.4) is nonempty, then controllability (resp., observability) in an
additive group becomes lost for the corresponding set of delays. If the full-rank property in
the polynomial matrices (see (3.2)) is lost for some h such that the respective testing set in
(3.4) is empty, then controllability (resp., observability) in an additive group holds for the
corresponding set of delays. If the sets SCn

(h) and SOn
(h), respectively, are empty for any h ∈

R
q+q′
+ , then the system is controllable (resp., observable) in an additive group independent of

the delays. Note directly that

h ∈ Huc ⇐⇒ SCn
(h)/=∅;SCn

(h) = ∅ ∀h ∈ R
q+q′
+ ⇐⇒ Huc = ∅, (3.5)

and similar assertions are applicable to the sets SOn
(h) andHuo. Then, the following definitions

on spectral controllability and observability are provided. Then, a related result is given as a
formal statement of the above informal discussions, which states formally the equivalences
between spectral controllability (observability) and controllability (observability).

Definition 3.2. The dynamic system (2.1)-(2.2) is spectrally controllable if there exists a state-
feedback control law u : R+ × R

n → R
m, fulfilling u(t) = 0 for all t ∈ R− := R \ R+, such that

U(s) = Lap(u(t)) exists for any given prefixed suited characteristic closed-loop polynomial:

n∑
i=0

q+q′∑
j=0

fijs
ie−hjs = Det

(
sIn −

q∑
i=0

Aie
−his −

q′∑
i=0

Bie
−h′

isU(s)

)
. (3.6)

If the above property holds for any given vector of delays h, then the system is spectrally
controllable independent of the delays.
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Definition 3.3. The dynamic system (2.1)-(2.2) is spectrally observable if its dual is spectrally
controllable, that is, if there exists a state-feedback control law u : R+ × R

n → R
p, fulfilling

u(t) = 0 for all t ∈ R− := R \ R+, such that U(s) = Lap(u(t)) exists for any given prefixed suited
characteristic closed-loop polynomial:

n∑
i=0

q′∑
j=0

fijs
ie−hjs = Det

(
sIn −

q∑
j=0

AT
i e

−his − CTU(s)

)
. (3.7)

If the above property holds for any given vector of internal delays, then the system is spectrally
observable independent of the delays.

Controllability and observability in rings are defined in parallel to their above spec-
tral versions in the complex indeterminates zi (which replace e−his in Definitions 3.2 and 3.3)
which are considered to be mutually independent; this is not true since they are related by
the Laplace transform indeterminate s. Therefore, controllability and observability in rings are
sufficient (but not necessary) for their corresponding spectral versions to hold in the context
of time-delay systems. Note that observability is defined by duality in order to simplify the
description. On the other hand, note that the spectral definitions of controllability and observ-
ability are established in terms of the ability of arbitrary coefficient assignment of the charac-
teristic closed-loop polynomial (or that of the dual system) through some realizable control
law. These definitions are equivalent to the classical spectral definitions for time-delay time-
invariant systems which were stated in equivalent terms via Popov-Belevitch-Hautus control-
lability/observability tests (see, e.g., [35–38]). Such tests are used in Theorem 3.4 in terms of
being necessary and sufficient to guarantee both properties. Finally, note that the real controlla-
bility/observability (in terms of necessary and sufficient conditions for prefixed assignment of
closed-loop modes) has to be stated in the spectral context. Alternative classical formulations
in rings provide only sufficient conditions for controllability/observability of the dynamic sys-
tem since characteristic quasipolynomial s is treated as if it were polynomial of several inde-
pendent variables, that is, as if exponential terms of the form z = e−hs were independent of s. In
other words, conditions implying loss of controllability/observability appear by considering
the arguments s and z as independent variables. Such conditions are spurious and have to be
removed in the cases where z/= e−hs.

Theorem 3.4. The following properties hold.
(i) The state-space realization (2.1)-(2.2) is spectrally controllable for some given h ∈ R

q+q′
+ in

the first orthant if and only if rank[sIn −
∑q

i=0Aie
−his,

∑q′

i=0Bie
−h′

is] = n for all s ∈ C. The state-space
realization system (2.1)-(2.2) is spectrally observable if and only if rank[sIn − ∑q

i=0A
T
i
e−h

′
is, CT] =

n for all s ∈ C. The state-space realization (2.1)-(2.2) is minimal of order n if and only if it is spectrally
controllable and spectrally observable [27], that is,

rank

[
sIn −

q∑
i=0

Aie
−his,

q′∑
i=0

Bie
−h′

is

]
=

[
sIn −

q∑
i=0

AT
i
e−h

′
is, CT

]
= n ∀s ∈ C. (3.8)

Both full-rank conditions hold simultaneously; then the state-space realization (2.1)-(2.2) is minimal
and the converse is also true.
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(ii) The state-space realization (2.1)-(2.2) is controllable in a ring independent of the delays,
that is, for any h ∈ R

q+q′
+ , if rank[Cn(A(z), B(z))] = n for all z ∈ Cq+q′ , while the converse is not

true in general. The state-space realization (2.1)-(2.2) is observable in a ring independent of the delays
if rank[On(C,A(z))] = n for all z ∈ Cq+q′ , and the converse is not true. The state-space realization
(2.1)-(2.2) is minimal of order n independent of the delays if

rank
[
Cn

(
A(z), B(z)

)]
= rank

[
On

(
C,A(z)

)]
= n ∀z ∈ Cq+q′ , (3.9)

while the converse is not true in general.
(iii) The state-space realization (2.1)-(2.2) is controllable (resp., observable) in a ring indepen-

dent of the delays if and only if SCn
(h) = ∅ for any h ∈ R

q+q′
+ (resp., SOn

(h) = ∅ for any h ∈ R
q+q′
+ ).

The state-space realization (2.1)-(2.2) is minimal if and only if SCn
(h) = SOn

(h) = ∅ for any h ∈ R
q+q′
+ ,

that is, if and only if it is both controllable and observable in a ring independent of the delays.
(iv) The state-space realization (2.1)-(2.2) is controllable (resp., observable) in a ring for any

given h ∈ R
q+q′
+ if and only if SCn

(h) = ∅ (resp., SOn
(h) = ∅). The state-space realization (2.1)-(2.2) is

minimal if and only if SCn
(h) = SOn

(h) = ∅, that is, if and only if it is both controllable and observable
in a ring.

(v) The state-space realization (2.1)-(2.2) is controllable (resp., observable) in a ring being either
dependent on h ∈ R

q+q′
+ or independent of the delays if and only if it is spectrally controllable (resp.,

spectrally observable) being either dependent on or independent of the delays.
(vi) The state-space realization (2.1)-(2.2) is controllable (resp., observable) in a ring indepen-

dent of the delays, and equivalently spectrally controllable (resp., spectrally observable) independent of
the delays if and only if Huc = ∅ (resp., Huo = ∅) with Huc and Huo defined in (3.4). The state-space
realization (2.1)-(2.2) is minimal independent of the delays of order n if and only if Huc ∪Huo = ∅, that
is, if and only if it is both controllable and observable in a ring independent of the delays.

The state-space realization (2.1)-(2.2) is spectrally uncontrollable (resp., spectrally unobservable)
for a given h ∈ R

q+q′
+ if and only if h ∈ Huc (resp., h ∈ Huo) and equivalently if and only if SCn

(h)/=∅

(resp., SOn
(h)/=∅).

Proof. (i) It is a direct generalization of the Popov-Belevitch-Hautus rank controllabil-
ity/observability tests [39] to the case of point time delays. The result for controllability follows
directly by taking Laplace transforms in (2.1) with initial condition ϕ ≡ 0. The parallel result
for observability follows directly by taking Laplace transforms in (2.1)-(2.2) with u ≡ 0 and
nonzero point initial conditions at t = 0, namely, x0 = x(0) = ϕ(0)/= 0.

(ii)Note that for any complexmatricesA and B and compatible orders, rank[sIn−A,B] =
n for all s ∈ C if and only if rank[Cn(A,B)] = n from Popov-Belevitch-Hautus rank controlla-
bility test for the linear time-invariant delay-free case. Thus, for polynomial matrices A(z) and
B(z) in several complex variables, rank[sIn −A(z), B(z)] = n for all s ∈ C for some given com-
plex (q+q′)-tuple z if and only if rank[Cn(A(z), B(z))] = n for some given complex (q+q′)-tuple
z, since for each z, A(z) and B(z) are complex matrices.

If rank[Cn(A(z), B(z))] = n for any complex (q + q′)-tuple z, then the property (ii) fol-
lows from the ring isomorphisms of Theorem 3.1, made explicit in (3.1). A similar proof fol-
lows for observability. Since a loss of full rank at some z does not necessarily imply that all of
its components satisfy zi = e−his for all i ∈ q + q′ and hq+i = h′

i for all i ∈ q′, then the controllabil-
ity/observability conditions are not necessary.

(iii)–(iv) If SCn
(h), defined in (3.4), is empty, then rank[Cn(A(z), B(z))] = n for all com-

plex (q + q′ + 1)-tuple (s, z) such that the constraints zi = e−his for all i ∈ q + q′ and hq+i = h′
i



10 Mathematical Problems in Engineering

for all i ∈ q ′ are satisfied. This proves necessity. Sufficiency follows directly from (ii). A similar
reasoning applies to observability with SCn

(h) being empty and rank[On(C,A(z))] = n.
(v) The results (i)–(v) imply for any given h ∈ R

q+q′
+ that

rank

[
sIn −

q∑
i=0

Aie
−his,

q′∑
i=0

Bie
−h′

is

]
= n ∀s ∈ C

⇐⇒ rank
[
Cn

(
A(z), B(z)

)]
= n ∀z /∈ SCn

(h) ⇐⇒ SCn
(h) = ∅,

rank

[
sIn −

q∑
i=0

AT
i e

−his, CT

]
= n ∀s ∈ C

⇐⇒ rank
[
On

(
C,A(z)

)]
= n ∀z /∈ SOn

(h) ⇐⇒ SOn
(h) = ∅.

(3.10)

(vi) It follows directly from properties (iii)–(v), since the sets Huc and Huo are empty,
that there is no vector of delays such that the respective spectral controllability and observ-
ability tests fail resulting in the corresponding matrices being rank-defective. As a result, the
system is controllable (resp., observable) independent of the delays.

Remark 3.5. Note that from the definition of SCn
(h) = ∅, it is only necessary to consider z-(q+q′)-

tuples with all of their components satisfying simultaneously either |zi| ≥ 1 or |zi| < 1 for all i ∈
q + q′, which satisfy furthermore g(s, z) := Det(sIn−A(zI)) = 0 (since rank[Cn(A(z), B(z))] = n
for all z such that g(s, z)/= 0) in order to test SCn

(h) = ∅. Similar considerations apply for testing
SOn

(h) = ∅. This facilitates the way of performing the controllability/observability tests in
practice.

Now, consider the sequence Hτ(ẑ) := {Hi(ẑ)}τ1 with τ ∈ N which defines the τ-finite
block complex Hankel matrix

H
(
i, τ + 1 − i, ẑ

)
:=

⎢⎢⎢⎢⎣ H1
(
ẑ
) · · · Hτ+1−i

(
ẑ
)

...
...

...
Hi

(
ẑ
) · · · Hτ

(
ẑ
)

⎥⎥⎥⎥⎦ =

⎢⎢⎢⎢⎣ CB
(
zE

) · · · CAτ−i(zI)B(zE)
...

...
...

CAi−1(zI)B(zE) · · · CAτ−1(zI)B(zE)
⎥⎥⎥⎥⎦ .

(3.11)

For τ = ∞, the infinite Hankel block matrix isHG(ẑ) := Block Matrix(Hi+j−1(ẑ))i,j∈N. From (3.2)
and (3.11), the subsequent technical result holds directly, where the generic rank (denoted as
gen rank) of the (·)-polynomial matrix (·) is its maximum rank reached on the overall set of
values of its argument.Note that there is a natural surjective mapping Cq+q′ → Cq̂+q̂ ′

which
maps each argument z into one corresponding ẑ(z); it is irrelevant to replace the argument ẑ
by its preimage z in all of the subsequent notations and related discussions about controllabil-
ity/observability in the appropriate rings of polynomials, quasipolynomials, or series. There-
fore, both arguments z and ẑ are used indistinctly where appropriate according to convenience
for clarity.
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Lemma 3.6. The following properties hold independent of the delays.

(i) H
(
i, τ + 1 − i, ẑ

)
= Oi

(
C,A

(
zI
))
Cτ+1−i

(
A
(
zI
)
, B

(
zE

)) ∀ẑ ∈ Cq̂+q̂ ′
.

(ii) rank
[
H
(
i, τ + 1 − i, ẑ

)] ≤ Min(i, τ + 1 − i, n) ∀ẑ ∈ Cq̂+q̂ ′
.

(iii) rank[H(i, τ + 1 − i, ẑ)] ≤ n for any τ, i ∈ N with τ ≥ n + i − 1, i ≥ n for all ẑ ∈ Cq̂+q̂ ′
, where

n is the order of the state-space realization (2.1)-(2.2).

(iv) rank
[
HG

(
ẑ
)] ≤ gen rankτ≥n+i−1, i≥n, ẑ∈Cq̂+q̂ ′

[
HG

(
ẑ
)]

= gen rankτ≥n+i−1, i≥n, ẑ∈Cq̂+q̂ ′
[
H
(
i, τ +

1 − i, ẑ
)] ≤ n ∀ẑ ∈ Cq̂+q̂ ′

.

Lemma 3.6 establishes that the rank of a τ-finite or infinite block Hankel matrix is always
finite and it cannot exceed the order of given state-space realization.

Theorem 3.7. Consider two state-space realizations of the transfer matrix of (2.1)-(2.2):

R := (A0, Ai(i ∈ q), B0, Bj(j ∈ q ′), C,D),

R := (A0, Ai(i ∈ q), B0, Bj(j ∈ q ′), C,D ≡ D)
(3.12)

of respective orders n (minimal) and
−
n> n. Then, the following properties hold independent of the delays.

(i)

n ≤ gen rank
τ≥n+i−1, i≥n, ẑ∈Cq̂+q̂ ′

[
HG

(
ẑ
)] ≤ gen rank

τ≥n+i−1, i≥n, ẑ∈Cq̂+q̂ ′

[
H
(
i, τ + 1 − i, ẑ

)] ≤ n,

Min

(
gen rank

τ≥n+i−1, i≥n, ẑ∈SCn (h)

[
H
(
i, τ + 1 − i, ẑ

)]
, gen rank
τ≥n+i−1, i≥n, ẑ∈SOn

(h)

[
H
(
i, τ + 1 − i, ẑ

)])
< n,

n ≤ Min

(
gen rank
τ≥n, ẑ∈SCn (h)

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
, gen rank
τ≥n, ẑ∈SOn

(h)

[
Oτ

(
A
(
zI
)
, B

(
zE

))])
< n ∀h ∈ R

q+q′
+ .

(3.13)

(ii)

gen rank
τ≥n+i−1, i≥n∈N, ẑ∈Cq̂+q̂ ′

[
H
(
i, τ + 1 − i, ẑ

)]
= gen rank

τ≥n, ẑ∈Cq̂+q̂ ′

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
= gen rank

τ≥n, ẑ∈Cq̂+q̂ ′

[
Oi

(
C,A

(
zI
))]

= n.
(3.14)

(iii) None of the following conditions can hold for a complex function z : C×R
q+q
+ → Cq+q′ defined

by

z(s,h) =
(
zI(s,h), zE(s,h)

)
=
(
e−h1s, . . . , e−hqs, e−h

′
1s, . . . , e−h

′
qs
)

(3.15)

associated with internal and external delays hi (i ∈ q), hq+j = h′
j (j ∈ q ′). Then,

rank
[
HG

(
ẑ
)]

< n,

rank
[
H
(
i, τ + 1 − i, ẑ

)]
< n for any τ(≥ n + i − 1), i(≥ n) ∈ N,

rank
[
Cτ

(
A
(
zI
)
, B

(
zE

))]
< n ∀τ(≥ n) ∈ N ,

rank
[
Oτ

(
C,A

(
zI
))]

< n ∀τ(≥ n) ∈ N .

(3.16)
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Proof. Properties (i)-(ii) follow directly from the factorization of Lemma 3.6(i) and the rank
constraints in Lemmas 3.6(ii) and 3.6(iii) since the ranks of the controllability and observabil-
ity matrices never exceed the order of a minimal realization, and on the other hand, the generic
ranks of the observability and controllability matrices equalize the order of any minimal real-
ization. This proves that the generic rank is upper-bounded by n. The fact that it is identical to
a minimum n follows from the contradiction which would arise if

gen rank
τ≥n,∈Cq+q′

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
> rank

τ≥n,z∈SCn (h)∪SOn (h)

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
; (3.17)

then there would exist n(< n) ∈ N such that

gen rank
τ≥n, z∈Cq+q′

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
= rank

τ≥n, z∈SCn (h)∪SOn (h)

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
= n, (3.18)

and then the order of the square polynomial matrix A(ZI) and, as a result, that of matri-
ces A0, Ai (i ∈ q) would be n < n. Since n is the order of a minimal realization, SCn

(h) ∪
SOn

(h) = ∅ from Theorem 3.4(iv), which implies and is implied by rank[Cτ(A(zI), B(zE))] =
rank[Oτ(C,A(zI))] = n for all τ(≥ n) ∈ N and all z : C × R

q+q
+ → Cq+q′ defined by z(s,h) =

(zI(s,h), zE(s,h)) = (e−h1s, . . . , e−hqs, e−h
′
1s, . . . , e−h

′
qs). This proves property (iii).

4. Synthesis of minimal realizations

The problems of synthesis of a minimal realization or a minimal partial realization are formu-
lated in terms of finding a state-space realization such that it matches a certain transfer ma-
trix which is formally identical to a series Laurent expansion at ∞. Thus, given the sequence
Hτ(ẑ) := {Hi(ẑ)}τ0 with τ(≤ ∞) ∈ N, findmatricesAi ∈ R

n×n(i ∈ q∪{0}), Bi ∈ R
n×m (i ∈ q ′∪{0}),

and C ∈ R
p×n provided that they exist such that the following matching condition holds inde-

pendent of the delays either for all τ ∈ N (minimal synthesis problem) or for some finite τ ∈ N

(minimal partial realization problem):

G
(
s, ẑ

)
:= C

(
sI −A0 −

q∑
i=1

Aiz
I
i

)−1(
B0 +

q′∑
i=1

Biz
E
i

)
+D =

∞∑
i=0

His
−i =

τ∑
i=0

His
−i + 0

(
s−τ−1

)
,

(4.1)

where G(s, ẑ) ∈ R
p×m(s, ẑ) ≈ R

p×m[[s]][ẑ] � ∑τ≤∞
i=0 Hi(ẑ)s−i such that n is as small as possi-

ble. If the minimal (resp., partial minimal) realization synthesis problem is solvable (i.e., it has
a solution), then by making the changes zi = e−his, zq+j = e−h

′
j s (i ∈ q, j ∈ q ′), a state-space

realization (2.1)-(2.2) is obtained so that (4.1) holds for τ ∈ N (resp., for some natural num-
ber τ < ∞). If the problem is solvable, then there are infinitely many minimal (resp., partial
minimal) realizations satisfying it, since any nonsingular state transformation preserves the
transfer matrix. In what follows, the result, where the McMillan degree (denoted by μ) of a
rational transfer matrix coincides with that of the rank of the infinite associated block Hankel
matrix for ẑ ∈ Cq+q′ (which is also called the McMillan degree of this one), is extended from the
delay-free case. The block Hankel matrices are now polynomial matrices. The idea is extended
also to truncated finite block Hankel matrices, and it concludes that such a degree equalizes
the order of minimal (or partial minimal) state-space realizations.
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Theorem 4.1. The following properties hold.
(i) The McMillan degree n = μ(G(s,h)) of the transfer matrix G(s,h) is the unique order of

any minimal realization of G(s,h) and satisfies the following constraints for any set of delays being
components of some given h ∈ R

q+q′
+ :

∞ > n(h) = μ
(
G(s,h)

)
= Max

τ∈N

(
μ

z∈SCτ (h)∪SOτ (h)

(
Hτ(z)

)) (4.2)

= Max
τ∈N

( ∑
i+j=τ+1

rank H(i, j, z) −
∑
i+jτ

rank H(i, j, z) : z ∈ SCτ (h) ∪ S0τ (h)

)
(4.3)

= Max
z∈SC∞ (h)∪S0∞ (h)

(
rank H(i, j, z) : n ≤ i ∈ N, i + n − 1 ≤ τ ∈ N

)
. (4.4)

(ii) The state-space dimension nτ(h) (τ ∈ N) of any minimal partial realization satisfies

∞ > nτ(h) = Max
τ∈N

(
μ

z∈SCτ (h)∪SOτ (h)

(
H(i, τ + 1 − i, z)

)
: i ∈ τ

)
, (4.5)

where nτ(h) = n(h), and then the minimal partial realization is a minimal realization for all τ(≥ τ0) ∈
N and sufficiently large finite τ0 ∈ N with

nτ(h) = nτ0(h) = n(h) = Min
z∈SC∞ (h)∪S0∞ (h)

(
rank H(i, τ + 1 − i, z) : τ0 ≤ i ∈ N, i + τ0 − 1 ≤ τ ∈ N

)
.

(4.6)

(iii) Redefine by simplicity the delays according to hq+i = h′
i (i ∈ q ′). Define h00 = 0 and let hi0

be defined with hi /= 0 and hj = 0 (j /= i) for (i ∈ q + q′). Assume that n(hi0) = ni0 = n0 (some constant
n0 in N) for all i ∈ q, where

ni0 := Min
τi0∈N

( ∑
i+j=τi0+1

rank H
(
i, j, αi

) − ∑
i+j=τi0

rank H
(
i, j, αi

))

= Min
τ0∈N

( ∑
i+j=τ0+1

rank H
(
i, j, αi

) − ∑
i+j=τ0

rank H
(
i, j, αi

)) (4.7)

with αi ∈ Cq+q′ having the ith component distinct from unity and the remaining ones being unity; hi0

is an associate (q + q′)-tuple of delays in R
q+q′
+ with only the ith component being nonzero and Ai = 0,

with the remaining ones being zero and τ0 := Max(τi0 : i ∈ q + q′). Then, the order for any minimal
realization independent of the delays is

n = n(h) = n
(
hi0) = n0 = τ0 = Max

τ(≥τ0)∈N

(
gen rank

z∈SCτ (h)∪SOτ (h)
H(i + � − 1, τ + � − i, z)

)
∀h ∈ R

q+q′
+ ,

(4.8)

and all the matrices defining the state-space realization (2.1)-(2.2) are independent of the delays.
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Proof. Equation (4.4) of property (i) follows directly by using a close reasoning to that in
Theorem 3.7(ii) since n ∈ N has to exist such that

Max
τ∈N

(
μ

z∈SCτ (h)∪SOτ (h)

(
Hτ(z)

))
= gen rank

τ≥n+i−1,i≥n,z∈Cq+q′

[
HG(z)

]
= gen rank

τ≥n+i−1,i≥n,z∈Cq+q′

[
H(i, τ + 1 − i, z)

]
,

gen rank
τ≥n,z∈Cq+q′

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
= rank

τ≥n,z∈SCn (h)∪SOn (h)

[
Cτ

(
A
(
zI
)
, B

(
zE

))]
= n ∀ τ(≥ n) ∈ N.

(4.9)

Equation (4.4) is identical to (4.2) from the definition of McMillan degrees of minimal realiza-
tions, namely, of partial minimal realizations [4, 7] and transfer matrices and the fact that the
generic ranks of infinite block Hankel matrices [4, 5] are constant and equalize that of those ex-
ceeding appropriate sizes under certain thresholds. Equation (4.3) equalizes (4.2) and (4.4) by
extending a parallel result given in [4] for real block Hankel matrices describing the realization
problem of the delay-free case (i.e., H(i, j) does not depend on a multidimensional complex
tuple z) and by the fact that this rank does not increase for τ ∈ N exceeding a certain finite
minimum threshold τ0 ∈ N. Property (i) has been proved. Property (ii) follows in the same
way by using similar considerations for any given τ ∈ N. To prove property (iii), first note that
hi0 ∈ R

q+q′
+ for i ∈ q + q′ defines each particular delay-free parameterization of (2.1)-(2.2) with

some zero delays and the remaining ones being infiniy (or, equivalently, with their associated
matrices of dynamics A(·) being null) as follows:

żi(t) =

(
q∑
j=0

AjiA(q, i, j)

)
zi(t) +

q′∑
j=0

(
BjiB

(
q, q′, i, j

))
u(t). (4.10)

i ∈ q + q′ under initial conditions z(t) = z0 = ϕ(0), where the binary indicators

iA(q, i, j) = 1 if i, j(/= i) ∈ q , i ∈ q + q′,

iA(q, i) = 0 if i, j(= i) ∈ q,

iB(q, q′, i, j) = 1 if i(/= j) ∈ q + q′/q, i ∈ q,

iB(q, q′, i, j) = 0 if i, j(= i) ∈ q + q′/q

(4.11)

have been used for notational simplicity, since h00 = (0, 0, . . . , 0) and hi0 is defined with com-
ponents hj = 0, for all j(/= i) ∈ q + q′, and Ai = 0, or hi = ∞ if i ∈ q and Bi = 0 or hq+i = h′

i = ∞
if i ∈ q + q′/q. All the delay-free parameterizations (4.10)-(4.11) of (2.1)-(2.2) have a mini-
mal state-space realization of identical dimension n = n0 from (4.7). Using (3.11), now in-
dependent of the complex indeterminate z, for each of the delay-free state-space realizations,
Lemma 3.6(i), and the fact that all the above delay-free realizations are spectrally controllable
and observable, one can construct q + q′ algebraic matrix equations to calculate the matrices
Âi =

∑q

j(/= i)=0Aj, B̂� =
∑q

j(/= �)=0Bj, i ∈ /q ∪ {0}, � ∈ q ′ ∪ {0}, from which Ai, i ∈ q ∪ {0};
Bj, j ∈ q ′ ∪ {0} can be calculated uniquely for some matrix C such that (3.11) holds with
D = H0. Since all the matrices of parameters of (2.1)-(2.2)may be calculated, then the minimal
order is identical, independent of the delays, so that (4.8) holds.
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It is of interest to provide some result concerning the case when controllability and ob-
servability are maintained, and then the order of the minimal realization is not modified, un-
der some parametrical and delay disturbances. In what follows, parametrical perturbations
consisting of matrix scaling and constant perturbations of all delays are discussed.

Theorem 4.2. Consider the transfer matrix

Ĝ
(
s, δ, ρ1, ρ2, λ, h̃

)
= ρ1C

(
sIn − δ

q∑
i=0

Aie
−hise−h̃s

)−1( q′∑
i=0

ρ2Bie
−hise−h̃

′s

)
+ λD (4.12)

parameterized in the sextuple of real scalars p := (δ, ρ1, ρ2, λ, h̃, h̃′) which models a perturbation of a
nominal transfer matrix

Ĝ
(
s, δ, ρ1, ρ2, λ, h̃

)
= C

(
sIn −

q∑
i=0

Aie
−his

)−1( q′∑
i=0

Bie
−his

)
+D (4.13)

parameterized by p0 := (1, 1, 1, 1, 0, 0), and assume that the denominator quasipolynomial and all the
numerator quasipolynomials of (4.12) possess principal terms [8]. Assume that (2.1)-(2.2) is a minimal
realization of (minimal) order n of (4.13). Then, a minimal realization of the same order n of (4.12) is
given by (2.1)-(2.2) with the parametrical changes C → ρ1C, Ai → δAi (i ∈ q ∪ {0}), Bi → ρ2Ai,
D → λD and delay changes hi → hi + h̃, h′

j → h′
j + h̃′ (i ∈ q ∪ {0}, j ∈ q ′ ∪ {0}) for any finite delay

perturbations h̃ and h̃′ and for any real λ if and only if ρ1ρ2δ /= 0.

Proof. The block Hankel (i, j)-matrix associated with the p-parameterization is related to that
associated with the p0-parameterization by

HĜ(i, j,p) = Block Diag
(
γ(s)(i−1)/2, γ(s)(i−1)/2, . . . , γ(s)(i−1)/2

)
HĜ

(
i, j,p0

)
× Block Diag

(
γ(s)(i−1)/2, γ(s)(i−1)/2, . . . , γ(s)(i−1)/2

)
× Block Diag

(
η(s), η(s),

j − i + 1︸ ︷︷ ︸. . . , η(s)

) (4.14)

and H0 = λD, where γ(s, h̃) = δe−h̃s and η(s, h̃′) = ρ1ρ2e
−h̃′s. Since the numerator and denomi-

nator quasipolynomials have principal terms, they do not have unstable zeros at infinity, that
is, zeros with Re s → ∞. Then,

n = Max
i,j∈N

(
gen rank HĜ

(
i, j,p0

))
= Max

i,j∈N

(
μ
(
HĜ

(
i, j,p0

)))
= Max

i,j∈N

(
μ
(
HĜ(i, j,p)

))
(4.15)

if and only if δρ1ρ2 /= 0 ⇔ γ(s, h̃)η(s, h̃′) /= 0 for all complex indeterminate s and any finite
delay disturbances h̃ and h̃′.

The above result establishes that scalar nonzero scaling of the matrices which parameter-
ize (2.1)-(2.2) preserves the spectral controllability/observability, and then the degree of any
minimal realization for any finite constant change of the internal delays and a finite constant
change of the external point delays. For these purposes, it is assumed with no loss of generality
that the system transfer function is defined by numerator and denominator quasipolynomials
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which possess principal terms.It has been also proved that those properties hold by adding
any zero or nonzero interconnection constant matrix to a strictly proper transfer matrix whose
nominal state-space realization possesses them. An immediate consequent robustness result
for minimal state-space realizations of very easy testing and interpretation applicable to the
delay-free single-input single-output case is as follows.

Corollary 4.3. Consider the following three transfer functions:

Ĝp(s) = Ĝ(s)
ñ(s)

d̃(s)
,

Ĝ(s) =
(
cT
(
sIn − δA0

)−1
ρb0 + λd0

)
,

Ĝ0(s) =
(
cT
(
sIn −A0

)−1
b0 + d0

)
,

(4.16)

where ñ(s) and d̃(s) are polynomials of respective degrees ñn(s) = deg(ñ(s)) and ñd(s) = deg(d̃(s))
which satisfy the degree constraint ñd(s) ≥ ñn(s) +m − n with

n = deg
(
sIn − δA0

)
, m =

{
n if λd0 /= 0,

m′ < n if λd0 = 0,
m′ = deg

(
cTAdj

(
sIn − δA0

)
ρb0

)
. (4.17)

Then,the following properties hold.

(i) The state-space realization (cT ,A0, b0, d0) of Ĝ0(s) is both controllable and observable, and
then minimal of order n, if and only if the associate Hankel matrix satisfies rank HĜ0

=
Max i,j∈N(rank HĜ0

(i, j)) = rank HĜ0, j≥i+n−1; i,j∈N
(i, j) = n0. Then, Ĝ0(s) is proper (strictly

proper if d0 /= 0) and zero-pole cancellation-free,and A0 is of order n0.

(ii) Assume that the state-space realization (cT ,A0, b0, d0) of Ĝ0(s) is controllable and observable
of minimal order n0. Then, the state-space realization (cT , δA0, ρb0, λd0) of Ĝ(s) is both con-
trollable and observable, and then minimal of order n = n0, if and only if δρ /= 0. Then, Ĝ(s)
is proper (strictly proper if λd0 /= 0) and zero-pole cancellation-free, and A is of order n = n0.
As a result,

rank HĜ = Max
i,j∈N

(
rank HĜ(i, j)

)
= rank HĜ(i, j)

j≥i+n−1; i,j∈N

= n. (4.18)

(iii) Ĝp(s) is state-space realizable and strictly proper if and only if ñd(s) > ñn(s)+m−n. Assume
that Ĝ0(s) is zero-pole cancellation-free of order n0. Then, the following hold.

(1) Ĝp(s) = nĜ(s)/dĜ(s) is cancellation-free if and only if ρδ /= 0 and the three pairs
of polynomials (nĜ(s), d̃(s)), (dĜ(s), ñ(s)), and (d̃(s), ñ(s)) are each coprime, where
dĜ(s) = (sIn − δA0) and nĜ(s) = cTAdj(sIn − δA0)ρb0 + λd0dĜ(s) are the denomi-
nator and numerator polynomials of Ĝp(s). As a result, Ĝp(s) has a minimal realization
(then, controllable and observable) of order n̂ = n(= n0) + ñd.

(2) Assume that Ĝ0(s) is zero-pole cancellation-free of order n0 and ρδ /= 0. Assume also
that the polynomial pairs (nĜ(s), d̃(s)), (dĜ(s), ñ(s)) are both coprime. Then, Ĝp(s) has
zero-pole cancellation(s) at the common factors of the pair (d̃(s), ñ(s)), if any. A minimal
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realization of Ĝp(s) has order n̂ = n0 + ñd − ñ ′
d
, which satisfies n0 + ñd ≥ n̂ ≥ n0, where

ñ ′
d
≥ 0 is the degree of the cancellation polynomial, if any. Also,

n0 + ñd ≥ rank HĜp
= Max

i,j∈N

(
rank HĜp

(i, j)
)
= rank HĜp

(i, j)
j≥i+n̂−1; i,j∈N

= n̂ ≥ n0. (4.19)

Outline of proof

The proof follows directly from Theorem 4.2 by noting from its definitions of the various trans-
fer functions that Ĝ(s) = Ĝ0(s) if ρ = 1 and λ = 0, and Ĝp(s) = Ĝ(s) if ñ(s) = d̃(s). As a result,
Ĝp(s) is zero-pole cancellation-free if the polynomials ñ(s) and d̃(s) are nonzero real scalars
provided that Ĝ0(s) is also cancellation-free. The transfer function Ĝp(s) is also cancellation-
free if Ĝ0(s) and ñ(s)/d̃(s) are both cancellation-free and, furthermore, (ñ(s),Det(sIn − A0))
and (d̃(s), cTAdj(sIn −A0)b0 + d0Det(sIn −A0)) are both coprime pairs of polynomials.

Then, proceed as follows to complete the proof of the various properties.

(1) Remove the delays and consider the single-input single-output case by relating ranks
of infinite or partial block Hankel matrices with orders being minimal, then being
controllable and observable.

(2) Note those minimal state-spacerealizations which cannot have zero-pole cancellations
in their transfer function and vice versa.

(3) If there are cancellations, then the associate realization is never minimal.

The above result can be extended very easily to the multivariable case and to the pres-
ence of delays.

5. Concluding remarks

This paper addresses the problem of synthesizing minimal realizations and partial minimal
realizations of linear time-invariant systems with (in general, incommensurate) multiple con-
stant internal and external point delays. The main body of the formalism of the proper-
ties of controllability, observability, minimal realizations, and minimal partial realizations is
discussed through a formulation over appropriate rings of polynomials and corresponding
(roughly speaking, isomorphic) truncations of formal Laurent expansions of rational transfer
matrices. However, the spectral versions of controllability and observability are used to remove
spurious conditions which lead to apparent loss of those properties. In this sense, the presented
results are stronger than those previous parallel ones derived in a full formalism over rings.
Some particular results are also obtained for the single-input single-output case by mutually
relating realizations of transfer functions with given basic control and output vectors, input-
output interconnection gain, and dynamics matrix, but being on the other hand dependent at
most on three potentially freely chosen real parameters. The minimal state-space realizations
are interpreted in terms of absence of zero-pole cancellation in the transfer function by giving
some direct relationships among those parameters. Since one starting point for the analysis is
the Hankel matrix, the formalism is appropriate to be applied for obtaining transfer matrices,
minimal realizations, and minimal partial realizations collected input-output data.
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