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variables, and the goal is to find a schedule such that the net present value of the project cash flows
optimizes. In this paper, we consider a new RIPDCF in which tardiness of project is permitted with
defined penalty. We mathematically formulated the problem and developed a heuristic method to
solve it. The results of the performance analysis of the proposedmethod show an effective solution
approach to the problem.

Copyright q 2009 A. A. Najafi and F. Azimi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Project scheduling is a major objective of most models, and methods propose to aid planning
and management of projects. Project scheduling problems are combination of precedence
constraints, resource constraints, and some side constraints in which the goal is to find
a schedule such that an objective function like project duration, project total costs, or net
present value (NPV) optimizes. For a comprehensive survey of project scheduling problems
refer to [1–4].

Resource investment problem (RIP) is a class of project scheduling problem. RIP is
known as the problem of minimizing renewable resource costs subject to a project due date.
In RIP, we are concerned about completing a project consisting of a set of activities, such that
a given deadline is met in time and a set of resources needed for the execution of the activities
over the project is utilized. Since costs incur to provide resources, the goal is to find a schedule
and resource requirement levels such that total costs of the resource utilizations minimizes.
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Möhring [5] introduced the resource investment problem and proved its NP-
Hardness. In addition, based on a graph algorithm, he proposed an exact solution method
and solved some examples with 16 activities and 4 resources. Demeulemeester [6] developed
another exact algorithm called Resource Availability Cost Problem for the RIP. His algorithm
relies on the branch and bound method for single mode resource constrained project
scheduling problem of Demeulemeester and Herroelen [7]. Drexl and Kimms [8] presented
the lower and the upper bounds using Lagrangian relaxation and column generation
techniques. Akpan [9] proposed a heuristic procedure to solve RIP. Shadrokh and Kianfar
[10] developed a Genetic Algorithm for RIP. The objective is to minimize the sum of resource
availability costs and tardiness penalty. As an extension of the RIP, we encounter the RIP/max
problem in literature. In this problem the precedence constraints of RIP extend to generalized
precedence relations where we need to observe the minimum and the maximum time lags
between the activity starting and completion times. In order to solve this problem, Nübel
[11] introduced a generalization of RIP/max and developed a depth-first branch-and-bound
procedure to solve it.

Many of the recent researches in project scheduling focus on maximizing the NPV
of the project using the sum of positive and negative discounted cash flows throughout the
life cycle of the project. Russell [12] introduced the problem of maximizing NPV in project
scheduling problem and proposed a successive approximation approach to solve it. Grinold
[13] added a project deadline to the model, formulated the problem as a linear programming
problem, and proposed a method to solve it. Doersch and Patterson [14] presented a zero-
one integer-programming model for the NPV problem. Their model included a constraint
on capital expenditure of the activities in the project, while the available capital increased as
progress payments were made. Bey et al. [15] considered the implications of a bonus/penalty
structure on optimal project schedules for the NPV problem. Russell [16] considered the
resource-constrained NPV maximization problem. He introduced priority rules for selecting
activities for resource assignment based upon information derived from the optimal solution
to the unconstrained problem. Smith-Daniels and Smith-Daniels [17] extend the Doersch and
Patterson [14] Zero-one formulation to accommodate material management costs. Icmeli and
Erengus [18] introduced a branch and bound procedure to solve the resource constrained
project-scheduling problemwith discounted cash flows. Nadjafi and Shadrokh [19] proposed
an exact branch and bound procedure for the unconstrained project scheduling problem
with the objective of minimizing weighted earliness-tardiness penalty costs. For other related
studies in the project NPV maximization, see [20–29].

In addition, Najafi and Niaki [30, 31] introduced a new resource investment problem
in which the goal was to maximize the discounted cash flows of the project payments and
called it resource investment problem with discounted cash flows (RIPDCF). The cash flows
may be either the project costs or the payments made for the project during its life cycle. In
this regard, they considered both the payments and the employment-releasing times of the
resources. They mathematically formulated the problem and showed that it is an NP-hard
problem.

In [30, 31], the model imposed deadline constraint on the completion time of the
project. It means that the activities are to be scheduled such that the makespan of the project
does not exceed a given deadline. In many real problems, project can be finished with delay
but facing with the delay penalty. In practice, in order to make the project to be finished
as soon as possible and to prevent it from being postponed beyond the deadline, setting a
penalty mechanism at the deadline of the project is a usual measure taken by the clients. If
the project completion is delayed beyond the deadline of the project, the total amount of the
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payments will be reduced by a certain extent as the penalty. Obviously, in the problem with
penalty structure there exist two trade-offs for the contractor. The first one occurs between
the expense increment caused by speeding up the progress of the project, and the second one
happens between saving the cost by slowing down the progress of the project and receiving
the punishment because of postponing the project completion. In other word, the contractor
must make trade-off between the performing modes of activities and penalty structure that
depends upon the project completion time, and the client has to make decision on how to set
the penalty structure effectively and economically.

In this paper we consider an RIPDCF in which tardiness is permitted with delay
penalty and call it RIPDCFT. The rest of the paper is organized as follows. In Section 2,
we define the problem precisely. Then in Section 3, we formulate the problem. In Section 4,
we propose a heuristic solution to the problem. We report the performance of the proposed
method in Section 5, and finally the conclusion comes in Section 6.

2. Problem Description

A project is given with a set of N activities indexed from 1 to N. Activities 1 and N are
dummies that represent the start and completion of the project, respectively. The activities
executions need K types of renewable resources. There are no resources at the initial of
the project available, so it is necessary to provide the required levels of the resources at
the activity execution time. In addition, the expulsion time of each resource type must be
provided deterministically. Between the providing and the expulsion time of each resource
type, availability level of the resource is equal to the provided level of the resource. Zero-
lag finish-to-start precedent constraints are imposed on the sequencing of the activities. For
each activity i, the precedent activity set is denoted as P(i). A duration Di is given where
activity i is started and it runs Di time without preemption. Activity i uses rik units per
period for resource k. The resource usage over an activity is taken to be uniform. A cost
of Ck is associated to use one unit of resource k per period of time. In addition to resources
usage cost, each activity has some other costs such as material or overhead costs. We call these
fixed costs. Fixed cost occurs over activity execution, and its amount at period t for activity i is
denoted by Fit. Payments are received at payment points g ∈ G,whereG is the set of payment
points. Payment g occurs when a set of activities PB(g) ends, and its amount is equal toMg.
A constant cost of CT for each unit of time delay from a due date DD is incurred. Also, α is
the discount rate.

3. Problem Formulation

According to assumptions and notations introduced in Section 2, the problem can be
formulated as follows:

Max Z =
G∑

g=1

Mge
−αTg −

N∑

i=1

(
di−1∑

t=0

Fite
−αt

)
e−αSi −

K∑

k=1

FRk−1∑

t=SRk

CkRke
−αt

− (CT ∗Max{0, SN −DD})e−αSN ,

(3.1)
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or

Max Z =
G∑

g=1

Mge
−αTg −

N∑

i=1

di−1∑

t=0

Fite
−α(t+Si) −

K∑

k=1

CkRk

(
e−αSRk − e−αFRk

1 − e−α

)

− (CT ∗Max{0, SN −DD})e−αSN .

(3.2)

Subject to

Si − Sj ≥ dj, ∀j ∈ P(i) i = 1, 2, . . . ,N, (3.3)

Tg ≥ Si + di, ∀i ∈ PB
(
g
)
, g = 1, 2, . . . , G, (3.4)

SRk ≤ Si, ∀i ∈ PR(k), k = 1, 2, . . . , K, (3.5)

FRk ≥ Si + di, ∀i ∈ UR(k), k = 1, 2, . . . , K, (3.6)

N∑

i=1

t∑

l=t−di+1

rikXil ≤ Rk, k = 1, 2, . . . , K, ∀t, (3.7)

LSi∑

t=ESi

Xit = 1, i = 1, 2, . . . ,N, (3.8)

Si =
∑

∀t
tXit, i = 1, 2, . . . ,N, (3.9)

Xit = {0, 1}, i = 1, 2, . . . ,N, ∀t, (3.10)

Si ≥ 0, i = 1, 2, . . . ,N, (3.11)

Rk ≥ 0, k = 1, 2, . . . , K, (3.12)

SRk, FRk ≥ 0, k = 1, 2, . . . , K, (3.13)

Tg ≥ 0, g = 1, 2, . . . , G. (3.14)

Where, we define the decision variables as

Si : starting time of activity i, i = 1, 2, . . . ,N,

Tg : occurrence time for payment g, g = 1, 2, . . . , G,

Rk : required level of resource k to be provided, k = 1, 2, . . . , K,

SRk : providing time of resource k, k = 1, 2, . . . , K,

FRk : expulsion time of resource k, k = 1, 2, . . . , K,

Xit : a binary variable where it is one if activity i is started at period t and zero otherwise.

In addition, PR(k) is an activity set that uses resource k and has no precedence, and
UR(k) is an activity set that uses resource k and has no successor.

The objective function (3.1) maximizes the net present value of the project. It includes
positive effects of the present values of the payments, negative effects of the present values of
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the fixed costs, negative effects of the present values of the costs for providing the resources
and negative effects of the present value of the tardiness costs. Equation (3.3) enforces the
precedent relations between activities. Equation (3.4) guarantees that payments occur when
required activities have been finished. Constraints (3.5) and (3.6) correspond to the providing
and the expulsion times of the resources. Equation (3.7) ensures that the provided resource
units are sufficient to implement the schedule. Equation (3.8) states that every activity must
be started only once. Equation (3.9) states the relationship between variables Sj and variables
Xit. Sets of constraints (3.10), (3.11), (3.12), (3.13), and (3.14) denote the domain of the
variables.

4. A Priority Rule-Based Heuristic

In this section, based on the priority rules of the RIPDCF, we propose a heuristic method
to solve the problem. To do this, first we state some definitions that are required in the
procedure.

Definition 4.1. Negative cash flow of an activity. It includes discounted cash flow of the
resource usage cost and fixed cost at the activity starting time. It can be stated as

CF−
i = −

di−1∑

t=0

Fite
−αt −

K∑

k=1

di−1∑

t=0

rikCke
−αt = −

di−1∑

t=0

Fite
−αt −

K∑

k=1

rikCk

(
1 − e−αdi

1 − e−α

)
. (4.1)

Definition 4.2. Positive cash flow of an activity. If the precedent activity set of payment
occurrence contains only one activity, then we set positive cash flow of the activity to be
equal to the discounted cash flow of that payment at the activity starting time. In this case,
we define the positive cash flow of the activity as

CF+
i = Mge

−αdi . (4.2)

If the precedent activity set of payment occurrence contains more than one activity, then we
create a dummy activity and set positive cash flow of the dummy activity to be equal to that
payment. In this case, the number of the project activities may increase toM. In the following
sections we denote the number of activities byM.

Definition 4.3. Cash flow of an activity. Cash flow of an activity equals to the sum of the
negative and the positive cash flows of an activity. In other words, we have

CFi = CF−
i + CF+

i . (4.3)

Definition 4.4. The amount of nonusage resource at a period. With (3.7)modified, the amount
of nonusage resource k at a period t,Wkt, can be obtained by

M∑

i=1

t∑

l=t−di+1

rikxil +Wkt = Rk. (4.4)



6 Mathematical Problems in Engineering

Where,

Wkt ≥ 0, k = 1, 2, . . . , K, ∀t. (4.5)

Now, we simplify the problem formulation in the following form:

Max Z =
M∑

i=1

CFie
−αSi −

K∑

k=1

FRk−1∑

t=SRk

CkWkte
−αt − (CT ∗Max{0, SM −DD})e−αSM. (4.6)

Subject to (3.3), (3.5), (3.6), (4.4), (4.5), (3.8), (3.9), (3.10), (3.11), (3.12), and (3.13).

In order to develop the solution procedure, we use the structure of the objective func-
tion given in (4.6). The double structure includes positive roles of the activities cash flows,
(
∑M

i=1CFie
−αSi), and the negative roles of the nonusage resource costs, (

∑K
k=1

∑FRk−1
t=SRk

CkWkte
−αt)

and the tardiness cost ((CT ∗Max{0, SM −DD})e−αSM).
Nowwe are ready to describe the executive steps of the proposed algorithm as follows:

Step 1. Let problem P be the RIPDCFT that we are interested to solve, and let Psub be a
problem obtained by removing resources of the P problem. The Psub problem can be reached
from the P problem by removing the resource constraints and negative roles of nonusage
resource costs and the tardiness cost in the objective function. In addition, we add constraint
(4.7) to the Psub problem. It imposed deadline constraint on the project completion time in
this step:

SM ≤ DD. (4.7)

The Psub problem can be described as follows:

Max Zsub =
M∑

i=1

CFie
−αSi . (4.8)

Subject to (3.3), (3.11), and (4.7).
The Psub problem is a project scheduling problem with discounted cash flows and

can be solved exactly [12]. Call the acquired problem as Active Problem, solve it by related
methods, and obtain the optimum value of its objective function. Call the optimum solution
as active scheduling. Now, enter the resources at active scheduling and determine the
maximum of usage level for each type of resources. If we set the required level of each
provided resource equal to the maximum of usage level of the resources, then the active
scheduling is a feasible solution for the P problem and you can obtain the providing and
expulsion time of each resource and obtain the discounted nonusage cost of each resource
from the following equation:

Uk =
FRk−1∑

t=SRk

CkWkte
−αt. (4.9)
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Now, calculate the objective function value of the master problem at this solution by the
following expression and call it the active objective function value:

Z = ZSub −
K∑

k=1

Uk. (4.10)

Step 2. Eliminate constraint (4.7) from the activeproblem.

Step 3. Add all resources in a set, named resource candidate list.

Step 4. From the list of resource candidates, select the resource with the highest discounted
cost of nonusage (Uk). If the providing level of the selected resource has not reached its
lower bound, decrease its value by one unit, solve the active problem by adding the resource
constraint with the acquired value, and determine the optimum value of the objective
function [23]. In order to increase the value of the objective function defined for RIPDCFT
problem it may be beneficial to shift certain activities. Activities shifting procedure attempts
to shift the position of the activities whenever precedence and resource constraints allow,
and it results in increasing the NPV of the project [31]. In the acquired solution, consider
the maximum of the usage level of each resource as providing level. Then calculate the
discounted nonusage cost for each type of resource by (4.9). In addition, determine the project
completion time (SM) for this solution and obtain the tardiness cost from the following
equation:

V = (CT ∗Max{0, SM −DD})e−αSM. (4.11)

Now, determine the objective function value of the P problem by following equation:

Z = ZSub −
K∑

k=1

Uk − V. (4.12)

Call it the temporary objective function value. However, if the providing resource value
reached its lower bound, go to step six. You can obtain the lower bound of the resource using
the following expression:

Rk = Max

{∑M
i = 1(rik × di)

DD
, Max
i = 1, ...,M

{rik}
}
. (4.13)

Step 5. If the temporary objective function value is more than the active objective function
value add the selected constraint to the active problem. Then, consider the acquired problem,
related scheduling, and the temporary objective function value as an active problem and go
to step four. Otherwise, do not add the selected resource constraint to the active problem.

Step 6. Eliminate the selected resource from the resource candidate list and go to step seven.

Step 7. If the resource candidate list is empty, stop. The active schedule is the solution of the
proposed algorithm. Otherwise, go to step four.
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Table 1: Computational results.

No. of Activities No. of Instances A Avg. of dev%

Avg. of Avg. of

LINGO CPU time
(Sec.)

the proposed
method CPU time

(Sec.)
10 15 10 −1.9% 388 1
20 15 7 −2.3% 1253 2
30 15 4 −2.8% 2407 4

5. Performance Evaluation

In this section, we present the performance of the proposed procedure introduced in the
previous sections. For the purpose of this section we needed a set of solved problems.
Since the RIPDCFT is a newly defined problem, no standard test problems could be found
to examine the performance of the proposed procedure. Therefore, we are forced to use
the RIPDCF test problems, suggested by Najafi and Niaki [31]. In order to generate the
tardiness cost value, we randomly generate it from a uniform distribution. We consider 45
instances with 10, 20, and 30 activities with 3, 4, and 5 resources for the experiments. We
coded a computer program of the procedure, and then we employed the program on the test
problems. To evaluate the performance of the procedure we needed some good solutions.
Since there was no other existing procedure to solve the problem, we solved themathematical
modeling of the test problems by solver software such as LINGO [32]. However due to the
nature of the problem, LINGO was unable to obtain a global optimal solution for all the test
problems. In these cases, we assumed that the solution obtained by LINGO was a good one
to compare. We perform the experiments on a PC with 2.1 GHz processor and 2046 MB RAM,
limiting the solution time to be less than or equal to 3600 CPU seconds.

Table 1 shows the computational results of the proposed method in which column A
denotes the number of instances; LINGO was able to find a local optimal solution in 3600
CPU seconds.

The results of experiments showed that (a) there are many instances that the solver
software is unable to solve in 3600 seconds, but there is a solution by the proposed method,
(b) for problems in which LINGOwas able to find a solution, there is no significant difference
between the solutions obtained by LINGO and the ones obtained by the proposed method
and (c) while actually there is no difference between the solutions obtained by LINGO and
the proposed method, the amount of CPU time for the proposed method is much less than
that of those obtained by LINGO.

6. Conclusions

In this paper, we introduced a new resource investment problem with discounted cash flows
in which tardiness is permitted with penalty. We mathematically formulated the problem.
In order to solve the problem we came up with a heuristic approach and through some
generated test problems, we showed that it works relatively well.

The extension of this research would be to investigate an RIP/max problem in which
the goal is to maximize the NPV of the project and tardiness is permitted with penalty, too.
One of the other potential interests would be to develop some metaheuristics methods, such
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as genetic algorithm, simulated annealing, neural networks, ant colony algorithm, and so
forth, to solve the problem.
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