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1. Introduction

The fluid-saturated porous medium is modeled as a two-phase system consisting of a solid
and a fluid phase. It is assumed that the solid phase is homogenous, isotropic, elastic frame
and the fluid phase is viscous, compressible, and filled with the pore space of solid frame.
Compared with the single-phase medium theory, fluid-saturated porous medium theory can
describe the formation underground more precisely and the fluid-saturated porous medium
elastic wave equation can bring more lithology information than ever. For these reasons,
fluid-saturated porous medium theory can be used widely in geophysics exploration and
engineering surveying.
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In 1956, a theory was developed for the propagation of stress waves in a porous elastic
solid containing compressible viscous fluid by Biot [1, 2]. Biot described the Second-Kind
P wave in fluid-saturated porous medium firstly. Since then, many researchers paid their
attention to the propagation characters of elastic wave in saturated porous medium and
obtained many achievements [3, 4]. Complicated equations given in Biot dynamic theory
can be solved by analytical methods with some simple boundary conditions. Most dynamic
problems in fluid-saturated porous medium are solved using numerical methods, especially
using finite-element method. Ghaboussi and Wilson [5] first proposed a multidimensional
finite element numerical scheme to solve the linear coupled governing equations. Prevose
[6] proposed an efficient finite element procedure to analyze wave propagation phenomena
in fluid saturated porous medium and presented some numerical results which demonstrate
the versatility of the proposed procedure. Simon et al. [7, 8] presented an analytical solution
for a transient analysis of a one-dimensional column of a fluid saturated porous elastic
solid and presented a comparison of this exact closed-form solution with finite-element
method for several transient problems in porous media. Yazdchi et al. [9, 10] combined
the finite element method with the boundary element method and the infinite element
method, constructed the finite-infinite element method and the finite-boundary element
method to deal with the two-phase model in lateral extensive field and obtained better result.
Zhao et al. [11] proposed an explicit finite element method for Biot dynamic formulation
in fluid-saturated porous medium. It does not need to assemble a global stiffness matrix
and solve a set of linear equations in each time step by using the decoupling-technique.
For the problem of local high gradient, finite element method improves the calculation
precision by employing the higher-order polynomial or the denser mesh. However, the
increment of polynomial order and mesh knots inevitably needs more computational
work. Meanwhile, the condition of numerical dissipation will limit the frequency range
that can be obtained. To overcome these disadvantages, wavelet analysis is introduced to
the finite-element method in this paper. As a new method, the development of wavelet
analysis is recent fairly in many fields. Its desirable advantages are the multiresolution
analysis property and various basis functions for structure analysis. According to different
requirement, the corresponding scaling functions and wavelet functions can be adopted
to improve the numerical calculation precision. Especially, those wavelets with compactly
supported property and orthogonality, such as Daubechies wavelets, can play an important
role in many problems [12]. Because of the compactly supported property, if the Daubechies
wavelets are considered as the interpolation functions of the finite element method, the
coefficient matrices obtained are sparse matrices and their condition number can be proved
independent of the dimension [13]. Moreover, a new method could be provided because of
the existence of various basis functions, which can increase the resolution without changing
mesh.

In this paper, the wavelet Galerkin finite element method is applied to the direct
simulation of the wave equation in the fluid-saturated porous medium. The scaling functions
of Daubechies wavelets are considered as the interpolation basis functions instead of the
polynomial functions and the wavelet element is constructed. Because a kind of characteristic
function is introduced, the integral difficulty for lacking of the explicit expression for the
Daubechies wavelets is solved. Based on the recursive expression of calculating the function
values of Daubechies wavelets on the fraction nodes, the rapid wavelet transform between
the wavelet coefficient space and the wave field displacement space is constructed and
reduces the computational cost. The results of numerical simulation demonstrate the method
is effective.
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2. Wavelet Galerkin Finite-Element Method

2.1. Wavelet Galerkin Finite-Element Method

For purpose of constructing the wavelet Galerkin finite element method, we consider a typical
boundary value problem:

L(u, v) = f, (2.1)

B(u, v)|∂Ω = g, (2.2)

where L(·, ·) is differential operator, B(·, ·) is boundary operator, u, v are the unknown
functions in the solving domain Ω, and ∂Ω is the boundary.

Supposing u, v are the exact solutions of (2.1) and (2.2), then one gets

L(u, v) − f ≡ 0, (2.3)

and if L(u, v) and f are continuous, (2.3) is equal to

∫
Ω

(
L(u, v) − f

)
φkdxdy = 0. (2.4)

In fact, because of the derivation of one-dimensional wavelet basis element facilitates
a straightforward discussion of multidimensional tensor product wavelet basis element and
multiresolution analysis property of wavelet function [12], the functions u, v can be assumed
to consist of a superposition of scaling functions at j level and wavelet functions at the same
and higher levels:

u
(
x, y
)
= U1(x)U2

(
y
)
, (2.5)

v
(
x, y
)
= V1(x)V2

(
y
)
, (2.6)

where

U1(x) =
∑
k

aj,kφjk(x) +
∑
i≥j,k

ai,kψik(x),

U2
(
y
)
=
∑
k

bj,kφjk
(
y
)
+
∑
i≥j,k

bi,kψik
(
y
)
,

V1(x) =
∑
k

cj,kφjk(x) +
∑
i≥j,k

ci,kψik(x),

V2
(
y
)
=
∑
k

dj,kφjk
(
y
)
+
∑
i≥j,k

di,kψik
(
y
)
.

(2.7)
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Upon substituting (2.4) and (2.5) into (2.3), we can obtain an equation system of
wavelet coefficients, whose coefficient matrix consists of the following integrals:

∫
Ω
φjqψir ,

∫
Ω
φjqφjr ,

∫
Ω
ψiqψlr ,

∫
Ω
φ
(m)
jq ψ

(n)
ir ,

∫
Ω
φ
(m)
jq φ

(n)
jr ,

∫
Ω
ψ
(m)
iq ψ

(n)
lr .

(2.8)

In conventional finite element method, these integrals would be calculated by Gauss
quadrature formulae. However, it is not feasible for most wavelet functions. In many cases,
there is no explicit expression for the function, in this paper, we choose the Daubechies
wavelet as the basis function, and they cannot be integrated numerically due to their unusual
smoothness characteristics. Moreover, the wavelet function is defined in terms of scaling
function, so these integrals can be rewritten in terms of scaling function alone.

Define the connection coefficients [14–16]:

Γ0,0
p,r =

∫
Ω
φ
(
x − p

)
φ(x − r)dx,

Γm,np,r =
∫
Ω

d(m)φ

dxm
(
x − p

)d(n)φ

dxn
(x − r)dx,

=
∫
Ω
φ(m)(x − p)φ(n)(x − r)dx.

(2.9)

Once these integrals can be calculated, all the integrals in (2.8) can be obtained and
eventually construct the stiffness matrix and load matrix of wavelet Galerkin finite element
method.

2.2. The Calculation of Wavelet Connection Coefficients

From what has been discussed earlier, the quality matrix, stiffness matrix, and the load matrix
are composed of the integral values of Daubechies wavelets. However, it is well known that
Daubechies wavelets have no explicit expression. In order to solve this problem, a kind of
characteristic function is introduced:

χ[0,1](x) =

⎧⎨
⎩

1 0 ≤ x ≤ 1,

0 otherwise.
(2.10)

Set ξ = 2x then

χ[0,1]

(
ξ

2

)
=

⎧⎨
⎩

1 0 ≤ ξ ≤ 2,

0 otherwise.
(2.11)
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So the trivial two-scale equation of characteristic function is obtained:

χ[0,1]

(
ξ

2

)
= χ[0,1](ξ) + χ[1,2](ξ) = χ[0,1](ξ) + χ[0,1](ξ − 1). (2.12)

Set

τ0,0
k,s

=
∫
R

χ[0,1](x)φ(x − k)φ(x − s)dx. (2.13)

Substituting φ(x) =
∑

k akφ(2x − k) into (2.13), one obtains

τ0,0
k,s =

∫
R

χ[0,1](x)
∑
l

alφ(2(x − k) − l)
∑
m

amφ(2(x − s) −m)dx

=
∫
R

χ[0,1](x)
∑
l

∑
m

alamφ(2x − 2k − l)φ(2x − 2s −m)dx

=
1
2

∫
R

χ[0,1]

(
ξ

2

)∑
l

∑
m

alamφ(ξ − 2k − l)φ(ξ − 2s −m)dξ

=
1
2

∑
l

∑
m

alam

∫
R

(
χ[0,1](ξ) + χ[0,1](ξ − 1)

)
φ(ξ − 2k − l)φ(ξ − 2s −m)dξ

=
1
2

∑
l

∑
m

alam

∫
R

χ[0,1](ξ)φ(ξ − 2k − l)φ(ξ − 2s −m)dξ

+
1
2

∑
l

∑
m

alam

∫
R

χ[0,1](ξ − 1)φ(ξ − 2k − l)φ(ξ − 2s −m)dξ

=
1
2

∑
l

∑
m

alamτ
0,0
2k+l,2s+m +

1
2

∑
l

∑
m

alamτ
0,0
2k+l−1,2s+m−1

=
1
2

∑
p

∑
r

(
ap−2kar−2s + ap−2k+1ar−2s+1

)
τ0,0
p,r .

(2.14)

It is not difficult to show that we will require the solution of an eigenvalue problem
having the form

τ0,0
k,s

=
1
2
A′τ0,0

p,r
′
, 2N − 1 ≤ k, s ≤ 0, 2N − 1 ≤ p, r ≤ 0, (2.15)

whereA′ is a (2N−1)×(2N−1) partitioned matrix, each submatrix is also a (2N−1)×(2N−1)
matrix, in which a′sr = ap−2kar−2s + ap−2k+1ar−2s+1.

Considering the requirement of numerical simulation set

1 ≤ i = s + 8 ≤ 8, 1 ≤ j = r + 8 ≤ 8, 1 ≤ m = k + 8 ≤ 8, 1 ≤ n = p + 8 ≤ 8, (2.16)

then A′
kp

is changed to A′mn, in which ã′ij = an−2m+8aj−2i+8 + an−2m+9aj−2i+9.
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However, the eigenvalue problem does not uniquely define the solution, it is essential
to introduce an additional condition to define the solution uniquely.

It is well known that the Daubechies wavelets satisfy

1 =
∑
k

φ(x − k). (2.17)

By multiplying (2.17) by itself, and subsequently multiplying the product by the
characteristic function χ[0,1](x), one obtains

1 =
∑
k

∑
l

φ(x − k)φ(x − l),

χ[0,1](x) =
∑
k

∑
l

χ[0,1](x)φ(x − k)φ(x − l).
(2.18)

Now, a single integration yields a first normalization condition:

1 =
∑
k

∑
l

τ0,0
k,l
. (2.19)

So, the unique solution of the eigenvalue problem is defined.
The same step can be followed to calculate

τm,n
k,s

=
∫
R

χ[0,1](x)φ(m)(x − k)φ(n)(x − s)dx. (2.20)

Substituting φ(m)(x) = 2m
∑

l alφ
(m)(2x − k) and φ(n)(x) = 2n

∑
q aqφ

(n)(2x − k) into
(2.20), one gets

τm,n
k,s

=
∫
R

χ[0,1](x)2m+n
∑
l

alφ
(m)(2(x − k) − l)

∑
q

aqφ
(n)(2(x − s) − q)dx

= 2m+n
∫
R

χ[0,1](x)
∑
l

∑
q

alaqφ
(m)(2x − 2k − l)φ(n)(2x − 2s − q

)
dx

= 2m+n−1
∫
R

χ[0,1]

(
ξ

2

)∑
l

∑
q

alaqφ
(m)(ξ − 2k − l)φ(n)(ξ − 2s − q

)
dξ

= 2m+n−1
∑
l

∑
q

alaq

∫
R

(
χ[0,1](ξ) + χ[0,1](ξ − 1)

)
φ(m)(ξ − 2k − l)φ(n)(ξ − 2s − q

)
dξ
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= 2m+n−1
∑
l

∑
q

alaq

∫
R

χ[0,1](ξ)φ(m)(ξ − 2k − l)φ(n)(ξ − 2s − q
)
dξ

+ 2m+n−1
∑
l

∑
q

alaq

∫
R

χ[0,1](ξ − 1)φ(m)(ξ − 2k − l)φ(n)(ξ − 2s − q
)
dξ

= 2m+n−1
∑
l

∑
q

alaqτ
m,n
2k+l,2s+q + 2m+n−1

∑
l

∑
q

alaqτ
m,n
2k+l−1,2s+q−1

= 2m+n−1
∑
p

∑
r

(
ap−2kar−2s + ap−2k+1ar−2s+1

)
τm,np,r ,

(2.21)

namely,

τm,n
k,s

= 2m+n−1A′τm,np,r . (2.22)

The polynomial reproducing property is employed to construct the additional
condition:

xm =
∑
k

pkφ(x − k), (2.23)

xn =
∑
l

plφ(x − l), (2.24)

Explicit form for calculating the coefficients pkpl can be found in [17].
By differentiating (2.23)m times, one obtains

m! =
∑
k

pkφ
(m)(x − k). (2.25)

By differentiating (2.24) n times, one gets

n! =
∑
l

plφ
(n)(x − l). (2.26)

However (2.25) can be multiplied by (2.26), and subsequently multiplying the product
by the characteristic function χ[0,1](x),

m!n!χ[0,1](x) =
∑
k

∑
l

χ[0,1](x)pkplφ(m)(x − k)φ(n)(x − l). (2.27)

By integrating (2.27), one obtains the additional condition.

m!n! =
∑
k

∑
l

pkplτ
m,n
k,l

. (2.28)

Then, the unique solution of the eigenvalue problem is defined.
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3. Wavelet Galerkin Finite-Element Solution of 1D Elastic Wave
Equation in Fluid-Saturated Porous Medium

From the Biot theory, the 1D differential equation governing wave propagation in the fluid-
saturated porous medium, without fluid viscosity, can be expressed as

∂

∂x

((
λ + 2μ + αM

)∂u
∂x

)
+

∂

∂x

(
αM

∂ω

∂x

)
= ρü + ρfω̈ − f1,

∂

∂x

(
αM

∂u

∂x

)
+

∂

∂x

(
M

∂ω

∂x

)
= ρf ü +mω̈ − f2,

(3.1)

where u is the solid displacement and ω is the relative fluid to solid displacement. β is the
porosity, ρ = (1 − β)ρs + βρf is the bulk density of solid-fluid mixture, and ρs and ρf are the
densities of solid and fluid, respectively. Also t is time and λb, μ are the Lame coefficients, λ =
λb +α2M, where α is the effective stress parameter and M is the compressibility of pore fluid.
α = 1−Kb/Ks, M = Ks/[α+β(Ks/Kf −1)] where Ks,Kf ,Kb are the bulk change modulus of
the solid, fluid, and skeleton, respectively. Moreover Kb = λb + 2μ/3, m = ρf/β, Finally f is
seismic focus, and f1 = (1 − β)f , f2 = β(2β − 1)f .

Multiplying both sides of the fluid-saturated porous medium wave equation by the
Daubechies wavelets basis function φjk(x) = 2j/2φ(2jx − k), and integrating them at [0, L],
we can get

∫L
0

(
∂

∂x

((
λ + 2μ + αM

)∂u
∂x

)
+

∂

∂x

(
αM

∂ω

∂x

))
φjk(x)dx =

∫L
0

(
ρü + ρfω̈ − f1

)
φjk(x)dx

∫L
0

(
∂

∂x

(
αM

∂u

∂x

)
+

∂

∂x

(
M

∂ω

∂x

))
φjk(x)dx =

∫L
0

(
ρf ü +mω̈ − f2

)
φjk(x)dx.

(3.2)

By using integration by part

(
λ + 2μ + αM

)∂u
∂x

φjk(x)
∣∣∣∣
L

0
−
∫L

0

(
λ + 2μ + αM

)∂u
∂x

∂φjk(x)
∂x

dx + αM
∂ω

∂x
φjk(x)

∣∣∣∣
L

0

−
∫L

0
αM

∂ω

∂x

∂φjk(x)
∂x

dx =
∫L

0

(
ρü + ρfω̈ − f1

)
φjk(x)dx,

(3.3)

αM
∂u

∂x
φjk(x)

∣∣∣∣
L

0
−
∫L

0
αM

∂u

∂x

∂φjk(x)
∂x

dx + M
∂ω

∂x
φjk(x)

∣∣∣∣
L

0
−
∫L

0
M

∂ω

∂x

∂φjk(x)
∂x

dx

=
∫L

0

(
ρf ü +mω̈ − f2

)
φjk(x)dx.

(3.4)
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Set

u(x, t) =
0∑

l=2−2N−2jL

al(t)φjl(x),

ω(x, t) =
0∑

l=2−2N−2jL

bl(t)φjl(x).

(3.5)

Upon substituting (3.5) into (3.3) and (3.4), one gets

(
λ + 2μ + αM

)∂u
∂x

φjk(x)
∣∣∣∣
L

0
+αM

∂ω

∂x
φjk(x)

∣∣∣∣
L

0

−
∫L

0

((
λ + 2μ + αM

) 0∑
l=2−2N−2jL

al(t)
∂φjl(x)
∂x

∂φjk(x)
∂x

+ αM
0∑

l=2−2N−2jL

bl(t)
∂φjl(x)
∂x

∂φjk(x)
∂x

)
dx

=
∫L

0

(
ρ

0∑
l=2−2N−2jL

a′′l (t)φjl(x) + ρf
0∑

l=2−2N−2jL

b′′l (t)φjl(x) − f1

)
φjk(x)dx,

αM
∂u

∂x
φjk(x)

∣∣∣∣
L

0
+ M

∂ω

∂x
φjk(x)

∣∣∣∣
L

0

−
∫L

0

(
αM

0∑
l=2−2N−2jL

al(t)
∂φjl(x)
∂x

∂φjk(x)
∂x

+M
0∑

l=2−2N−2jL

bl(t)
∂φjl(x)
∂x

∂φjk(x)
∂x

)
dx

=
∫L

0

(
ρf

0∑
l=2−2N−2jL

a′′l (t)φjl(x) +m
0∑

l=2−2N−2jL

b′′l (t)φjl(x) − f2

)
φjk(x)dx.

(3.6)

By rearranging, (3.6) and become

(
λ + 2μ + αM

)∂u
∂x

φjk(x)
∣∣∣∣
L

0
+αM

∂ω

∂x
φjk(x)

∣∣∣∣
L

0

−
((

λ + 2μ + αM
) 0∑
l=2−2N−2jL

al(t) + αM
0∑

l=2−2N−2jL

bl(t)

)∫L
0

∂φjl(x)
∂x

∂φjk(x)
∂x

dx

=

(
ρ

0∑
l=2−2N−2jL

a′′l (t) + ρf
0∑

l=2−2N−2jL

b′′l (t)

)∫L
0
φjl(x)φjk(x)dx − f1

∫L
0
φjk(x)dx,

αM
∂u

∂x
φjk(x)

∣∣∣∣
L

0
+ M

∂ω

∂x
φjk(x)

∣∣∣∣
L

0

−
(
αM

0∑
l=2−2N−2jL

al(t) +M
0∑

l=2−2N−2jL

bl(t)

)∫L
0

∂φjl(x)
∂x

∂φjk(x)
∂x

dx

=

(
ρf

0∑
l=2−2N−2jL

a′′l (t) +m
0∑

l=2−2N−2jL

b′′l (t)

)∫L
0
φjl(x)φjk(x)dx − f2

∫L
0
φjk(x)dx.

(3.7)
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If select L = 1, j = 0, (3.5) become

u(x, t) =
0∑

l=1−2N

al(t)φ(x − l)

ω(x, t) =
0∑

l=1−2N

bl(t)φ(x − l)

(3.8)

Set

A = (a1−2N, a2−2N · · ·a0) B = (b1−2N, b2−2N · · · b0),

R = (A,B)T = (a1−2N, a2−2N · · ·a0, b1−2N, b2−2N · · · b0)
T .

(3.9)

Then, (3.7) can be changed into an equation system of coefficient R:

MR̈ + PR = F +Q, (3.10)

where

M =

(
ρE ρfE

ρfE mE

)
, P =

(
−
(
λ + 2μ + αM

)
G −αMG

−αMG −MG

)
, F =

(
F1

F2

)
,

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫1

0
AAdx

∫1

0
BAdx · · ·

∫1

0
φ(x)Adx

∫1

0
ABdx

∫1

0
BBdx · · ·

∫1

0
φ(x)Bdx

...
...

...
...∫1

0
Aφ(x)dx

∫1

0
Bφ(x)dx · · ·

∫1

0
φ(x)φ(x)dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫1

0
CCdx

∫1

0
DCdx · · ·

∫1

0
φ′(x)Cdx

∫1

0
CDdx

∫1

0
DDdx · · ·

∫1

0
φ′(x)Ddx

...
...

...
...∫1

0
Cφ′(x)dx

∫1

0
Dφ′(x)dx · · ·

∫1

0
φ′(x)φ′(x)dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F1 = f1

(∫1

0
Adx,

∫1

0
Bdx, . . . ,

∫1

0
φ(x)dx

)T

,
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F2 = f2

(∫1

0
Adx,

∫1

0
Bdx, . . . ,

∫1

0
φ(x)dx

)T

,

Q = (Q1,Q2)T ,

Q1 =
(
(λ + 2μ + αM)

∂u

∂x
+ αM

∂ω

∂x

)(
A,B · · ·φ(x)

)T ∣∣∣∣
1

0
,

Q2 =
(
αM

∂u

∂x
+M

∂ω

∂x

)(
A,B · · ·φ(x)

)T ∣∣∣∣
1

0
,

(3.11)

where A denote φ(x− 1+ 2N), B denote φ(x− 2+ 2N), C denote φ′(x− 1+ 2N) and D denote
φ′(x − 2 + 2N).

Using the second-order center difference to approximate the two derivatives in (3.10),
we can obtain

M
Rn+1 − 2Rn + Rn−1

(Δt)2
+ PRn = F +Q. (3.12)

Arranging (3.12), we have

MRn+1 =
(

2M − (Δt)2P
)
Rn −MRn−1 + (Δt)2F + (Δt)2Q, (3.13)

given the initial conditions:

ak(0) = bk(0) = 0, ak(1) = bk(1) = 0. (3.14)

So, we can obtain the wavelet coefficients at each time level by solving (3.13) and
(3.14) with some boundary conditions, and then substitute the wavelet coefficients into (3.8),
the wave field displacements can be obtained.

4. Rapid Wavelet Transform

In order to obtain the wave field displacements conveniently and quickly, the fast wavelet
transform between the wavelet coefficients space and the wave field displacements space is
constructed as follows:

U = ΦP, (4.1)

U is the wave field displacement vector, P is the wavelet coefficient vector, Φ is the wavelet
transform matrix.
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For the sake of simplicity, take the DB2 wavelet as the example. There are 7 nodes in
solution field:

U =
(
u

(
1
8

)
, u

(
1
4

)
, u

(
3
8

)
, u

(
1
2

)
, u

(
5
8

)
, u

(
3
4

)
, u

(
7
8

))T
, P =

(
p−2, p−1, p0

)T
,

Φ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ

(
1
8
+ 2
)

φ

(
1
8
+ 1
)

φ

(
1
8

)

φ

(
1
4
+ 2
)

φ

(
1
4
+ 1
)

φ

(
1
4

)

φ

(
3
8
+ 2
)

φ

(
3
8
+ 1
)

φ

(
3
8

)

φ

(
1
2
+ 2
)

φ

(
1
2
+ 1
)

φ

(
1
2

)

φ

(
5
8
+ 2
)

φ

(
5
8
+ 1
)

φ

(
5
8

)

φ

(
3
4
+ 2
)

φ

(
3
4
+ 1
)

φ

(
3
4

)

φ

(
7
8
+ 2
)

φ

(
7
8
+ 1
)

φ

(
7
8

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.2)

It is important for constructing the fast wavelet transform to solve the function values
of the Daubechies wavelets on the fraction nodes. So, the recursive expression of calculating
the function values of Daubechies wavelets on the fraction nodes is deduced to save the
computational cost.

Φ
(

2ni + p
2n

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AΦ

(
2n−1i + q

2n−1

)
if 2 ·

p

2n
≤ 1

BΦ

(
2n−1i + q

2n−1

)
if 2 ·

p

2n
> 1

(4.3)

in which i = 0, 1, . . . 2N − 2, p = 1 : 2 : 2n − 1, q = p mod 2n−1, n controls the mesh partition.

5. Numerical Simulation

To verify the correctness and accuracy of the wavelet Galerkin finite element method, two
examples are given to compare the results obtained by this method with an analytical
solution. An one-dimensional column of length l as sketched in Figure 1 is considered. It is
assumed that the side walls and the bottom are rigid, frictionless, and impermeable. At top,



Mathematical Problems in Engineering 13

the stress σy and the pressure p are prescribed. The boundary conditions are

u|y=0 = ω|y=0 = 0,

σ|y=l = −P0f(t),

p
∣∣
y=l = 0.

(5.1)

For this model, if the permeability tends to infinity, that is, κ → ∞, the analytical
solutions in time domain are [18]

uy =
P0

E(d1λ2 − d2λ1)

∞∑
n=0

(−1)−n
{
d2
[(
t − λ1

(
l(2n + 1) − y

))
H
(
t − λ1

(
l(2n + 1) − y

))

−
(
t − λ1

(
l(2n + 1) + y

))
H
(
t − λ1

(
l(2n + 1) + y

))]

− d1
[(
t − λ2

(
l(2n + 1) − y

))
H
(
t − λ2

(
l(2n + 1) − y

))

−
(
t − λ2

(
l(2n + 1) + y

))
H
(
t − λ2

(
l(2n + 1) + y

))]}
,

(5.2)

p =
P0d1d2

E(d1λ2 − d2λ1)

∞∑
n=0

(−1)−n
[
H
(
t − λ1

(
l(2n + 1) − y

))
+H
(
t − λ1

(
l(2n + 1) + y

))

−H
(
t − λ2

(
l(2n + 1) − y

))
+H
(
t − λ2

(
l(2n + 1) + y

))]
,

(5.3)

where E is Young modulus, assuming a Heaviside step function as temporal behavior, that
is, f(t) = H(t), and together with vanishing initial conditions:

di =
Eλ2

i −
(
ρ − ρf

)
(α −Q)λi

(i = 1, 2),

Q =
β2ρf

ρα + βρf
(κ → ∞),

ρα = 0.66βρf .

(5.4)

However λi are the characteristic roots of following characteristic equation

E
Q

ρf
λ4 −

(
E −

β2

M
+
(
ρ −Qρf

)Q
ρf

+ (α −Q)2

)
λ2 +

β2(ρ −Qρf)
M

= 0. (5.5)
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l

y
σ ρ

x

Figure 1: Model of fluid saturated porous medium.

Table 1: The parameters of fluid saturated porous medium.

Kb(Pa) G(Pa) ρ(kg/m3) β Ks(Pa) ρf (kg/m3) Kf (Pa)

rock 8.0 × 109 6.0 × 109 2548 0.19 3.6 × 1010 1000 3.3 × 109

soil 2.1 × 108 9.8 × 107 1884 0.48 1.1 × 1010 1000 3.3 × 109

sediment 3.7 × 107 2.2 × 107 1396 0.76 3.6 × 1010 1000 2.3 × 109

Supposing

A = E
Q

ρf
, B = E −

β2

M
+
(
ρ −Qρf

)Q
ρf

+ (α −Q)2,

C =
β2(ρ −Qρf)

M
,

(5.6)

one gets

λ1 = −λ3 =

√
B +
√
B2 − 4AC
2A

,

λ2 = −λ4 =

√
B −
√
B2 − 4AC
2A

.

(5.7)

In the first example, the length of column is chosen as l = 1000 m, and three
very different materials, a rock (Berea sandstone), a soil (coarse sand), and a sediment
(mud) are chosen. The material data are given in Table 1. In Figures 2, 3, 4, we record the
pressure p(t, y = 995 m), five meters behind the excitation (y = l = 1000 m). The numerical
results (plotted with dot) are compared with the analytical solution (5.3), shown as solid
lines in Figures 2, 3, 4. In the second example, the length of column is chosen as l = 10 m. We
choose a material-soil, Figures 5, 6 demonstrate the numerical results—the displacements
uy(t, y = 5 m) and the pressure p(t, y = 5 m). All the figures show that the numerical
solutions are perfectly close to the analytical solutions, so the method developed in this paper
has a very high degree of calculating accuracy.
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Figure 2: The pressure of rock (l = 1000 m, y = 995 m).
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Figure 3: The pressure of soil (l = 1000 m, y = 995 m).

6. Conclusion

In this article, the wavelet Galerkin finite element method is constructed by combining the
finite element method with wavelet analysis, and is applied to the numerical simulation
of the fluid-saturated porous medium elastic wave equation. For the beautiful and deep
mathematic properties of Daubechies wavelets, such as the compactly supported property
and vanishing moment property, the wavelet Galerkin finite element method has the
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Figure 4: The pressure of sediment (l = 1000 m, y = 995 m).
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Figure 5: The displacement of soil (l = 1000 m, y = 5 m).

feature of quick iterative rate and high numerical precision. Moreover, contrasts to h- or
p-based FEM, a new refine algorithm can be presented because of the multi-resolution
property of the wavelet analysis. The algorithm can increase the numerical precision by
adopting various wavelet basis functions or various wavelet spaces, without refining the
mesh.
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Figure 6: The pressure of soil (l = 1000 m, y = 5 m).
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