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In a recent works Liu and Wang (2008; 2007) study the Mannheim partner curves in the three
dimensional space. In this paper, we extend the theory of the Mannheim curves to ruled surfaces
and define two ruled surfaces which are offset in the sense of Mannheim. It is shown that, every
developable ruled surface have a Mannheim offset if and only if an equation should be satisfied
between the geodesic curvature and the arc-length of spherical indicatrix of it. Moreover, we
obtain that the Mannheim offset of developable ruled surface is constant distance from it. Finally,
examples are also given.
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1. Introduction

A surface is said to be “ruled” if it is generated by moving a straight line continuously in
Euclidean space E

3. Ruled surfaces are one of the simplest objects in geometric modeling.
One important fact about ruled surfaces is that they can be generated by straight lines.

One would never know this from looking at the surface or its usual equation in terms of x, y,
and z coordinates, but ruled surfaces can all be rewritten to highlights the generating lines. A
practical application of ruled surfaces is that they are used in civil engineering. Since building
materials such as wood are straight, they can be thought of as straight lines. The result is that
if engineers are planning to construct something with curvature, they can use a ruled surface
since all the lines are straight.

Among ruled surfaces, developable surfaces form an important subclass since they
are useful in sheet metal design and processing. Every developable surface can be obtained
as the envelope surface of a moving plane (under a one-parameter motion). Developable
ruled surfaces are well-known and widely used in computer aided design and manufacture.
A “developable” ruled surface is a surface that can be rolled on a plane, touching along
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the entire surface as it rolls. Such a surface has a constant tangent plane for the whole
length of each ruling. Parallel geodesic loops (in a direction perpendicular to the rulings) on
closed developable ruled surfaces all have the same length; such surfaces are thus “constant
perimeter” surfaces.

In the past, offsets of ruled surfaces have been the subject of some studies: Ravani and
Ku [1], studied Bertrand offsets of ruled surfaces. Pottman et al. [2], presented classical and
circular offsets of rational ruled surfaces.

In this paper, the Mannheim offsets of ruled surfaces are considered. It is shown that a
theory similar to that of the Mannheim partner curves can be developed for ruled surfaces.

2. Mannheim Offset of a Curve

Offset curves play an important role in areas of CAD/CAM, robotics, cam design and
many industrial applications, in particular in mathematical modeling of cutting paths milling
machines. The classic work in this area is that of Bertrand [3], who studied curve pairs which
have common principal normals. Such curves referred to as Bertrand curves and can be
considered as offsets of one another. Another kind of associated curves is the Mannheim
offsets.

In plane, a curve α rolls on a straight line, the center of curvature of its point of contact
describes a curve β which is the Mannheim of α, [4].

The theory of the Mannheim curves has been extended in the three dimensional
Euclidean space by Liu and Wang [5, 6].

Let C and C∗ be two space curves. C is said to be a Mannheim partner curve of C∗, if
there exists a one to one correspondence between their points such that the binormal vector
of C is the principal normal vector of C∗. Such curves are referred to as “Mannheim offsets,”
[5].

Let C∗ : α = α(s∗) be a Mannheim curve with the arc-length parameter s∗. Then C :
β = β(s) is the Mannheim partner curve of C∗ if and only if the curvature κ and the torsion τ
of C satisfy the following equation

τ̇ =
dτ

ds
=

κ

λ

(
1 + λ2τ2) (2.1)

for some nonzero constant λ, [5].
The detailed discussion concerned with the Mannheim curves can be found in [5, 6].

3. Differential Geometry of Ruled Surfaces

A ruled surface is generated by a one-parameter family of straight lines and it possesses a
parametric representation,

ϕ(s, v) = α(s) + ve(s), (3.1)

where α(s) represents a space curve which is called the base curve and e is a unit vector
representing the direction of a straight line.
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The vector e traces a curve on the surface of unit sphere S2 called spherical indicatrix of
the ruled surface, [1].

The orthonormal system {e, t,g} is called the geodesic Frenet thiedron of the ruled surface
ϕ such that t = es/‖es‖ and g = (e × es)/‖es‖ are the central normal and the asymptotic normal
direction of ϕ, respectively.

For the geodesic Frenet vectors e, t and g, we can write

eq = t

tq = γg − e

gq = −γt,
(3.2)

where q and γ are the arc-length of spherical indicatrix (e) and the geodesic curvature of (e)
with respect to S2, respectively [1].

The striction point on a ruled surface ϕ is the foot of the common normal between two
consecutive generators (or ruling). The set of striction points defines the striction curve given
by

c(s) = α(s) − 〈αs, es〉
〈es, es〉 e(s). (3.3)

If consecutive generators of a ruled surface intersect, then the surface is said to be
developable. The spherical indicatrix, e, of a developable surface is tangent of its striction curve,
[1].

The distribution parameter of the ruled surface ϕ is defined by

Pe =
det

(
αs, e, es

)

∥∥es
∥∥2

. (3.4)

The ruled surface is developable if and only if Pe = 0.
In this paper, the striction curve of the ruled surface ϕ will be taken as the base curve.

In this case, for the parametric equation of ϕ, we can write

ϕ(s, v) = c(s) + ve(s). (3.5)

4. Mannheim Offsets of Ruled Surfaces

The ruled surface ϕ∗ is said to be Mannheim offset of the ruled surface ϕ if there exists a one to
one correspondence between their rulings such that the asymptotic normal of ϕ is the central
normal of ϕ∗. In this case, (ϕ, ϕ∗) is called a pair of Mannheim ruled surface.

Let ϕ and ϕ∗ be two ruled surfaces which is given by

ϕ(s, v) = c(s) + ve(s),
∥∥e(s)

∥∥ = 1,

ϕ∗(s, v) = c∗(s) + ve∗(s),
∥∥e∗(s)

∥∥ = 1,
(4.1)

where (c) and (c∗) are the striction curves of ϕ and ϕ∗, respectively.
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If ϕ∗ is a Mannheim offset of ϕ, then we can write

⎡

⎣
e∗

t∗

g∗

⎤

⎦ =

⎡

⎣
cos θ sin θ 0

0 0 1
sin θ − cos θ 0

⎤

⎦

⎡

⎣
e
t
g

⎤

⎦ , (4.2)

where {e, t,g} and {e∗, t∗,g∗} are the geodesic Frenet triplies at the point c(s) and c∗(s) of the
striction curves of ϕ and ϕ∗, respectively.

The equation of ϕ∗ in terms of ϕ can therefore be written as

ϕ∗(s, v) = c(s) + R(s)g(s) + v
[

cos θe(s) + sin θt(s)
]
, (4.3)

where R = R(s) is distance between corresponding striction points and θ is the angle between
corresponding rulings.

Let the ruled surface ϕ∗ be Mannheim offset of the ruled surface ϕ. By definition,

t∗ = g. (4.4)

From the definition t∗, we get t∗ = e∗s/‖e∗s‖.
Because of the last two equation, we have e∗s = λg (λ a scalar). Since the base curve of

ϕ∗ is its striction curve, we get 〈c∗s, e∗s〉 = 0.
From the equality e∗s = λg it follows that 〈(c + Rg)s,g〉 = 0 It therefore follows that

‖es‖Pe + Rs = 0. Thus we have the following theorem.

Theorem 4.1. Let the ruled surface ϕ∗ be Mannheim offset of the ruled surface ϕ. Then ϕ is
developable if and only if R is a constant.

Theorem 4.2. Let the ruled surface ϕ∗ be Mannheim offset of the developable ruled surface ϕ. Then
ϕ∗ is developable if and only if the following relationship can be written

sin θ + Rγqs cos θ = 0. (4.5)

Proof. Suppose that ϕ∗ is developable. Then we have

c∗s = μe∗ (μ a scalar), (4.6)

where s is the arc-length parameter of the striction curve (c) of ϕ. Then we obtain

cs + Rqsgq + Rsg = μ[cos θe + sin θt]. (4.7)

From Theorem 4.1 and the realtion (3.2), we get

e + Rqs
( − γt

)
= μ cos θe + μ sin θt. (4.8)
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The last equation implies that

sin θ + Rγqs cos θ = 0. (4.9)

Conversely, suppose that the equality

sin θ + Rγqs cos θ = 0 (4.10)

is satisfied. For the tangent of the striction curve of ϕ∗, we can write,

c∗s =
(
c + Rg

)
s

= e − Rγqst

=
1

cos θ
[cos θe + sin θt]

=
1

cos θ
e∗.

(4.11)

Thus, ϕ∗ is developable.

Theorem 4.3. Let ϕ be a developable ruled surface. The developable ruled surface ϕ∗ is a Mannheim
offset of the ruled surface ϕ if and only if the following relationship is satisfied:

γs =
dγ

ds
=

1
R

(
1 + R2γ2q2

s

) − 1
qs

γqss. (4.12)

Proof. Suppose that the developable ruled surface ϕ∗ is a Mannheim offset of ϕ. Because of
Theorem 4.2, we get

Rγqs = − tan θ. (4.13)

Using (4.2) and the chain rule of differentiation, we can write

e∗s = − sin θ
(
θs + qs

)
e + cos θ

(
θs + qs

)
t + γqs sin θg. (4.14)

From (4.14) and definition of t∗, we have

θs = −qs. (4.15)

By taking the derivative of (4.13) with respect to arc s and using (4.15), we obtain

γs =
dγ

ds
=

1
R

(
1 + R2γ2q2

s

) − 1
qs

γqss. (4.16)
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Conversely, suppose that the equality γs = dγ/ds = (1/R)(1 + R2γ2q2
s) − (1/qs)γqss is

satisfied. For nonzero constant scalar R, we can define the ruled surface

ϕ∗(s, v) = c∗(s) + ve∗(s), (4.17)

where c∗(s) = c(s) + Rg(s).
We will prove that ϕ∗ is a Mannheim offset of ϕ. Since ϕ∗ is developable, we have

c∗s =
ds∗

ds
e∗, (4.18)

where s and s∗ are the arc-length parameter of the striction curves (c) and (c∗), respectively.
From the equality c∗(s) = c(s) + Rg(s) and (4.18), we get

ds∗

ds
e∗ = e − Rγqst. (4.19)

By taking the derivative of (4.19) with respect to arc s, we obtain

d2s∗

ds2
e∗ +

ds∗

ds
e∗s = Rγq2

se +
(
qs − Rγsqs − Rγqss

)
t − Rγ2q2

sg. (4.20)

From the hypothesis and the definition of t∗, we get

d2s∗

ds2
e∗ +

ds∗

ds
λt∗ = Rγq2

se − R2γ2q3
st − Rγ2q2

sg, (4.21)

where λ is a scalar.
By taking the cross product of (4.19) with (4.21), we have

(
ds∗

ds

)2

λg∗ = R2γ3q3
se + Rγ2q2

s t. (4.22)

Taking the cross product of (4.22) with (4.19), we obtain

(
ds∗

ds

)3

λt∗ = −(Rγ2q2
s + R3γ4q4

s

)
g. (4.23)

Thus, the developable ruled surface ϕ∗ is a Mannheim offset of the ruled surface ϕ.

Let the ruled surface ϕ∗ be a Mannheim offset of the ruled surface ϕ. If the ruled
surfaces which is generated by the vectors t∗ and g∗ of ϕ∗ denote by ϕt∗ and ϕg∗ , respectively,
then we can write

e∗1 = g, t∗1 = ∓t, g∗1 = ±e,
e∗2 = sin θe − cos θt, t∗2 = ∓g, g∗2 = ∓ cos θe ± sin θt,

(4.24)
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where {e∗1, t∗1,g∗1} and {e∗2, t∗2,g∗2} are the geodesic Frenet triplies of the striction curves of ϕt∗

and ϕg∗ , respectively. Therefore, from (4.24) we have the following.

Corollary 4.4. (a) ϕt∗ is a Bertrand offset of ϕ.

(b) ϕg∗ is a Mannheim offset of ϕ.

Now, one will investigate developable of ϕt∗ and ϕg∗ while ϕ is developable:
Let the ruled surface ϕ∗ be a Mannheim offset of the developable ruled surface ϕ. From (3.2),

(3.4), and (4.2), it is easy to see that,

Pt∗ =
1
γqs

, Pg∗ =
1

γqs cos θ
(cos θ − Rγqs sin θ). (4.25)

As an immediate result we have the following.

Corollary 4.5. (a) ϕt∗ is nondevelopable while ϕ is developable.

(b) ϕg∗ is developable while ϕ is developable if and only if the relationship cos θ−Rγqs sin θ = 0
is satisfied.

Example 4.6. The elliptic hyperboloid of one sheet is a ruled surface parametrized by

ϕ(s, v) =
(

cos(s) −
√

2
2

v sin(s), sin(s) +
√

2
2

v cos(s),
√

2
2

v

)
. (4.26)

A Mannheim offset of this surface is

ϕ∗(s, v) =
(

cos(s) −
√

2
2

sin(s)s −
(

1 +

√
2

2

)
v cos(s) sin(s),

sin(s) −
√

2
2

cos(s)s +
√

2
2

v cos2(s) − v sin2(s),
√

2
2

s +

√
2

2
v cos(s)

)
,

(4.27)

where R = R(s) = s.

Example 4.7. The surface

ϕ(s, v) =
(

cos
(√

2
2

s

)
−
√

2
2

v sin
(√

2
2

s

)
, sin

(√
2

2
s

)
+
√

2
2

v cos
(√

2
2

s

)
,

√
2

2
s +

√
2

2
v

)

(4.28)

is a developable ruled surface.
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Mannheim
offset

Hyperboloid
of one sheet

Figure 1: Hyperboloid of one sheet and its Mannheim offset.

Mannheim
offset

Developable
ruled surface

Figure 2: Developable ruled surface and its Mannheim offset.

A Mannheim offset of this surface is

ϕ∗(s, v) =
(

cos
(√

2
2

s

)
− 5

√
2

2
sin

(√
2

2
s

)
−
(

1 +

√
2

4

)
v sin

(√
2s
)
,

sin
(√

2
2

s

)
− 5

√
2

2
cos

(√
2

2
s

)
+
√

2
2

v cos2
(√

2
2

s

)
− v sin2

(√
2

2
s

)
,

√
2

2
s +

5
√

2
2

+
√

2
2

v cos
(√

2
2

s

))
,

(4.29)

where R = R(s) = 5. (See Figures 1 and 2.)

5. Conclusion

In this paper, a generalization of Mannheim offsets of curves for ruled surfaces has been
developed. Interestingly, there are many similarities between the theory of Mannheim offsets
in E

2 and the theory of Mannheim offsets of ruled surfaces in E
3. For instance, a ruled surface

can have an infinity of Mannheim offsets in the some way as a plane curve can have an infinity
of Mannheim mates. Furthermore, in analogy with three dimensional curves, a developable
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ruled surface can have a developable Mannheim offset if a equation holds between the
geodesic curvature and the arc-length of its spherical indicatrix.

Table of Symbols

E
3: Euclidean space of dimension three

κ: curvature of a curve
τ : torsion of a curve
s: arc-length
s∗: arc-length
S2: unit sphere
e: spherical indicatrix vector
t: central normal
g: asymptotic normal
(e): spherical indicatrix
γ : geodesic curvature of (e)
q: arc-length of (e)
(c): striction curve
Pe: distribution parameter
R = R(s): function of distance
〈, 〉: Riemannian metric
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[2] H. Pottmann, W. Lü, and B. Ravani, “Rational ruled surfaces and their offsets,” Graphical Models and
Image Processing, vol. 58, no. 6, pp. 544–552, 1996.
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