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This paper proposes a Proportional Derivative controller plus gravity compensation to damp
out the oscillations of a frictionless physical pendulum with moving mass. A mass slides along
the pendulum main axis and operates as an active vibration-damping element. The Lyapunov
method together with the LaSalle’s theorem allows concluding closed-loop asymptotic stability.
The proposed approach only uses measurements of the moving mass position and velocity and
it does not require synchronization of the pendulum and moving mass movements. Numerical
simulations assess the performance of the closed-loop system.
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1. Introduction

Vibrating mechanical systems are an important class of dynamic systems including buildings,
bridges, car suspensions, pacemakers, wind generators, and hi-fi speakers [1]. In physical
terms, the behavior of a vibrating system is describe by the interplay between an energy-
storing component and an energy-carrying component. Thus, the system dynamics are
described in terms of energy changes, that is, the motion of the system results from an energy
exchange. The control of vibrating mechanical systems is an important area of research, which
has provided technological solutions to several problems concerning oscillatory behaviors of
some important classes of dynamic systems. For instance, active control of vibrations allows
attenuating undesired oscillations in buildings affected by external forces such as strong
winds and earthquakes (see, e.g., [2–9] and the references therein), and computer-based
active suspension systems are now common in cars as a mean to improve road handling.

As far as mathematical tools are concerned, the control of vibrations has mainly been
tackled via frequency-domain techniques, which are essentially restricted to linear systems
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Figure 1: Physical pendulum with moving mass.

(see, e.g., [10, 11]). If the vibrating systems are nonlinear and if they oscillate too far away
from their equilibrium points, then, frequency-domain techniques are not suitable. In the case
of nonlinear systems characterized by small domains of attraction around their equilibrium
points, the linear approach is not very effective. Hence, modern approaches, employing time-
domain nonlinear control strategies, would yield better performance.

This paper focuses on active control of a class of underdamped lumped nonlinear
under-actuated vibrating mechanical systems following an energy-based approach, that is,
the control of vibrations is tackled via the shaping of the energy flow that characterizes
the system. The control of vibrations is considered in terms of the solution of a particular
asymptotic stabilizing feedback control problem around a selected equilibrium point. A
stabilizing controller is then obtained following an energy-based Lyapunov approach, which
exploits the physical properties of the mechanical system. Intuitively speaking, the energy-
based Lyapunov control shapes, using a feedback loop, the potential, and kinetic energies
of the controlled system to ensure a motion guaranteeing the control objective (see, e.g.,
[8, 12, 13]). Moreover, this approach requires the total energy of the system to be a non-
increasing function. The total energy function is also required to be at least locally positive
definite around the selected equilibrium point (see, e.g., [6, 7, 9, 13]). In this way, the proposed
approach avoids conservative control strategies based either on high gains or on canceling
nonlinear terms [14, 15].

The problem tackled in this work is the stabilization of a frictionless under-actuated
physical pendulum with a radially moving mass. This system was studied in [16], where
several control strategies solved the aforementioned stabilization problem. The proposed
stabilizing strategies include a modified nonlinear Proportional Derivative (PD) controller
and a neural network approach. Further works also studied this physical system [17, 18].
The proposed approach in these two references synchronizes the movement of the moving
mass with the pendulum oscillation to damp out the pendulum oscillation. It is interesting to
point out that the aforementioned approaches are mainly heuristic and they do not provide
rigorous stability proofs. Reference [19] provides a control algorithm based on a switching
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strategy. The model of the pendulum includes damping friction, and the proposed control law
needs measurement of the pendulum angle and the moving mass position. It is also worth
remarking that, if not properly tuned, the switching strategy could introduce unbounded
control signal chattering.

This paper proposes a simple control law for damping out the oscillation of a
frictionless pendulum through the movement of a mass sliding along the pendulum main
axis. The control law is composed of two parts, a linear PD controller corresponds to the
first part, and the second part is a constant term, that is, equal to the gravity force term
associated to the moving mass. Compared with previous approaches, the proposed control
law only needs measurements of the moving mass position and velocity and does not relies
on the synchronization of the pendulum oscillation. Moreover, it is simple and it could be
implemented using processors with limited computing capabilities.

The contribution is organized as follows: Section 2 presents the model of the physical
pendulum with moving mass, as well as its main physical properties. Section 3 describes the
proposed control law and the stability analysis of the closed loop system. Section 4 depicts
some computer simulations. The paper ends with some final comments.

2. Physical Pendulum with Moving Mass

2.1. Lagrangian Modeling

Consider a mechanical system consisting of a physical frictionless pendulum of mass M with
its pivot at O and an auxiliary mass m able to slide to and from the pivot as depicted in
Figure 1. The moment of inertia of the pendulum about the pivot is given by I0, and its center
of mass C is located at a distance rc from the pivot. The forces acting on the mass m are the
gravitational force mg and a force F parallel to the guide OC and supplied by an actuator, that
is, an electric motor, attached to the auxiliary mass. The pivot O is the origin of the reference
frame x − y. The x-axis is set in the horizontal direction and the y-axis is set in the vertical
direction. The set of generalized coordinates are the angle θ between OC and the y-axis, and
the radial displacement r of the mass m from the pivot O. It is easy to show that the total
kinetic energy Kc and the total potential energy Kp for this system are given by

Kc =
1
2
I0θ̇

2 +
1
2
mṙ2 +

1
2
mr2θ̇2,

Kp = −Mgrc cos θ −mgr cos θ,
(2.1)

respectively. Note that the total kinetic energy comprises the rotational energy of the
pendulum as well as the translational and rotational energy of the sliding mass. The above
equations allow writing the Lagrangian function

L
(
q, q̇

)
= Kc −Kp, (2.2)

where q := [r, θ]T . From the above, the corresponding Euler-Lagrange equations are given by

mr̈ −mrθ̇2 −mg cos θ = F,

(
mr2 + I0

)
θ̈ + 2mrṙθ̇ + g(Mrc +mr) sin θ = 0.

(2.3)
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2.2. Model Properties

Define the force F as

F = v −mg, (2.4)

where variable v is a new input, and mg is a gravity compensation term. Substituting (2.4)
into (2.3) leads to the following Euler-Lagrange system

M
(
q
)
q̈ + C

(
q, q

)
q̇ +∇qKi

(
q
)
= Gv, (2.5)

where G := [1, 0]T and Ki(q) := −Mgrc cos θ +mgr(1 − cos θ) and

M
(
q
)
=

[
m 0

0 mr2 + I0

]

, C
(
q, q̇

)
=

[
0 −mrθ̇

mrθ̇ mrṙ.

]

. (2.6)

System (2.5) satisfies the following properties:

(P1) M(q) is positive definite.

(P2) H := Ṁ(q) − 2C(q, q̇) is skew symmetric with

H =

[
0 −mrθ̇

mrθ̇ 0

]

. (2.7)

(P3) The operator v → ṙ is passive.

Properties (P1) and (P2) are shared by any Euler-Lagrange mechanical system. In
order to prove property (P3), define the following storage function:

E
(
q, q̇

)
=

1
2
q̇TM

(
q
)
q̇ +Ki

(
q
)
. (2.8)

Taking the time derivative of (2.8) and using properties (P1) and (P2) yields

Ė = vṙ. (2.9)

According to standard results [20, page 236] the operator v → ṙ is passive. Finally,
the following remark concerns the local controllability of (2.5).

Remark 2.1. Define x = [q, q̇]T = [r, θ, ṙ, θ̇]T . Then, linearization of system (2.5) around x =
[r, 0, 0, 0]T , r > 0 produces

mr̈ = v,

(
mr2 + I0

)
θ̈ + g(Mrc +mr)θ = 0.

(2.10)
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From the above, it is clear that (2.10) is not locally controllable since there is no way to affect
the dynamics of θ. Further, x is a stable equilibrium point of (2.5) if v = 0 and −π/2 < θ <
π/2.

3. The Control Law

Before establishing the control objective of this work, we define the admissible set Q ⊂ R2 as

Q =
{
q = [r, θ]T : 0 < r − ε < r < r + ε, −π

2
< θ <

π

2
, ε > 0

}
. (3.1)

The control objective is defined as follows.

Problem 3.1. Consider the physical pendulum with moving mass described in (2.5), under
the assumption that the initial conditions satisfy q(0) ∈ Q − q. Then, the control objective is
to bring asymptotically the rotating pendulum with moving mass to the equilibrium point
x = [r, 0, 0, 0]T , while q = [r, θ]T ∈ Q.

To solve the aforementioned control problem, define the following Lyapunov function
candidate:

ET

(
q, q̇

)
=

1
2
q̇TM

(
q
)
q̇ +Km

(
q
)
, (3.2)

where Km(q) is the modified potential energy stated as

Km

(
q
)
=

kp

2
(r − r)2 +Ki

(
q
)
+Mgrc (3.3)

with kp > 0.

Remark 3.2. The selected potential energy Km(q) has a minimum at q = [r, 0]T since

Km

(
q
)
= 0, ∇qKm

(
q
)
q=q = 0, ∇2

qKm

(
q
)
q=q =

[
kp 0

0 Mgrc +mgr

]

> 0. (3.4)

As a matter of fact, the above condition implies that Km(q) is a convex function around
q. In geometrical terms, the level curves of Km(q) consist of a set of closed curves around q.
On the other hand, function Km(q) is positive definite as long as −π/2 < θ < π/2.

Taking into account property (P3), the first time derivative of ET along a trajectory of
(2.5) is given by

ĖT

(
q, q̇

)
= vṙ + kp(r − r)ṙ. (3.5)
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Define the control input v as a Proportional Derivative control law

v = −kp(r − r) − kdṙ (3.6)

with kp > 0, kd > 0. Therefore, substituting control law (3.6) into (3.5) yields

ĖT

(
q, q̇

)
= −kdṙ2. (3.7)

As a consequence, ĖT ≤ 0. Thus, this condition establishes stability of the equilibrium
point x in the Lyapunov sense. Moreover, it also shows that function ET (q, q̇) is not increasing
so does q. Therefore, if q(0) = [r(0), θ(0)]T ∈ Q, then, q = [r, θ]T ∈ Q as t → ∞. On the other
hand, since ET (q, q̇) is not increasing, then, ET (q, q̇) ≤ ET (q(0), q̇(0)). The above result allows
defining a compact invariant set Ω as follows:

Ω =
{
x =

[
q, q̇

]T : ET

(
q, q̇

)
≤ C

}
, (3.8)

where C = ET (q(0), q̇(0)). Therefore, if x(0) ∈ Ω, then, x ∈ Ω as t → ∞.
To end the stability proof, La Salle’s Theorem [21] will allow concluding asymptotic

stability. To this end, define the invariant set S as follows:

S =
{[

q, q̇
]T ∈ Ω : ĖT

(
q, q̇

)
= 0

}
. (3.9)

Clearly, in the set S, we have that ṙ = 0 and as a consequence r̈ = 0 and r = r, where
r > 0 is a constant. Thus, substituting these quantities into (2.5) leads to

−mrθ̇2 −mg(cos θ − 1) + kp
(
r − r

)
= 0,

(
mr2 + I0

)
θ̈ + g

(
Mrc +mr

)
sin θ = 0.

(3.10)

The time derivative of the first equation in (3.10) yields

(
2rθ̈ − g sin θ

)
θ̇ = 0. (3.11)

Two cases must then be analyzed.

Case 1. If θ̇ = 0 in the set S, it also follows that θ̈ = 0. From the second differential equation of
(3.10), it is clear that sin θ = 0 since Mrc +mr is strictly positive. Hence, it follows that θ = 0
in the set S. As a consequence, from the first equation of (3.10) r − r = 0. Therefore, r = r in
the set S.

Case 2. If θ̇ /= 0 in the set S, then (3.11) implies that

θ̈ =
g sin θ

2r
. (3.12)
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Figure 2: Angular displacement θ.

Since r > 0, thus, θ̈ is well defined. Taking into account the second differential equation in
(3.10) and (3.12) yields to the following algebraic equation for the variable θ:

0 =
(

2Mrcr + 3mr2 + I0

)
sin θ. (3.13)

This last equation implies that θ = 0 on the set S because 2Mrcr + 3mr2 + I0 > 0. This
means that Case 2 is not possible since it assumes that θ̇ /= 0. Therefore, θ̇ = 0 and Case 1 is the
only possibility.

The above analysis allows concluding that the largest invariant set contained in S
is given by x. According to the LaSalle’s invariance theorem, all the trajectories starting in
Ω asymptotically converge towards x = [r, 0, 0, 0]T . The following proposition resumes the
stability result previously presented.

Proposition 3.3. Consider the closed-loop dynamic system given by (2.5) in closed-loop with the
control law

F = −kp(r − r) − kdṙ −mg. (3.14)

Then, all the trajectories starting in Ω asymptotically converge towards the equilibrium point x =
[r, 0, 0, 0]T .

It is worth noting that the three terms defining (3.14) are the proportional part kp(r−r),
the derivative part kdṙ, and a gravity compensation term mg. Moreover, (3.7) indicates that
damping introduced by the derivative part kdṙ provides energy dissipation.

4. Numerical Simulations

To illustrate the performance of the proposed control law, a numerical simulation was carried
out using the MATLAB program. The system physical parameters were set as follows:

m = 1
[
Kg

]
, M = 2.5

[
Kg

]
, rc = 0.7[m], I0 = 1.22

[
Kg ·m2

]
. (4.1)
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Figure 3: Moving mass displacement r.
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Figure 4: Force F applied to the moving mass and time evolution of the Lyapunov function ET (q, q̇).

The radial displacement of m was given by r = 2.5[m] and ε = 0.75[m]. The
initial conditions were chosen to be θ(0) = 0.5[rad], r(0) = 2.5[m], θ̇(0) = 0[rad/s] and
ṙ(0) = 0[m/s]. The control gains, empirically proposed to increase the convergence rate
of the closed-loop system, were set as kp = 19.6 and kd = 1.9. Figure 2 shows the angular
displacement, Figure 3 depicts the displacement of the moving mass. Figure 4 displays the



Mathematical Problems in Engineering 9

−0.5

0

0.5

1

1.5

2

2.5

E
qu

iv
al

en
td

am
pi

ng

0 10 20 30 40 50 60 70 80

Time (s)

×10−4

Figure 5: Time evolution of the equivalent damping ξEQ.

time evolution of both, the force applied to the moving mass and the Lyapunov function
ET (q, q̇). From the above results, it is evident that the proposed control law attenuates the
pendulum oscillations by a factor of five; the radial displacement remain bounded and
converges to the value r = 2.5[m]. On the other hand, the applied force stays also bounded
and converges to −9.8[Nw], that is, the value given by the gravity compensation mg. Note
also that the Lyapunov function ET (q, q̇), which accounts for the kinetic and potential energy
of the closed-loop system, also decreases. Figure 5 displays the equivalent damping. This
concept is introduced in [17] and is given by the following equation:

ξEQ =
1

2π

∫τ
0(ṙ/r)

(
θ̇2 +

(
g/4r

)
θ2)dt

[
(1/2)θ̇2(0) +

(
g/2r(0)

)
θ2(0)

] . (4.2)

Even if this measure was originally intended for evaluating the damping in one cycle
of the pendulum oscillation, equation allows computing ξEQ for any time τ provided that
θ � 1. Note that the time evolution of r and ṙ determines the behaviour of ξEQ. The equivalent
damping has final value of 2 × 10−4, which is indeed very small.

It must be pointed out that the control strategy is effective in reducing the pendulum
oscillations with reasonable control input effort for a large deviation from the equilibrium
point. However, the damping injection capability of the proposed strategy is somewhat
limited, that is, the system is brought to the desired equilibrium very slowly. This last
observation is in agreement with the small value of the equivalent damping. Nevertheless,
in real systems there always exists viscous friction, which helps to accelerate convergence
to the equilibrium point. Also, Figure 6 shows the level curves associated with the modified
potential energy Km(q), for the two different values of the parameter kp = 19.6 and kp = 40
and, as we can see, the region of attraction of the specified equilibrium point can be increased
by just augmenting the value of kp. However, it is not convenient to consider high values for
the proportional gain kp, because it may generate high frequencies oscillations in the closed-
loop system. Thus, it is better to consider small values for parameter kp in order to guarantee
that |r − r| < ε holds.

5. Conclusions

This paper proposes a Proportional Derivative control law plus gravity compensation for
active vibration damping in a frictionless physical pendulum with moving mass. The control
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Figure 6: Level curves of Km(q) around the origin for (a) kp = 19.6 and (b) kp = 40.

law is able to damp out the oscillations of the pendulum by using the moving mass as active
damper, and its design exploits the underlying physical properties of this system to shape
a Lyapunov function candidate. LaSalle’s theorem allows concluding asymptotic stability of
the closed-loop system. Moreover, the control law only needs measurements of the position
and velocity of the moving mass. Compared with previous approaches [16, 18], the proposed
methodology does not need to synchronize the motion of the moving mass with the swings
of the pendulum, then avoiding measurement of the pendulum position and velocity. The
proposed strategy could be considered as a first step towards the reduction of undesirable
oscillation in civil structures.
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