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1. Introduction

Combined heat transfer processes, such as convection-radiation, play a significant role in
many chemical processes involving combustion, drying, fluidization, MHD flows, and so
forth (see [1, 2]). In general, the radiative process either occurs at the boundaries or as a
term in the energy equation. The latter case is usually accomplished by a suggestion due to
Rosseland (see [3]) where the radiative term is approximated as a flux in such a way that
the term corresponding to radiation in the heat transfer (energy) equation now appears as
a gradient term similar to Fourier’s conduction term. This method has found much favor
among many researchers especially those working with viscoelastic fluids and MHD flows
(see [4–10]). Alternatively, radiation effects can be incorporated at the boundaries through
appropriate (constitutive) assumption, such as the Stefan-Boltzmann condition. Free surface
flows present a challenging problem to engineers as the combined convection-radiation at the
boundaries has major applications in many industries.

Flow down an inclined plane occurs naturally as in the cases of avalanches and
mudslides; it is also used for transporting and drying of bulk solids (such as agricultural
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and pharmaceutical products). It is a viscometric flow (see [11]) and one which amends
itself to fundamental theoretical and experimental studies. Studies have shown that if the
effects of viscous dissipation are included, strong nonlinearities in the temperate profiles are
observed (see [12]). There are many cases in polymer rheology and lubrication, for example,
where viscous dissipation cannot be ignored (see [13–15]). An important combustion-related
issue is the effectiveness of handling and injecting of many non-Newtonian fluids such as
coal-water slurries or coal-oil slurries. It has been demonstrated (see [16]) that substantial
performance benefits can be obtained if the coal-water mixture is preheated. The effects of
temperature change on coal slurry properties are controlled to a great extent by changes in
the properties of the fluid. The constitutive equation used, most often, in these studies is the
power law model. Although the power law model adequately fits the shear stress and shear
rate measurements for many non-Newtonian fluids, it cannot always be used to accurately
predict the pressure loss data measured during transport of a coal-liquid mixture in a fuel
delivery system (see [17]).

Fluids of differential type (especially second and third grade fluids) have been studied
extensively. For example, Rajagopal and Na [18] analyzed the natural convection of a third-
grade fluid between two infinite parallel vertical plates; Szeri and Rajagopal [14] studied the
flow of a third-grade fluid between heated parallel plates, and Massoudi and Christie [19, 20]
considered the natural and forced convection of a third-grade fluid in an annulus. One of
the recent advances in the theoretical studies in rheology is the development of generalized
differential grade models. The simplicity of the form and the fact that these modified
constitutive relations can be used to study shear-thinning/thickening, the decrease/increase
in viscosity with increasing/decreasing shear rate, as well as predicting normal stress
differences have opened the way for the solution to a series of engineering problems (see
[21–25]).

In this work, we study the behavior of coal slurries, assuming that they can be
represented by a constitutive equation similar to that of a generalized second-grade fluid,
where the viscosity is also a function of temperature. Specifically, we revisit the problem
considered by Massoudi and Phuoc [24] who studied the flow of a generalized second-
grade fluid down an inclined plane subject to convective heat transfer condition at the free
surface, and consider the radiation boundary instead. The free surface is exposed to a high
temperature and as a result a radiation boundary condition is used. The effects of viscous
dissipation are also included in the heat transfer equation. The fully developed flow condition
simplifies the problem and we obtain a set of three nonlinear ordinary differential equations
which would have to be solved numerically. The equations are made dimensionless and the
effects of different dimensionless numbers are discussed.

2. Governing Equations

The governing equations of motion are the conservation of mass, linear momentum, and
energy equation. These are (see [26]) as follows.

Conservation of mass:

∂ρ

∂t
+ div

(
ρu
)
= 0, (2.1)

where ρ is the density of the fluid, ∂/∂t is the partial derivative with respect to time, and u is
the velocity vector. For an isochoric motion we have div u = 0.
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Conservation of linear momentum:

ρ
du
dt

= div T + ρb, (2.2)

where b is the body force vector, T is the stress tensor, and d/dt is the total time derivative,
given by d(·)/dt = ∂(·)/∂t + [grad(·)]u.

Conservation of energy:

ρ
de

dt
= T · L − div q + ρr, (2.3)

where e is the specific internal energy, L is the gradient of velocity, q is the heat flux vector,
and r is the radiant heating. Thermodynamical considerations require the application of the
second law of thermodynamics or the entropy inequality. The various forms of this law are
known as the Clausius-Duhem inequality, or the principle of dissipation [27, page 295] which
states that

1
ρ

tr(TD) + θη̇ − ė ≥ 0, (2.4)

where θ is the temperature field, D is the symmetric part of the velocity gradient, and η is
the specific entropy. We will not consider the constraints imposed due to Clausius-Duhem
inequality (entropy law). In order to “close” these equations, we need to provide constitutive
relations for T,q, and r. The application of the second law to radiative heat processes is by
no means an easy and straightforward matter (see [28]) as assumed or implied in books and
research articles. In this paper, we use the thermodynamical results of Dunn and Fosdick [29]
without applying (2.4) directly to our constitutive relation.

3. Constitutive Relations

Perhaps the simplest model which can describe the normal stress effects (which could lead to
phenomena such as “die-swell”, and “rod-climbing” which are manifestations of the stresses
that develop orthogonal to planes of shear) is the second-grade fluid, or the Rivlin-Ericksen
fluid of grade two (see [27, 30]). This model has also been used and studied extensively and
is a special case of fluids of differential type. For a second-grade fluid the stress is given by

T = −p1 + μA1 + α1A2 + α2A2
1, (3.1)

where p is the indeterminate part of the stress due to the constraint of incompressibility, μ
is the coefficient of viscosity, α1 and α2 are material moduli which are commonly referred
to as the normal stress coefficients. The kinematical tensors A1 and A2 are defined through
A1 = L+LT , A2 = (dA1/dt)+A1L+(L)

TA1, and L = gradu. The thermodynamics and stability
of fluids of second grade have been studied in detail by Dunn and Fosdick [29]. They show
that if the fluid is to be thermodynamically consistent in the sense that all motions of the fluid
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meet the Clausius-Duhem inequality and that the specific Helmholtz free energy of the fluid
be a minimum in equilibrium, then

μ ≥ 0,

α1 ≥ 0,

α1 + α2 = 0.

(3.2)

It is known that for many non-Newtonian fluids which are assumed to obey (3.1), the
experimental values reported for α1 and α2 do not satisfy the restriction (3.2)2,3. In an
important paper, Fosdick and Rajagopal [31] show that irrespective of whether α1 + α2 is
positive, the fluid is unsuitable if α1 is negative. In particular, they showed that if it is assumed
that

μ > 0, α1 < 0, α1 + α2 /= 0, (3.3)

which as many experiments have reported to be the case “for those fluids which the
experimentalists assume to be constitutively determined by (3.1), at least sufficiently well
as a second-order approximation” [31, page 147], then certain anomalous results follow.
Fosdick and Rajagopal [31] proved a theorem which indicates that if (3.3)2,3 hold, then an
unusual behavioral property not to be expected for any rheological fluid occurs, namely, the
larger the viscosity, keeping everything else fixed, the faster that initial data is amplified in
motions which take place under strict isolation. For further details on this and other relevant
issues in fluids of differential type, we refer the reader to the review article by Dunn and
Rajagopal [32]. In recent years, Rajagopal and colleagues (see, e.g., [33, 34]) have devised
a thermodynamic framework, the Multiple Natural Configuration Theory, by appealing to
the maximization of the rate of entropy production to obtain a class of constitutive relations
for many different types of materials. Unlike the traditional thermodynamic approach
(e.g., [29]) whereby a form for the stress is assumed (or derived) and restrictions on the
material parameters are obtained by invoking the Clausius-Duhem inequality, in this new
thermodynamic framework, they assume specific forms for the Helmholtz potential and
the rate of dissipation—reflecting on how the energy is stored in the body and the way in
which the body dissipates it. In a recent study, Rajagopal and Srinivasa [35] have modified
their theory to obtain various forms for the fluid models of differential type, specially the
second grade fluid; interestingly, they also arrive at the same conclusion about the restrictions
imposed on α1 and α2, namely that α1 + α2 = 0.

In an effort to obtain a model that does exhibit both normal stress effects and shear-
thinning/thickening, Man and Sun [36] and Man [21] modified the constitutive equation
for a second-grade fluid by allowing the viscosity coefficient to depend upon the rate of
deformation. Their model was later generalized by Gupta and Massoudi [22, 37] by allowing
the shear viscosity to also be a function of temperature. That is,

T = −p1 + μ(θ)Πm/2 A1 + α1A2 + α2A2
1, (3.4)
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where Π = (1/2)trA2
1 is the second invariant of the symmetric part of the velocity gradient,

m is a material parameter, and μ(θ) was assumed to obey the Reynolds viscosity model,

μ(θ) = μ0e−Mθ, (3.5)

where

M = n(θ2 − θ1), (3.6)

whenm < 0, the fluid is shear-thinning, and ifm > 0, the fluid is shear-thickening. This model
can find applications in many processes where preheating of the fuel is used as a means to
enhance heat transfer effects. In addition, for many fluids such as lubricants, polymers, and
coal slurries where viscous dissipation is substantial, an appropriate constitutive relation
where viscosity is a function of temperature should be used. In this paper, we will use
(3.4) (see [38] for a recent review). It also needs to be mentioned that second-grade fluids
(or higher order models) raise the order of differential equations by introducing higher-
order derivates into the equations. As a result, in general, one needs additional boundary
conditions; for a discussion of this issue, see Rajagopal [39] and Rajagopal and Kaloni
[40].

The constitutive relation for the heat flux vector is given by Fourier’s assumption
where

q = −K∇θ, (3.7)

where K is the thermal conductivity, and is assumed to be constant in this paper. The effects
of radiation are assumed to be at the free surface and therefore will be discussed in the next
section along with other boundary conditions.

4. Flow Down an Inclined Plane

Whenever nonlinear constitutive relations are studied, the solution procedures, for solving
the governing equations, whether analytical or computational, are more complicated. Exact
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Figure 2: Velocity and temperature profiles.

solutions are very rare in heat transfer studies of nonlinear materials or multiphase flows.
Next to the exact solutions, finding solutions to simple boundary value problems is extremely
desirable. Most of the constitutive relations used in mechanics, whether non-Newtonian
models, turbulence models, and so forth, when substituted in the general governing
equations, that is, the balance laws, would produce a system of partial differential equations
which at times are impossible to solve completely with the numerical techniques currently
available. Therefore, from a modeling point of view, it is worthwhile to study problems where
due to simplification of the kinematics of the flow or the boundary conditions, one obtains a
system of (nonlinear) ordinary differential equations. The solution to these simpler problems
would be useful for at least two different reasons: (i) They provide insight into the nature
of these nonlinear constitutive relations, and (ii) they provide cases where the accuracy or
convergence of solutions to the general multidimensional equations can be tested. Other
interesting phenomena such as stability and uniqueness of solutions also sometimes arise.
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Figure 3: Heat transfer from the free surface: effect of R1.

For the problem under consideration, we make the following assumptions:

(i) the motion is steady and fully developed,

(ii) the effect of radiant heating r is included at the free surface,

(iii) the constitutive equation for the stress tensor is given by (3.4) and the constitutive
equation for the heat flux vector is that of Fourier’s assumption,

(iv) the velocity and temperature fields are of the form:

u = u
(
y
)
i,

θ = θ
(
y
)
,

(4.1)

where y is the direction normal to the inclined plane, and i designates a unit vector in the
direction of the flow (see Figure 1). The free surface is exposed to high ambient temperature
and as a result a modified Stefan-Boltzmann correlation for radiation is used at that surface
(see [41, page 331]).
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Figure 4: Free surface temperature and velocity as a function of R1.

With the above assumptions, the conservation of mass is automatically satisfied and
the momentum equation (2.2) in its dimensionless form becomes (see [24, 42] for details),
having used the Reynolds viscosity model and integrating once

du

dy
= R1

1/(m+1)
(
eMθ(1 − y

))1/(m+1)
(sinα)1/(m+1). (4.2)

The energy equation (2.3) reduces to

d2θ

dy2
+ R2

1

eMθ

(
du

dy

)m+2

= 0, (4.3)

where the dimensionless distance y, the velocity u, and the temperature θ are assumed to be
given by the following equations (see [43]):

y =
y

h
; u =

u

V
; θ =

θ

θw
μ∗ =

μ

μo
(4.4)
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where V is a reference velocity, θw is the wall temperature, and h is the constant height to the
free surface. The dimensionless numbers R1 and R2 are

R1 =
ρghm+2

Vm+1μ0
,

R2 = μo
(
V

h

)m+2 h2

θwK
,

(4.5)

Now, R1 is the ratio of the viscous effects to the gravitational effects

R1 =
ρghm+2

Vm+1μ0
=

gh
V 2

(
ρhm+1V 1−m

μ0

)

=
Re

(Fr)2
, (4.6)

related to the Reynolds and Froude numbers, and R2 is a measure of viscous dissipation

R2 = μo

(
V

h

)m+2 h2

θwK
=
((

cpμ

K

)(
V

h

)m)( V 2

cpθw

)

= Pr Ec, (4.7)

related to the Prandtl and Eckert numbers. At the wall of the inclined we assume the no-
slip condition for the velocity and a constant temperature θw. At the free surface, the no-
traction boundary condition is imposed on the stress tensor (tx|y=h = Txxnx + Txyny + Txznz =
μ[|u′|2]m/2

u′ = 0 and ty|y=h = Tyxnx+Tyyny +Tyznz = −p+(2α1 +α2)u′2 = 0, where by defining
a modified pressure p∗ = p(2α1 + α2)u′2, the second relationship implies that p∗ = 0 at y = h),
(see [24]) , and for the temperature we apply the Stefan-Boltzmann condition (see also [44])

q = εσ
(
θ4
h − θ

4
∞

)
, (4.8)

where the surrounding temperature is designated as θ∞ and the temperature at the free
surface is θh. (The importance of radiation boundary condition for composite plates is
discussed by Miller and Weaver [45], for fluid-particle flow by Chamkha [46], and for packed
beds by Wu and Chu [47].)The boundary conditions become

at y = 0 :

⎧
⎨

⎩

u = 0,

θ = 1,

at y = 1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du

dy
= 0,

dθ

dy
= R3

(
θ

4
y=1 − θ

4
∞

)
,

(4.9)

where

R3 = −hεσθ
3
w

K
(4.10)
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Figure 5: Heat transfer from the free surface: effect of R2.

is a measure of the emissivity to the thermal conductivity and

θ∞ =
θ∞
θw

. (4.11)

It can be seen that the following material parameters m, M, the angle of inclination α, a
dimensionless temperature at infinity θ∞, and three dimensionless numbers R1, R2, and R3

determine the flow and temperature patterns.

5. Numerical Solutions
Based on our previous experience we use the following values:

m = −0.25, 0, 0.25,

M = 0, 0.5, 3.5,

α = 30 degrees,

R1 = 0.5, 2, 4,

R2 = 1, 5, 10,

R3 = −0.1,

θ∞ = 0.5, 1.5, 3.

(5.1)
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When the viscosity does not depend on the temperature, that is, M = 0, the solutions are
given analytically as

u = (R1 sinα)1/(m+1)m + 1
m + 2

[
1 −
(
1 − y

)(m+2)/(m+1)
]
, (5.2)

d2θ

dy2
= −R2(R1 sinα)(m+2)/(m+1)(1 − y

)(m+2)/(m+1)
, (5.3)

dθ

dy
= R2(R1 sinα)(m+2)/(m+1) m + 1

2m + 3
(
1 − y

)(2m+3)/(m+1) + R3

(
θ

4
y=1 − θ

4
∞

)
, (5.4)

θ = R2(R1 sinα)(m+2)/(m+1) m + 1
2m + 3

m + 1
3m + 4

[
1 −
(
1 − y

)(3m+4)/(m+1)
]
+ R3

(
θ

4
y=1 − θ

4
∞

)
y + 1.

(5.5)

When M/= 0, (4.2) and (4.3) are coupled and they must be solved simultaneously. Following
the numerical procedures reported by Massoudi and Phuoc [24], the dimensionless
temperature and velocity are obtained for m = −0.25, 0.0, and 0.25 by keeping α = 30◦, R3 =
−0.1, and M = 0.5 and using θ∞, R1, and R2 as parameters. Figure 2 shows the velocity
distribution for both heating and cooling conditions for the case of temperature-dependent
(M = 3.5) and temperature-independent (M = 0.0) viscosity. For the heating case we use
θ∞ = 3.5 and for the cooling case θ∞ = 0.5. All other parameters are kept constant (α = 30,
R1 = 0.5; R2 = 1; R3 = −0.1). The results are calculated for a shear-thinning fluid (m = −0.25),
the Newtonian fluid, (m = 0) and a shear-thickening fluid (m = 0.25). When M = 0, the
velocity does not depend on the temperature and therefore the distribution is the same for
θ∞ = 0.5 and θ∞ = 3. In this case the temperature profile depends significantly on θ∞. In
the cooling case where θ∞ ≺ θw the temperature profiles are affected whether the fluid is
shearthinning, Newtonian, or shear-thickening. When θ∞ 	 θw, the effects of m are minimal
due to the viscosity decrease with higher temperature.

The effects of the dimensionless parameter R1 on the heat transfer, the dimensionless
temperature and velocity at the free surface are presented in Figures 3 and 4. The calculations
are made using θ∞ = 3.0 and 0.5 while all other parameters are kept constant. For the
conditions used here, the heat transfer at the wall (the surface of the incline), as well as from
the free surface is seen to increase with R1. In the heating case, θ∞ = 3.0, the wall temperature
is always lower than that of the surrounding, and it increases as R1 increases. In the cooling
case, θ∞ = 0.5, the free surface temperature is lower than the wall temperature when R1 is
less than about 1.75 indicating that the fluid is heated. For R1 higher than this value, the
free surface temperature is higher than both the wall temperature and the temperature of the
surrounding. This is due to the fact that R1 represents the effect of the gravity force such that
an increase in R1 leads to an increase the dimensionless velocity of the free surface as shown
in Figure 4. As a result, the fluid is heated due to the kinetic energy that is converted into
thermal energy.

The effects of R2 on the heat transfer, temperature, and velocity at the free surface are
shown in Figures 5 and 6 for the case where α = 30◦, R1 = 2, R3 = −0.1, M = 0.5, and θ∞ = 1.5
and 0.5. When θ∞ = 0.5 as R2 increases, (dθ/dy)y=1 is negative and it continues to decrease
while (dθ/dy)y=0 is positive and increases indicating that the maximum temperature is
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Figure 6: Free surface temperature and velocity as a function of R2.

higher than both the wall (incline surface) temperature and the surrounding temperature;
this maximum value is located somewhere in the flow field and heat is transferred from
the fluid to both the wall and the free surface. When θ∞ = 1.5, as R2 increases, (dθ/dy)y=0
is positive and increases while (dθ/dy)y=1 is positive and decreases when R2 is less than
3.0. The free surface temperature is lower than that of the surrounding. Thus, in this range
of R2 the highest temperature is that of the surrounding and the fluid is heated. When R2

is increased to a higher value than 3.0, (dθ/dy)y=1 becomes negative and the free surface
temperature is higher than that of the surrounding indicating that the fluid is heated (due to
the effect of R2) and the excess heat is transferred to both the wall and the surrounding. As
shown by (4.3), the temperature is not only affected by the surrounding temperature but also
by parameter R2 which represents the effect of viscous dissipation. Increasing R2 can lead to
a situation that the viscous dissipation becomes a significant source in the energy equation.

6. Conclusions

In this paper we have studied the fully developed flow of a generalized second-grade fluid
down an inclined plane. The viscosity is a function of the shear rate (shear-thinning or
shear-thickening) and it also depends on the temperature in an exponential way. The effects
of radiation boundary condition at the free surface are considered. The boundary value
problem is solved numerically, and the velocity and temperature profiles are obtained for
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various dimensionless numbers. The following material parameters m (power-law exponent
accounting for shear-rate dependence of the viscosity), M (an exponent accounting for
temperature dependence of viscosity), the angle of inclination α, a dimensionless temperature
at infinity θ∞ = θ∞/θw, and three dimensionless numbers R1, R2, and R3, where R1 is the
ratio of the viscous effects to the gravitational effects (related to the Reynolds and Froude
numbers), R2 is a measure of viscous dissipation (related to the Prandtl and Eckert numbers),
and R3 is a measure of the emissivity to the thermal conductivity.

When M=0, the velocity does not depend on the temperature and, therefore, the
distribution is the same for θ∞ = 0.5 and θ∞ = 3. In this case the temperature profile depends
significantly on θ∞. In the cooling case where θ∞ ≺ θw, the temperature profiles are affected
whether the fluid is shear-thinning, Newtonian, or shear-thickening. When θ∞ 	 θw the
effects of m are minimal. When θ∞ = 0.5 and 3.0, the heat transfer at the wall (surface of
the incline) as well as from the free surface is seen to increase with R1. In the heating case,
θ∞ = 3.0, the wall temperature is always lower than that of the surrounding and it increases
as R1 increases. In the cooling case, θ∞ = 0.5, the free surface temperature is lower than the
wall temperature when R1 is less than about 1.75 indicating that the fluid is heated.
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