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1. Introduction

With the rapid development of nonlinear sciences, many analytical and numerical techniques
have been developed by various scientists. Most of the developed techniques have
their limitations like limited convergence, divergent results, linearization, discretization,
unrealistic assumptions and noncompatibility with the versatility of physical problems
[1–100]. He [16–40] developed a number of efficient and reliable techniques for solving
a wide class of nonlinear problems. These relatively new but very powerful methods
proved to be fully synchronized with the complexities of the physical problems, see
[1–7, 11–40, 49–80, 84–100] and the references therein. In the present study, we will
focus our attention on He’s variational iteration (VIM), homotopy perturbation (HPM),
modified variational iteration (MVIMS), parameter expansion, and exp-function methods.
The variational iteration method (VIM) was suggested and proposed by He [17–24] in
its preliminary form in 1999. The method has been used to solve nonlinear differential
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equations. In a subsequent work [23, 24] the VIM was developed into a full theory for solving
diversified physical problems of versatile nature. It is to be highlighted that the variational
iteration method (VIM) is also very effective for solving differential-difference equations,
see [49, 95] and the references therein. Moreover, He [17, 18, 27–38] introduced another
wonderful technique, namely, homotopy perturbation (HPM) by merging the standard
homotopy and perturbation. The HPM is independent of the drawbacks of the coupled
techniques and absorbs all their positive features. It is to be noted that homotopy perturbation
is a kind of perturbation method which can take full advantage of various perturbation
methods, while using the homotopy technique to guarantee simple solution procedure.
It is to worth mentioning that if the initial solution is suitably chosen, then only one
or two iterations are enough to get the appropriate result, see [17, 18, 27–38]. The exp-
function method was first proposed by He and Wu [39] in 2006. The method was originally
suggested to search for solitary solutions and periodic solutions of nonlinear wave equations.
It always leads to a generalized solution with free parameters which can be determined by
using the initial/boundary conditions. The most interesting part is transformation between
periodic and solitary solutions by using the so-called He-Wu transformations. The method
[17, 39, 40, 84–87, 97, 100] is always used as a tool to find exact solutions, but it can
be utilized also for finding solutions approximately including the solutions for boundary
value problems. It is to be highlighted that the present study would also outline the He
parameter-expansion technique [18, 25–27]. The parameter expansion technique includes the
modified Lindstedt-Pioncare and book keeping parameter methods and previously called
the parameter-expanding method. He [18] in his review article in 2006 also explained
that the method does not require to construct a homotopy. These efficient techniques
have been applied to a wide class of nonlinear problems, see [1–7, 11–40, 49–80, 84–
100] and the references therein. With the passage of time some modifications in He’s
variational iteration method (VIM) has been introduced by various authors. Abbasbandy
[1, 2] made the coupling of Adomian’s polynomials with the correction functional (VIMAP)
of the VIM and applied this reliable version for solving Riccati differential and Klein
Gordon equations. In a later work, Noor and Mohyud-Din [62, 64, 74] exploited this
concept for solving various singular and nonsingular boundary and initial value problems.
Recently, Ghorbani et al. [13, 14] introduced He’s polynomials (which are calculated from
He’s homotopy perturbation method) by splitting the nonlinear term and also proved
that He’s polynomials are fully compatible with Adomian’s polynomials but are easier
to calculate and are more user friendly. More recently, Noor and Mohyud-Din [60, 66–
69, 72, 73] combined He’s polynomials and correction functional of the VIM and applied
this reliable version (VIMHP) to a number of physical problems. It has been observed
[60, 66–69, 72, 73] that the modification based on He’s polynomials (VIMHP) which was
developed by Noor and Mohyud-Din is much easier to implement as compared to the
one (VIMAP) where the so-called Adomian’s polynomials along with their complexities
are used. The basic motivation of the present study is the review of these very powerful
and reliable techniques which have been originated by He for solving various nonlinear
initial and boundary value problems of diversified physical nature. Several examples
are given to reveal the efficiency and potential of these relatively new techniques. We
have also pointed out that the techniques discussed in this paper can be extended for
solving obstacle, free, moving, and contact problems, which arise in various fields of pure
and engineering sciences. This is another aspect of future research work. The interested
readers are advised to explore this avenue for innovative and novel applications of these
techniques.
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2. Exp-Function Method

Consider the general nonlinear partial differential equation of the type

P(u, ut, ux, utt, uxx, uxxxx, . . .) = 0. (2.1)

Using a transformation

η = kx +ωt, (2.2)

where k and ω are constants, we can rewrite (2.1) in the following nonlinear ODE;

Q
(
u, u′, u

′′
, u”’, u(iv), . . .

)
= 0, (2.3)

according to the exp-function method, which was developed by He and Wu [39], we assume
that the wave solutions can be expressed in the following form

u
(
η
)
=

∑d
n=−c an exp

[
nη
]

∑q
m=−p bm exp

[
mη

] , (2.4)

where p, q, c, and d are positive integers which are known to be further determined, an and
bm are unknown constants. We can rewrite (2.4) in the following equivalent form:

u
(
η
)
=
ac exp

[
cη
]
+ · · · + a−d exp

[
−dη

]

bp exp
[
pη
]
+ · · · + b−q exp

[
−qη

] . (2.5)

This equivalent formulation plays an important and fundamental part for finding the analytic
solution of problems [5, 17, 39, 40, 53, 54, 58, 59, 75, 76, 84–87, 97–100]. To determine the value
of c and p, we balance the linear term of highest order of (2.4) with the highest order nonlinear
term. Similarly, to determine the value of d and q, we balance the linear term of lowest order
of (2.3) with lowest order nonlinear term.

Example 2.1 (see [58]). Consider the ZK-MEW (2.6)

ut + a(u)3
x +

(
buxt + ruyy

)
x
= 0. (2.6)

Introducing a transformation as η = kx+ωy+ρt,we can covert (2.6) into ordinary differential
equations

ρu′ + 3aku2u′ +
(
bk2ρ + rkω2

)
u”’ = 0, (2.7)
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where the prime denotes the derivative with respect to η. The trial solution of the (2.7) can
be expressed as follows, as shown in (2.6):

u
(
η
)
=
ac exp

[
cη
]
+ · · · + a−d exp

[
−dη

]

bp exp
[
pη
]
+ · · · + b−q exp

[
−qη

] . (2.8)

To determine the value of c and p, we balance the linear term of highest order of (2.7) with
the highest order nonlinear term, we obtain

p = c, d = q. (2.9)

Case 1. We can freely choose the values of p, c, dbut we will illustrate that the final solution
does not strongly depend upon the choice of values of c and d. For simplicity, we set p = c = 1
and q = d = 1, then the trial solution yields

u
(
η
)
=
a1 exp

[
η
]
+ a0 + a−1 exp

[
−η
]

b1 exp
[
η
]
+ a0 + b−1 exp

[
−η
] . (2.10)

Substituting (2.10) into (2.7), we have

1
A

[
c3 exp

(
3η
)
+c2 exp

(
2η
)
+c1 exp

(
η
)
+c0 + c−1 exp

(
−η
)
+c−2 exp

(
−2η

)
+c−3 exp

(
−3η

)]
= 0,

(2.11)

where A = (b1 exp(η) + b0 + b−1 exp(−η))4, ci(i = −3, . . . , 0, . . . , 3) are constants obtained by
Maple 11. Equating the coefficients of exp(nη) to be zero, we obtain

{c−3 = 0, c−2 = 0, c−1 = 0, c0 = 0, c1 = 0, c2 = 0, c3 = 0}. (2.12)

Solution of (2.12) will yield

b1 =
1
8
a0

2a
(
bk2 + 1

)

b−1rω
, b−1 = b−1, a0 = a0, ρ = − krω2

(bk2 + 1)
, a−1 = 0, a1 = 0, b0 = 0.

(2.13)

We, therefore, obtained the following generalized solitary solution u(x, y, t)of (2.6) as follows:

u
(
x, y, t

)
=

a0

1/8 (a0
2a(1 + bk2))/(b−1 rω2)e(kx+ωy+ρt) + b−1e

−(kx+ωy+ρt)
, (2.14)

where ρ = −krω2/(bk2 + 1), a0, b−1, a, b, k, r, and ω are real numbers.
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Figure 1 depicts the soliton solutions of (2.6), when a0 = b−1 = a = b = r = k = 1. In case
k andω are imaginary numbers, the obtained soliton solutions can be converted into periodic
solutions or compact-like solutions. Therefore, we write k = iK and ω = iW consequently,
(2.14) becomes

u
(
x, y, t

)
=

a0

−1/8 (a0
2 a(1 − bK2 ))/(b−1rW2)e(iKx+iWy+ρt) + b−1e

−(iKx+iWy+ρt)
. (2.15)

The above expression can be rewritten in expanded form:

u
(
x, y, t

)
=

−8a0b−1rW
2

⎡
⎢⎢⎣

cos
( A
bK2 − 1

)[
−aba0

2K2 + aa0
2 − 8rW2b−1

2
]

+i sin
( A
bK2 − 1

)[
−aba0

2K2 + aa0
2 + 8b−1

2rW2
]

⎤
⎥⎥⎦

[
32aba0

2rb−1W
2 cos (A)2[K2 − 1

]
+ a2b2a0

4K4

−2a2ba0
4K2 − 16aba0

2b−1
2rK2W2 + a2a0

4 + 16aa0
2b−1

2rW2 + 64b−1
4r2W4

] ,

(2.16)

where A = −K3bx + Kx − WbK2y + Wy + KrW2t. If we search for periodic solutions or
compact-like solutions, the imaginary part in (2.16) must be zero, hence

u
(
x, y, t

)
=

−8a0b−1rW
2
[
cos(A)

[
−aba0

2K2 + aa0
2 − 8rW2b−1

2
]]

[
32aba0

2rb−1W
2 cos (A)2[K2 − 1

]
+ a2b2a0

4K4

−2a2ba0
4K2 − 16aba0

2b−1
2rK2W2 + a2a0

4 + 16aa0
2b−1

2rW2 + 64b−1
4r2W4

]
,

(2.17)

Figure 2 depicts the periodic solutions of (2.6) when a = b = a0 = b−1 = K =W = r = t = 1.
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Case 2. If p = c = 2, and q = d = 1, then the trial solution, (2.6) reduces to

u
(
η
)
=
a2 exp

[
2η
]
+ a1 exp

[
η
]
+ a0 + a−1 exp

[
−η
]

b2 exp
[
2η
]
+ b1 exp

[
η
]
+ b0 + b−1 exp

[
−η
] . (2.18)

Proceeding as before, we obtain

b2 = b2, b1 = 0, b0 = 0, a1 = 0, ω = ω, b−1 = b−1, ρ =
9krω2

(9bk2 − 2)
,

a0 = 0, a2 = a2, b0 = 0, a−1 = −b−1a2

b2
, α =

9b2
2rω2

(9bk2 − 2)a2
2
.

(2.19)

Hence, we get the generalized solitary solutions u(x, y, t) of (2.6) as follows:

u
(
x, y, t

)
= −1 +

2b−1

b1e
2(kx+ωy−(9krω2 t)/(9bk2−2)) + b−1

, (2.20)

where b−1, b1, ω, and k are real numbers.

Remark 2.2. It is worth mentioning that the transformation k = ik which is used to transform
the solitary solutions to periodic or compacton-like solutions was first proposed by He
and Wu [39] and is called the He-Wu transformation. Moreover, the interpretation of this
transformation is given by He [17].
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3. Variational Iteration Method (VIM) and its Modifications

To illustrate the basic concept of the He’s VIM, we consider the following general differential
equation:

Lu +Nu = g(x), (3.1)

where L is a linear operator, N a nonlinear operator and g(x) is the inhomogeneous term.
According to variational iteration method [1–7, 11, 17–24, 44, 49, 50, 60–64, 66–74, 77–80, 88,
90], we can construct a correction functional as follows:

un+1(x) = un(x) +
∫x

0
λ
(
Lun(s) +Nũn(s) − g(s)

)
ds, (3.2)

where λ is a Lagrange multiplier [17–24], which can be identified optimally via variational
iteration method. The subscripts n denote the nth approximation, ũn is considered as a
restricted variation. That is, δ ũn = 0; (3.2) is called a correction functional. The solution of the
linear problems can be solved in a single iteration step due to the exact identification of the
Lagrange multiplier. The principles of variational iteration method and its applicability for
various kinds of differential equations are given in [17–24]. In this method, it is required first
to determine the Lagrange multiplier λ optimally. The successive approximation un + 1, n ≥ 0
of the solution u will be readily obtained upon using the determined Lagrange multiplier
and any selective function u0, consequently, the solution is given by u = limn→∞un. We
summarize some useful iteration formulae [23, 24] which would be used in the subsequent
section:

u′ + f
(
u, u′

)
= 0,

un + 1(t) = un(t) −
∫ t

0

(
uIn(s) + f

(
un, u

I
n

))
ds.

u
′′
+ f

(
u, u′, u

′′
)
= 0,

un + 1(t) = un(t) +
∫ t

0
(s − t)

(
uIIn (s) + f

(
un, u

I
n, u

II
n

))
ds.

u”’ + f
(
u, u′, u

′′
, u”’

)
= 0,

un + 1(t) = un(t) −
∫ t

0

1
2!
(s − t)2

(
uIIIn (s) + f

(
un, u

I
n, u

II
n , u

III
n

))
ds.

u(iv) + f
(
u, u′, u

′′
, u”’, u(iv)

)
= 0,

un + 1(t) = un(t) +
∫ t

0

1
3!
(s − t)3

(
u
(iv)
n (s) + f

(
un, u

I
n, u

II
n , u

III
n , u

(iv)
n

))
ds.
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u(n) + f
(
u, u′, u

′′
, u”’, u(iv), . . . , u(n)

)
= 0,

un + 1(t) = un(t) + (−1 )n
∫ t

0

1
(n − 1) !

(s − t)n−1
(
u
(n)
n (s) +

(
un, u

I
n, u

II
n , u

III
n , u

(iv)
n , . . . , u

(n)
n

))
ds.

(3.3)

3.1. Variational Iteration Method Using He’s Polynomials (VIMHP)

This modified version of variational iteration method [60, 66–69, 72, 73] is obtained by the
elegant coupling of correction functional (2.7) of variational iteration method (VIM) with
He’s polynomials and is given by

∞∑
n=0

p(n)un = u0(x) + p
∫x

0
λ(s)

(
∞∑
n =0

p(n)L(un) +
∞∑

n = 0

p(n)N(ũn)

)
ds −

∫x
0
λ(s)g(s)ds. (3.4)

comparisons of like powers of p give solutions of various orders.

3.2. Variational Iteration Method Using Adomian’s Polynomials (VIMAP)

This modified version of VIM is obtained by the coupling of correction functional (2.3) of
VIM with Adomian’s polynomials [1, 2, 62, 64, 70, 74] and is given by

un+1(x) = un(x) +
∫ t

0
λ

(
Lun(x) +

∞∑
n=0

An − g(x)
)
dx, (3.5)

where An are the so-called Adomian’s polynomials and are calculated for various classes of
nonlinearities by using the specific algorithm developed in [81–83].

Example 3.1 (see [61]). Consider the following singularly perturbed sixth-order Boussinesq
equation

utt = uxx + (u2)xx − uxxxx +
1
2
uxxxxxx, (3.6)

with initial conditions

u(x, 0) = −105
169

sech4
(

x√
26

)
, ut(x, 0) =

−210
√

194/13 sech4
(
x/
√

26
)

tanh
(
x/
√

26
)

2197
.

(3.7)
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The exact solution of the problem is given as

u(x, t) = −105
169

sech4

⎡
⎣
√

1
26

⎛
⎝x −

√
97
169

t

⎞
⎠
⎤
⎦. (3.8)

The correction functional is given by

un+1(x, t) = −
105
169

sech4
(

x√
26

)
+
−210

√
194/13 sech4

(
x/
√

26
)

tanh
(
x/
√

26
)

2197
t

+
∫ t

0
λ(s)

(
∂2un
∂t2

−
(
(ũn)xx + (ũ2

n)xx − (ũn)xxxx +
1
2
(ũn)xxxxxx

))
ds.

(3.9)

Making the correction functional stationary, the Lagrange multiplier can easily be identified
as λ(s) = (s − x), we get the following iterative formula

un+1(x, t) = −
105
169

sech4
(

x√
26

)
+
−210

√
194/13 sech4

(
x/
√

26
)

tanh
(
x/
√

26
)

2197
t

+
∫ t

0
(s − x)

(
∂2un
∂t2

−
(
(un)xx + (un2)xx − (un)xxxx +

1
2
(un)xxxxxx

))
ds.

(3.10)

Consequently, following approximants are obtained

u0(x, t) = −
105
169

sech4
(

x√
26

)
,

u1(x, t) = −
105
169

sech4
(

x√
26

)
−

105
√

194/13sech6
(
x/
√

26
)

sinh
(√

2 x/
√

13
)

2197
t

− 105
371293

(
−291 + 194 cosh

(√
2 x√
13

))
sech6 x√

26
t2,

...

(3.11)
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Table 1: Error estimates.

xi
tj

0.01 0.02 0.04 0.1 0.2 0.5
−1 7.77156 E-16 1.36557 E-14 8.57869 E-13 2.09264 E-10 1.33823 E-8 3.25944 E-6
−0.8 1.11022 E-16 1.99840 E-15 1.12688 E-13 2.73880 E-11 1.74288 E-9 4.14094 E-7
−0.6 2.22045 E-16 1.09912 E-14 7.28861 E-13 1.78030 E-10 1.14025 E-8 2.79028 E-6
−0.4 1.11022 E-16 2.32037 E-14 1.50302 E-12 3.67002 E-10 2.34944 E-8 5.74091 E-6
−0.2 6.66134 E-16 3.23075 E-14 2.04747 E-12 4.99918 E-10 3.19983 E-9 7.81509 E-6
0 4.44089 E-16 3.49720 E-14 2.24365 E-12 5.47741 E-10 3.50559 E-8 8.55935 E-6
0.2 5.55112 E-16 3.19744 E-14 2.04714 E-12 4.99820 E-10 3.19858 E-8 7.80749 E-6
0.4 3.33067 E-16 2.32037 E-14 1.50324 E-12 3.66815 E-10 2.34706 E-8 5.72641 E-6
0.6 3.33067 E-16 1.12133 E-14 7.28528 E-12 1.77772 E-10 1.13695 E-8 2.77022 E-6
0.8 3.33067 E-16 1.99840 E-15 1.13132 E-13 2.76944 E-11 1.78208 E-9 4.41936 E-7
1 7.77156 E-16 1.38778 E-14 8.58313 E-13 2.09593 E-10 1.34244 E-8 3.28504 E-6

The series solution is given by

u(x, t) = −105
169

sech4
(

x√
26

)
−

105
√

194/13 sech6
(
x/
√

26
)

sinh
(√

2 x/
√

13
)

2197
t

− 105
371293

(
−291 + 194 cosh

(√
2 x√
13

))
sech6 x√

26
t2

+
395 sech7 x√

26
52206766144

(
10816

√
2522 sinh

x√
26
− 1664

√
2522 sinh

3x√
26

)
t3

+
(
−334200 sech5

(
x√
26

)
+ 354247 cosh

(
2√
13
x

)
sech5

(
x√
26

)

−47164 cosh

(
2
√

2√
13
x

)
sech5

(
x√
26

))
t4

+

(
3201cosh3

(
3
√

2√
13
x

)
sech5

(
x√
26

)
− 388 cosh

(
4
√

2√
13
x

)
sech5

(
x√
26

))
t4

+ · · · ,
(3.12)

Table 1 exhibits the absolute error between the exact and the series solutions. Higher accuracy
can be obtained by introducing some more components of the series solution.

Example 3.2 (see [72]). Consider the following Helmholtz equation:

∂2u

∂x2
+
∂2u

(
x, y

)

∂y2
− u

(
x, y

)
= 0, (3.13)
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with initial conditions

u
(
0, y

)
= y, ux

(
0, y

)
= y + coshy . (3.14)

The correction functional is given as

yn+1(x) = yn(x) +
∫x

0
λ(s)

(
∂2un
∂x2

+
∂2ũn

(
x, y

)

∂y2
− ũn

(
x, y

))
ds. (3.15)

Making the correction functional stationary, the Lagrange multiplier can be identified as
λ(s) = (s − x), we obtained

yn+1(x) = yn(x) +
∫x

0
(s − x)

(
∂2un
∂x2

+
∂2un

(
x, y

)

∂y2
− un

(
x, y

))
ds. (3.16)

Applying the variational iteration method using He’s polynomials (VIMHP), we get

y0 + py1 + p2y2 + · · · = yn(x) + p
∫x

0
(s − x)

(
∂2u0

∂x2
+ p

∂2u1

∂x2
+ p2 ∂

2u2

∂x2
+ · · ·

)
ds

+ p

∫x
0
(s − x)

((
∂2u0

∂y2
+ p

∂2u1

∂y2
+ p2 ∂

2u2

∂y2
+ · · ·

)

−
(
u0 + pu1 + p2u2 + · · ·

))
ds.

(3.17)
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Table 2: Error estimates.

X Y Exact solution HPM ADM VIMHP Absolute error
−1 −1 −1.9109600760 −1.9097472990 −1.9097472990 −1.9097472990 0.0012127770
−0.8 −0.8 −1.4294111280 −1.491500900 −1.491500900 −1.491500900 0.0002610380
−0.6 −0.6 −1.0405661130 −1.0405303310 −1.0405303310 −1.0405303310 0.0000357820
−0.4 −0.4 −.7005569670 −0.7005548150 −0.7005548150 −0.7005548150 0.0000021520
−0.2 −0.2 −.367755010 −0.3677594840 −0.3677594840 −0.3677594840 0.0000000170
0.0 −0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.2 0.2 0.4482939020 0.4482938840 0.4482938840 0.4482938840 0.0000000180
0.4 0.4 1.0291588280 1.0291564150 1.0291564150 1.0291564150 0.0000024130
0.6 0.6 1.8045504110 1.8045079310 1.8045079310 1.8045079310 0.0000424800
0.8 0.8 2.850380700 2.8500524900 2.8500524900 2.8500524900 0.0003282100
1.0 1.0 4.2613624630 4.2597472990 4.2597472990 4.2597472990 0.0016151640

Comparing the coefficient of like powers of p, following approximants are obtained:

p(0) : u0
(
x, y

)
= y(1 + x) + x coshy,

p(1) : u1
(
x, y

)
= y(1 + x) + x coshy +

1
2!
x2y +

1
3!
x3y,

p(2) : u2
(
x, y

)
= y(1 + x) + x coshy +

1
2!
x2y +

1
3!
x3y +

1
4!
x4y +

1
5!
x5y,

...

(3.18)

The solution is given as

u
(
x, y

)
= y exp(x) + x cosh

(
y
)
. (3.19)

Table 2 exhibits the approximate solution obtained by using the HPM, ADM, and VIMHP.
It is clear that the obtained results are in high agreement with the exact solutions. Higher
accuracy can be obtained by using more terms.

Example 3.3 (see [62]). Consider the following nonlinear Schrödinger equation

iut + uxx − 2 u |u|2 = 0, (3.20)

with initial conditions

u(x, 0) = eix. (3.21)

The correction functional is given as

un + 1(x, t) = eix +
∫ t

0
λ(s)

(
∂un
∂s

− i
(
(ũn)xx − 2 ũn|ũn|2

))
ds. (3.22)
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Figure 4: Depicts series solutions u(x, y).

Making the correction functional stationary, the Lagrange multipliers can be identified as
λ(s) = −1, consequently

un + 1(x, t) = eix −
∫ t

0

(
∂un
∂s

− i
(
(un)xx − 2 un|un|2

))
ds. (3.23)

Applying the variational iteration method using Adomian’s polynomials (VIMAP):

un + 1(x, t) = eix −
∫ t

0

(
∂un
∂s

− i
(
(un)xx − 2

∞∑
n = 0

An

))
ds, (3.24)

where An are the so-called Adomian’s polynomials. First few Adomian’s polynomials for
nonlinear Schrödinger equation are as follows:

A0 = u2
o u0,

A1 = 2u0u1 u0 + u2
o u1,

A2 = 2 u0u2 u0 + u2
1 u0 + 2u0u1 u2 + u2

ou2,

A3 = 2u0u3 u0 + u2
1 u1 + 2u1u2 u0 + u2

ou3 + 2 u0u2 u1 + 2 u0u1 u2,

...

(3.25)



14 Mathematical Problems in Engineering

Employing these polynomials in the above iterative scheme, following approximants are
obtained:

u0(x, t) = eix,

u1(x, t) = eix (1 − 3it),

u2(x, t) = eix
(

1 − 3it − 9
2!
t2
)
, ψ

u3(x, t) = eix
(

1 − 3it − 9
2!
t2 +

9
2!
it3
)
, ψ

...

(3.26)

The solution in a series form is given by

u(x, t) = eix
(

1 − 3it +
(3it)2

2!
t2 − (3it)3

3!
t3 +

(3it)4

4!
t4 − · · ·

)
, (3.27)

and in a closed form by

u(x, t) = ei (x−3 t). (3.28)

Remark 3.4. It is worth mentioningthat although both the modified versions of variational
iteration method (VIM) are compatible yet the modification based upon He’s polynomials
(VIMHP) is much easier to implement and is more user friendly as compared to VIMAP
where Adomian’s polynomials along with their complexities are used.

4. Homotopy Perturbation Method (HPM) and He’s Polynomials

To explain the He’s homotopy perturbation method, we consider a general equation of the
type,

L(u) = 0, (4.1)

where L is any integral or differential operator. We define a convex homotopy H(u, p) by

H
(
u, p

)
=
(
1 − p

)
F(u) + pL(u), (4.2)

where F(u) is a functional operator with known solutions v0, which can be obtained easily. It
is clear that, for

H
(
u, p

)
= 0, (4.3)
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we have

H(u, 0) = F(u), H(u, 1) = L(u). (4.4)

This shows that H(u, p) continuously traces an implicitly defined curve from a starting point
H(v0, 0) to a solution function H(f, 1). The embedding parameter monotonically increases
from zero to unit as the trivial problem F(u) = 0 continuously deforms the original problem
L(u) = 0. The embedding parameter p ∈ (0, 1] can be considered as an expanding parameter
[13, 14, 17, 18, 26–38, 51, 52, 55–57, 60, 65–69, 72, 73, 89, 91–93, 96]. The homotopy perturbation
method uses the homotopy parameter p as an expanding parameter [17, 18, 26–38] to obtain

u =
∞∑
i=0

pi ui = u0 + pu1 + p2u2 + p3u3 + · · · , (4.5)

if p → 1, then (4.5) corresponds to (4.2) and becomes the approximate solution of the form,

f = lim
p→ 1

u =
∞∑
i=0

ui. (4.6)

It is well known that series (4.5) is convergent for most of the cases and also the rate of
convergence is dependent on L (u); see [17, 18, 26–38]. We assume that (4.6) has a unique
solution. The comparisons of like powers of p give solutions of various orders. In sum,
according to [13, 14], He’s HPM considers the nonlinear term N(u) as

N(u) =
∞∑
i=0

pi Hi = H0 + p H1 + p2H2 + · · · , (4.7)

where Hn’s are the so-called He’s polynomials [13, 14], which can be calculated by using the
formula

Hn(u0, . . . , un) =
1
n!

∂n

∂pn

(
N

(
n∑
i=0

piui

))

p=0

, n = 0, 1, 2, . . . (4.8)

Example 4.1 (see [51]). Consider the following seventh-order generalized KdV (SOG-KdV)
equation

ut + u ux + uxxx − uxxxxx + σ uxxxxxxx = 0, (4.9)

where σ = βδ/γ2, with initial conditions

u(x, 0) = a0 + a6sech6(kx), (4.10)
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where K = 5/
√

1538, a0 = c − 18000/7692, a6 = 519750/7692 , and c is an arbitrary parameter.
Applying the convex homotopy, we get

u0 + pu1 + p2u2 + · · · = u0 − p
∫ t

0

((
u0 + pu1 + p2u2 + · · ·

)(∂u0

∂x
+ p

∂u1

∂x
+ p2 ∂u2

∂x
+ · · ·

))
ds

− p
∫ t

0

((
∂3u0

∂x3
+ p

∂3u1

∂x3
+ · · ·

)
−
(
∂5u0

∂x5
+ p

∂5u1

∂x5
+ · · ·

)

+σ

(
∂7u0

∂x7
+ p

∂7u1

∂x7
+ · · ·

))
ds.

(4.11)

Comparing the coefficient of like powers of p

p(0) : u0(x, t) = a0 + a6 sech6(kx),

p(1) : u1(x, t) =
3a6kt

16

{
10a0 + 32a6 − 312k2 − 26400k4 − 9866112δk6

+
(

15a0 − 256k2 − 10480k4 + 9932224δk6
)

cosh(2kx)

+
(

6a0 − 8k2 + 14624k4 − 1443968δk6
)

cosh(4kx)

+
(
a0 + 36k2 − 1296k4 + 46656δk6

)
cosh(6kx)

}
sech12(kx) tanh(kx),

...
(4.12)

where pis are the He’s polynomials. The series solution is given by

u(x, t) = a0 + a6sech6(kx) +
3a6kt

16

{
10a0 + 32a6 − 312k2 − 26400k4 − 9866112δk6

+
(

15a0 − 256k2 − 10480k4 + 9932224δk6
)

cosh(2kx)

+
(

6a0 − 8k2 + 14624k4 − 1443968δk6
)

cosh(4kx)

+
(
a0 + 36k2 − 1296k4 + 46656δk6

)
cosh(6kx)

}
sech12(kx) tanh(kx)

− 3a6kt
2

4096

[
1320a2

0 + 6400a0a6 + 40960a2
6 − 93120a0k

2 − 642560a6k
2

+ 3592320k4 − 718464a0k
4 − 223897600a6k

4 + 1066859520k6

−1066859520a0δk
6 − 371744399360a6δk

6 + 151760209920k8

+ 303520419840δk10 + 186385174609920δ2k12
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+
(

2079a2
0 + 6912a0a6 − 36864a2

6 − 124488a0k
2 − 291840a6k

2

+ 3662064k4 − 7324128a0k
4 + 83202048a6k

4 + 643886208k6 − 643886208a0δk
6

+ 520393113600a6δk
6 + 10077306624k8 + 20154613248δk8 − 115427212572672δk10

−318167001264623616δ2k12
)

cosh(2kx) +
(

924a2
0 − 1536a0a6 − 14112a0k

2

+ 592896a6k
2 − 1544256k4 + 3088512a0k

4 + 208736256a6k
4 − 1003580928k6

+ 1003580928a0δk
6 − 173675003904a6δk

6 − 180653147136k8

− 361306294272δk8 − 159045011693568δk10

+129148767835766784δ2k12
)

cosh(4kx) +
(

77a2
0 − 2816a0a6 + 36904a0k

2

− 2283568k4 + 4567136a0δk
6 + 4399738112k8 + 8799476224δk8

+114650957797376δk10 − 27618434663723008δ2k12
)

cosh(6kx) −
(

168a2
0

+ 768a0a6 − 25536a0k
2 + 69120a6k

2 + 594048k4 − 1188096a0k
4 − 8460288a6k

4

− 118291504k6 + 118293504a0δk
6+ 1164533760a6δk

6 − 35208886272k8

−70417772544δk8 + 25860049453056δk10 − 2901989324193792δ2k12
)

cosh(8kx)

−
(

105a2
0 − 5880a0k

2 − 132720k4 − 67643520k6 + 67643520a0δk
6

+ 7719962880k8 + 15439925760δk8 − 2194541905920δk10

+132260300820480δ2k12
)

cosh(10kx) −
(

28a2
0 + 224a0k

2 − 53312k4

+ 106626a0k
4 + 11178496k6 − 11178496a0δk

6 − 436093852k8 − 872187904δk8

+61463535616δk10 − 2068416315392δ2k12
)

cosh(12kx) −
(

3a2
0 + 216a0k

2

+ 3888k4 − 7776a0k
4 − 279936k6 + 279936aδk6 + 5038848k8 + 10077696δk8

−362797056δk10 + 6530347008δ2k12
)

cosh(14kx)
]
sech20(kx) + · · · .

(4.13)

The closed form solution is given as

u(x, t) = a0 + a6sech6(k(x − ct)), (4.14)

where k = 5/
√

1538, a0 = c − 18000/7692, a6 = 519750/7692, and c is an arbitrary parameter.
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Table 3: Error Estimates (δ = .01).

x
Error tj

j = .001 j = .01 j = .05 j = .1
−1.0 3.1 × 10−5 4.6 × 10−4 5.6 × 10−3 1.9 × 10−2

−.8 2.6 × 10−5 4.0 × 10−4 5.2 × 10−3 1.8 × 10−2

−.6 2.0 × 10−5 3.4 × 10−4 4.7 × 10−3 1.7 × 10−2

−.4 1.4 × 10−5 2.7 × 10−4 4.3 × 10−3 1.5 × 10−2

−.2 7.8 × 10−6 2.0 × 10−4 3.9 × 10−3 1.4 × 10−2

0.0 1.4 × 10−6 1.4 × 10−4 3.5 × 10−3 1.4 × 10−2

.2 5.0 × 10−6 7.8 × 10−5 3.2 × 10−3 1.3 × 10−2

.4 1.1 × 10−5 1.8 × 10−5 3.0 × 10−3 1.3 × 10−2

.6 1.7 × 10−5 3.6 × 10−5 2.8 × 10−3 1.3 × 10−2

.8 2.3 × 10−5 8.7 × 10−5 2.7 × 10−3 1.3 × 10−2

1.0 2.8 × 10−5 1.3 × 10−4 2.6 × 10−3 1.3 × 10−2
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5 5
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−5
−50

−30

−10

Figure 5: Depicts series solution at δ = .01.

5. Parameter Expansion Method

Consider the following Duffing harmonic oscillator

utt = −
u3

1 + u2
, u(0) = A, ut(0) = 0. (5.1)

We rewrite (5.1) in the form

utt + o.u + 1.u2utt + 1.u3 = 0. (5.2)
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Figure 6: Depicts closed form solution at δ = .01.

Assuming that the solution of (5.1) and coefficient 0, 1 can be expressed as power series in p
as follows:

0 = ω2 + pa1 + p2a1 + · · · , (5.3)

1 = pb1 + p2b2 + · · · . (5.4)

Consequently, we have

u
′′

0 +ω
2u0 = 0, u(0) = A, ut(0) = 0, (5.5)

u
′′

1 +ω
2u1 + a1u0 + b1u0

2u0
′′
+ b1u0

3 = 0, u(0) = 0, ut(0) = 0. (5.6)

Solving (5.5), we have u0 = A cosωt, substituting u0 in (5.6) gives

u
′′

1 +ω
2u1 +A cosωt

(
a1 +

3
4
b1A

2
(

1 −ω2
))

+
1
4
b1A

3
(

1 −ω2
)

cos 3ωt = 0. (5.7)

Elimination of the secular term requires a1 = −(3/4) b1A
2(1 − ω2). If only the first-order

approximation is searched for, then a1 = −ω2b1, is obtained from (5.3) and (5.4) which lead
to ω2 = 3A2/(4 + 3A2).

6. Conclusion and Future Research

In this paper, we made a detailed study of some relatively new techniques along with
some of their modifications. In particular, we focused on He’s VIM, HPM, MVIMS, exp-
function, and expansion of parameters methods and discussed in length their respective
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applications in solving various diversified initial and boundary value problems. These
proposed methods and their modifications are employed without using linearization,
discretization, transformation, or restrictive assumptions, absorb the positive features of the
coupled techniques and hence are very much compatible with the diversified and versatile
nature of the physical problems. Moreover, the modification of VIM based upon He’s
polynomials (VIMHP) is easier to implement and is more user friendly as compared to the
one where Adomian’s polynomials (VIMAP) along with their complexities are used. It is also
observed that the coupling of He’s or Adomian’s polynomials with the correction functional
of VIM makes the solution procedure simpler and hence the evaluation of nonlinear term
becomes easier. It may be concluded that the relatively new techniques can be treated as
alternatives for solving a wide class of nonlinear problems.

We would like to mention that the techniques and ideas presented in this paper
can be extended for finding the analytic solution of the obstacle, unilateral, free, moving,
and contacts problems which arises in various branches of mathematical, physical, regional,
medical, structure analysis, and engineering sciences. These problems can be studied in the
general, natural, and unified framework of variational inequalities. In a variational inequality
framework of such problems, the location of the contact area (free or moving boundary)
becomes an integral part of the solution and no special techniques are needed to obtain it. It is
well-known that if the obstacle is known then the variational inequalities can be characterized
by system of variational equations. Momani et al. [101] have used Admonian decomposition
technique to solve the system of fourth-order obstacle boundary value problems. This area of
research is not yet developed and offers a wealth of new opportunities for further research. It
is our hope that this brief introduction may inspire and motive the readers to discover new,
innovative, and novel applications of these new techniques, which we have discussed in this
paper. For the applications, physical formulation, numerical methods and other applications
of the variational inequalities, see, Noor [102–109], Noor et al [110] and the references therein.
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Thomas-Fermi equation,” Applied Mathematics and Computation, vol. 105, no. 1, pp. 11–19, 1999.

[82] A.-M. Wazwaz, “Analytic treatment for variable coefficient fourth-order parabolic partial differential
equations,” Applied Mathematics and Computation, vol. 123, no. 2, pp. 219–227, 2001.

[83] A.-M. Wazwaz, “The decomposition method for approximate solution of the Goursat problem,”
Applied Mathematics and Computation, vol. 69, no. 2-3, pp. 299–311, 1995.

[84] X.-H. Wu and J.-H. He, “Solitary solutions, periodic solutions and compacton-like solutions using
the Exp-function method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 966–986,
2007.

[85] X.-H. Wu and J.-H. He, “Solitary solutions, periodic solutions and compacton-like solutions using
the Exp-function method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 966–986,
2007.

[86] X.-H. Wu and J.-H. He, “EXP-function method and its application to nonlinear equations,” Chaos,
Solitons & Fractals, vol. 38, no. 3, pp. 903–910, 2008.

[87] X.-H. Wu and J.-H. He, “Solitary solutions, periodic solutions and compacton-like solutions using
the Exp-function method,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 966–986,
2007.

[88] L. Xu, “The variational iteration method for fourth order boundary value problems,” Chaos, Solitons
& Fractals, vol. 39, no. 3, pp. 1386–1394, 2009.

[89] L. Xu, “He’s homotopy perturbation method for a boundary layer equation in unbounded domain,”
Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1067–1070, 2007.

[90] L. Xu, “Variational iteration method for solving integral equations,” Computers & Mathematics with
Applications, vol. 54, no. 7-8, pp. 1071–1078, 2007.

[91] L. Xu, “He’s parameter-expanding methods for strongly nonlinear oscillators,” Journal of Computa-
tional and Applied Mathematics, vol. 207, no. 1, pp. 148–154, 2007.

[92] L. Xu, “Application of He’s parameter-expansion method to an oscillation of a mass attached to a
stretched elastic wire,” Physics Letters A, vol. 368, no. 3-4, pp. 259–262, 2007.

[93] L. Xu, “Determination of limit cycle by He’s parameter-expanding method for strongly nonlinear
oscillators,” Journal of Sound and Vibration, vol. 302, no. 1-2, pp. 178–184, 2007.
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