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Cold Atoms bouncing on modulated atomic mirror exhibits acceleration and dynamical
localization subject to modulated strength. We explain characteristics of acceleration and define
control parameters in terms of effective Planck’s constant. We show that the effective Planck’s
constant plays a vital role in limiting classical-like overall linear growth of the variance of
accelerated atoms with time. For large values of the effective Planck’s constant the atomic quantum
acceleration is seized as localization window overlaps the accelerated window.
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1. Introduction

Fermi Accelerator is a system well investigated to study Hamiltonian chaos and its
manifestations in quantum mechanical systems [1, 2]. In 1961, Ulam suggested the accelerator
as a two-wall system, one fixed and the other oscillating with a frequency, named as Fermi-
Ulam Accelerator. At the end of the seventies, Pustylńikov replaced fixed wall by gravity
and discussed unbounded acceleration for it. The classical dynamics in Fermi accelerator
is described by the Standard Map which explains that the stochasticity in the phase space
increases with the driving strength, and when the latter is sufficiently strong global diffusion
takes place. In latter accelerator model, for particular set of initial data in phase space
and modulation strength [3], onset of unbounded acceleration modes takes place [4–7]. In
this paper we explain Fermi-Pustylńikov accelerator and show that by increasing effective
Planck’s constant the acceleration of a bouncing particle in the accelerator system is modified,
due to the onset of dynamical localization [8].

A classical system subject to time-periodic modulation, in general, becomes globally
chaotic for increasing modulation strengths and absorbs energy from the external field in a
diffusive way. However, in corresponding quantum domain the diffusive dynamics may be
suppressed by quantum interference effect. It is a manifestation of dynamical localization
phenomenon in the system, which is an analogous to Anderson localization of solid state
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Figure 1: A cloud of atoms is trapped and cooled in a magneto-optical trap upto a few micro-Kelvin. The
magneto-optical trap (MOT) is placed at a height at the start of the experiment. On switching off the MOT,
atoms move with constant gravitational acceleration towards the exponential decaying field.

physics. The phenomenon has been discussed in model systems in quantum chaos, such as,
kicked rotator [9], modulated quantum bouncer [10], atoms in modulated standing wave
fields [11], ion in a Paul trap [12, 13], and molecular systems in the presence of electric
and magnetic fields [14]. Dynamical localization is a general phenomenon in periodically
driven systems [15, 16]. The delocalization in such quantum systems is a purely quantum
effect since the long-time unbounded propagation is not related to the corresponding classical
diffusion [2, 17].

In Section 2, we describe the physical system and develop its Hamiltonian. In
Section 3, we discuss the diffusion versus acceleration in Fermi accelerator with the help of
acceleration windows. In Section 4, we discuss quantum control on accelerator dynamics,
discuss results, and explain numerical data based on analytical calculations in Section 5.

2. The Experimental System

Thirty years after the first suggestion of Fermi, Pustylńikov provided detailed study of the
accelerator model, which we call Fermi Accelerator or modulated quantum bouncer [4, 18]
in this paper. In his work, Pustylńikov proved that a particle bouncing in the accelerator
system attains modes, where it always gets unbounded acceleration. The feature makes the
Fermi-Pustylńikov model richer in its dynamical beauty. In the atomic Fermi accelerator,
atoms move under the influence of gravitational field towards an atomic mirror made up
of an evanescent wave field. The atomic mirror is provided a spatial modulation by means of
an acousto-optic modulator which provides intensity modulation to the incident laser light
field [10]. Hence, an ultra-cold two-level atom, after a normal incidence with the modulated
atomic mirror, bounces off and travels in the gravitational field, as shown in Figure 1. In order
to avoid any atomic momentum along the plane of the mirror the laser light which undergoes
total internal reflection is reflected back. Therefore, we find a standing wave in the plane of the
mirror which avoids any specular reflection [19]. The periodic modulation in the intensity of
the evanescent wave optical field may lead to the spatial modulation of the atomic mirror as

I
(
z, t

)
= I0e

−2κz+a cos(ωt). (2.1)
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Thus, the motion of the atom in z-direction follows effectively the Hamiltonian

H =
pz

2

2m
+mgz + �Ωeffe

−2κz+a cos(ωt), (2.2)

where Ωeff denotes the effective Rabi frequency [5]. Moreover, a and ω express the amplitude
and the frequency of the external modulation, respectively.

3. Diffusion versus Acceleration in Fermi Accelerator

In case the decay constant κ of the evanescent wave field is large, simplified Hamiltonian of
our system in moving coordinates becomes

H =
pz

2

2m
+mgz̃ + V z̃ cosωt, z̃ ≥ 0, (3.1)

where z̃ = z − (ε/2κ) cosωt. The Hamiltonian given in (3.1) describes a particle of mass m
bouncing off an oscillating hard surface in the presence of gravitational field. We proceed
onward by introducing the dimensionless position and momentum coordinates. Here, we
define H = H(ω2/mg2) as dimensionless Hamiltonian, V = �ω2Ω/4mg2 potential of the
external field and then other parameters for this Hamiltonian system as, ε = ω2a/2κg, t =
ωt, and dimensionless Planck’s constant, −k = �(ω3/mg2). Hence, the Hamiltonian takes the
dimensionless form as

H
(
z, p, t

)
=

p2

2
+ z + εz cos t, z ≥ 0. (3.2)

The Hamiltonian system is integrable in the absence of time dependent term. We may
express the time development of the particle moving in time dependent system by the impact
map which gives the evolution immediately after a bounce in terms of immediately after the
previous bounce [1, 2], that is,

℘i+1 = ℘i +K sin
(
φi

)
,

φi+1 = φi + ℘i+1.
(3.3)

The map obtained in (3.3) is the Standard Map, where ℘i = 2pi and φi = ωti. The onset of dif-
fusive excitation in the system takes place as the chaos parameter K = 4ε takes a value larger
than Kcr ≈ 0.96, or when the perturbation amplitude exceeds the critical value εcr = 0.24 [20],
while the quantum evolution remains localized until a larger value λu of the modulation.
Above that point both the classical and the quantum dynamics are diffusive. However,
for specific set of initial conditions that originate within phase space disks of radius ρ,
accelerating modes appear for values of the modulation strength ε within the windows [4–6]

sπ

(
1 − ξ
1 + ξ

)
≤ ε <

√
1 + (sπ)2

(
1 − ξ
1 + ξ

)2

, (3.4)
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Figure 2: We plot the trajectories of a bouncing particle in time domain for three different phase points
(z, p), which represent stochastic near acceleration and acceleration regions. For these three phase points
we take V = 60 and ε = 1.7. (a) Our particle is in a chaotic region with phase point (23.239, 0), so there is
no consistent acceleration of the particle. (b) Particle originates from the phase point (21.898, 0) is on the
boundary of the accelerated region of phase space. Initially the position of the particle increase gradually
but after some time it decreases as we move in time domain. (c) Classical particle is in accelerated region
of phase space with phase point (19.739, 0). The position of the particle increases consistently as we move
in time domain.

where, s can take integer and half-integer values for the sinusoidal modulation of the reflect-
ing surface considered here. As the fundamental requirement for the acceleration is met by
choosing a modulation strength within the acceleration windows and the bouncing particle
from supporting areas of phase the particle displays acceleration discussed in Figure 2. We
found numerically that for a modulation strength outside the windows of (3.4) the dynamics
is dominantly diffusive as shown in Figure 3(a). However, for the ensemble originating from
areas of phase space of radius ρ, exhibit unbounded acceleration for modulation strength
from acceleration windows, as shown in Figure 3(b). A small diffusive background results
from a small part of the initial distribution which is residing outside the area of phase space
supporting acceleration. This coherent acceleration restricts the momentum space variance
Δp which then remains very small indicating the absence of diffusive dynamics.

4. Quantum Control on Acceleration Dynamics

As a matter of fact, the variables ℘ and φ in (3.3) do not form a conjugate pair in the
full Hamiltonian formulation of the model. The variable conjugate to the phase φ is the
quantity N = E, where E is unperturbed energy [16] and its value can be determined as
E = (3πI)2/3/2. By introducing ℘i+1 =

√
2(Ni+1 − z) and ℘i =

√
2(Ni − z) in (3.3), the impact

map in conjugate variables (N,φ) takes the form

Ni+1 = Ni + 2ε
√

2Ni sinφi,

φi+1 = φi + 2
√

2Ni+1 +O(ε),
(4.1)

here we neglected higher-order terms. The preservation of phase space volume for
Hamiltonian systems has a consequence that there are no attractors, that is, no subregions of
lower phase-space dimension to which the motion is confined asymptotically. The map given
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Figure 3: The above diagram of the phase space evolution of a classical ensemble of particles initially in a
narrowly peaked Gaussian distribution originating from the area of phase space that supports accelerated
trajectories. The initial distribution, centered at z = 2π2 and p = 0 with Δp(0) = Δz(0) = 0.1, is propagated
for ε = 1 (a) and ε = 1.7 (b) for time t = 1000. The numerical calculations correspond to Cesium atoms
of mass m = 2.2 × 10−25 Kg bouncing off an atomic mirror with an intensity modulation of a = 0.55. The
modulation frequencies extend to the megahertz range, and κ−1 = 0.55μm.

in (4.1) is the analogue of the Kepler map which was found very helpful in the hydrogen
atom problem [21]. A classical analysis of mapping given in (4.1) leads to predict the onset of
chaos under the same conditions found for the Standard Map description. Above the chaotic
threshold a diffusive growth of N is observed. Consider the phase space defined in conjugate
coordinates (N,φ) and introduce the initial distribution of phase-space points f(N,φ, t = 0).
The time evolution of f is described by a Fokker-Planck equation

∂f

∂t
=

1
2

∂

∂N

(
DN

∂f

∂N

)
, (4.2)

where t is time measured in the number of iterations of the map, that is, in the numbers of
the bounces. The Fokker-Planck (4.2) can be solved by the method of characteristics [22]. We
consider the conjugate pair mapping as in (4.1), switching parameters and with the help of
(4.2), we get the interesting relation between, ΔN, and −k, that is,

ΔN2 =
4Njε2

−k
. (4.3)

Here, ΔN is the dimensionless energy and j describes the number of bounces. The diffusion
coefficient DN is

DN =
4ε2N
−k

. (4.4)
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Figure 4: We present ΔN versus time for different values of effective Planck’s constant −k : −k = 1 (circle and
line), −k = 7 (star and line), and −k = 16 (triangle and line). We note that as we increase the value of −k the
dispersion decreases. The remaining parameters are the same as in Figure 2.

We plot ΔN versus time for different values of −k, shown in Figure 4, which illustrates that,
as we increase the value of the −k, we expand the dynamical localization window, which is
0.24 < ε <

√
−k/2. In this window, the lower boundary εl = 0.24 is set by classical dynamics,

we can find the εl by evaluating Lyapunov exponents and from the standard map. For a
modulation amplitude ε < 0.24, the Lyapunov exponent converges to zero in a vast range of
initial conditions, expect in small regions near separatrices. In the simulation, we initially take
our wave packet as Gaussian distribution. A comparison between quantum mechanically and
classical values of ΔN versus −k is shown in Figure 5. We take the average value of ΔN for last
400 to 1000 times. For different values of effective Planck’s constant −k, we extend localization
window towards accelerated window. We note that ΔN displaying a decaying behavior for
the higher values of effective Planck’s constant, −k.

5. Results and Discussions

In this contribution, we derive a quantum mechanical map for an atom bouncing off
a modulated mirror under the influence of gravity by reducing standard map into
conjugate pair map. We write the standard mapping as conjugate pair mapping in quantum
domain which provides dispersion law and its dependence on system parameters, such
as modulation strength, energy, effective Planck’s constant, and number of bounces. Our
numerical result show a very good agreement with analytically obtained results. We show
the dependence of ΔN on −k by numerically and by deriving the Fokker Planck equation for
our system as shown in Figure 5.

As discussed in Section 4 the localization occurs in the quantum modulated bouncer
in a window defined by classical and quantum dispersion laws. The latter is a function of
effective Planck’s constant and follows a square root law. Whereas the accelerated dynamics
takes place in the system for another window on modulation strength in the presence of initial
areas in phase space [2]. As we increase the value of the −k, we extend localization window
towards the accelerated window. For larger value of −k variance in energy decreases and the



Mathematical Problems in Engineering 7

150

300

450

Δ
N

0 8 16

k−

Figure 5: We plot ΔN versus −k and compare analytical results obtained by (4.3) with the numerical results.
Here, ε = 1.7, N = 1235 and j = 15. Black squared line expresses numerical results of ΔN whereas, red line
expresses corresponding analytical results obtained in Section 3.

two windows may overlap, where we do not find any accelerated dynamics, but dynamical
localization as shown in Figure 4.
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