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Taking a partially penetrating vertical well as a uniform line sink in three-dimensional space,
by developing necessary mathematical analysis, this paper presents unsteady-state pressure drop
equations for an off-center partially penetrating vertical well in a circular cylinder drainage volume
with constant pressure at outer boundary. First, the point sink solution to the diffusivity equation
is derived, then using superposition principle, pressure drop equations for a uniform line sink
model are obtained. This paper also gives an equation to calculate pseudoskin factor due to partial
penetration. The proposed equations provide fast analytical tools to evaluate the performance of
a vertical well which is located arbitrarily in a circular cylinder drainage volume. It is concluded
that the well off-center distance has significant effect on well pressure drop behavior, but it does
not have any effect on pseudoskin factor due to partial penetration. Because the outer boundary is
at constant pressure, when producing time is sufficiently long, steady-state is definitely reached.
When well producing length is equal to payzone thickness, the pressure drop equations for a fully
penetrating well are obtained.

Copyright © 2009 J. F. Owayed and J. Lu. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

For both fully and partially penetrating vertical wells, steady-state and unsteady-state
pressure-transient testings are useful tools for evaluating in situ reservoir and wellbore
parameters that describe the production characteristics of a well. The use of transient well
testing for determining reservoir parameters and well productivity has become common, in
the past years, analytic solutions have been presented for the pressure behavior of partially
penetrating vertical wells.
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Open to flow

Figure 1: Partially penetrating vertical well in circular cylinder drainage volume.

The problem of fluid flow into wells with partial penetration has received much
attention in the past years in petroleum engineering [1-7].

In many oil and gas reservoirs the producing wells are completed as partially
penetrating wells; that is, only a portion of the pay zone is perforated. This may be done
for a variety of reasons, but the most common one is to prevent or delay the unwanted
fluids into the wellbore. The exact solution of the partial penetration problem presents
great analytical problems because the boundary conditions that the solutions of the partial
differential equations must satisfy are mixed; that is, on one of the boundaries the pressure
is specified on one portion and the flux on the other. This difficult occurs at the wellbore, for
the flux over the nonproductive section of the well is zero, the potential over the perforated
interval must be constant.

This problem may be overcome in the case of constant rate production by making the
assumption that the flux into the well is uniform over the entire perforated interval, so that
on the wellbore the flux is specified over the total formation thickness. This approximation
naturally leads to an error in the solution since the potential (pressure) will not be uniform
over the perforated interval, but it has been shown that this occurrence is not too significant.

Many different techniques have been used for solving the partial penetration problem,
namely, finite difference method [2], Fourier, Hankel and Laplace transforms [3-5], Green's
functions [6]. The analytical expressions and the numerical results obtained for reservoir
pressures by different methods were essentially identical, however, there are some differences
between the values of wellbore pressures computed from numerical models and those
obtained from analytical solutions [7].

The primary goal of this study is to present unsteady state pressure drop equations
for an off-center partially penetrating vertical well in a circular cylinder drainage volume.
Analytical solutions are derived by making the assumption of uniform fluid withdrawal
along the portion of the wellbore open to flow. Taking the producing portion of a partially
penetrating well as a uniform line sink, using principle of potential superposition, pressure
drop equations for a partially penetrating well are obtained.

2. Partially Penetrating Vertical Well Model

Figure 1 is a schematic of an off-center partially penetrating vertical well. A partially
penetrating well of drilled length L drains a circular cylinder porous volume with height
H and radius R,.
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The following assumptions are made.

(1) The porous media volume is circular cylinder which has constant K., K, K,
permeabilities, thickness H, porosity ¢. And the porous volume is bounded by top
and bottom impermeable boundaries.

(2) The pressure is initially constant in the cylindrical body, during production the
pressure remains constant and equal to the initial pressure P; at the lateral surface.

(3) The production occurs through a partially penetrating vertical well of radius Ry,
represented in the model by a uniform line sink which is located at Ry away from
the axis of symmetry of the cylindrical body. The drilled well length is L, the
producing well length is Ly, .

(4) A single-phase fluid, of small and constant compressibility C, constant viscosit
glep P Yy &f y
U, and formation volume factor B, flows from the porous media to the well. Fluids
properties are independent of pressure. Gravity forces are neglected.

The porous media domain is

Q={(x,y,z) | x*+y* <R, 0<z< H}, (2.1)

where R, is cylinder radius, Q is the cylindrical body.

Located at Ry away from the center of the cylindrical body, the coordinates of the
top and bottom points of the well line are (Ry,0,0) and (Ro, 0, L), respectively, while point
(Ro,0, L1) and point (R, 0, L) are the beginning point and end point of the producing portion
of the well, respectively. The well is a uniform line sink between (Ro, 0, L) and (Ry, 0, L,), and
there holds

Ly=Ly—-L;, L,<L<H. (2.2)

We assume
K, =K, =Ky, K. =K, (2.3)
and define average permeability
K, = (K:K,K.)'? = KPK}/°. (2.4)

Suppose point (Ry,0,z') is on the producing portion, and its point convergence
intensity is g, in order to obtain the pressure at point (x, y, z) caused by the point (Ry, 0, z'),
according to mass conservation law and Darcy’s law, we have to obtain the basic solution of
the diffusivity equation in Q [8]:

0*P o*P 0%P oP
Kig— + Kz + Koo = puCigr

2 897 +ngBo(x - R0)6(y)6(z - 2), inQ, (2.5)
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where C; is total compressibility coefficient of porous media, 6(x — Ry), 6(y), 6(z — z') are
Dirac functions.
The initial condition is

P(t,x,y,2)|.g = P, in Q. (2.6)

The lateral boundary condition is
P(t,x,y,z) =P, onT, (2.7)

where I' is the cylindrical lateral surface:
I={(xyz|x*+y*=R;, 0<z<H}. (2.8)

The porous media domain is bounded by top and bottom impermeable boundaries, so

or| _, 9P

il = il =0. 2.
0z |,y 0z 0 29)

z=H

In order to simplify the above equations, we take the following dimensionless trans-
forms:

Xp = 2%, Yp = ny, Zp = <2fz) <§—:>1/2, (2-10)
) e e
Lyp=Lp~-Lip= [@] (%)1/2, (2.12)
Rop = ZL&, R.p = %, Ryp = ZRTw, (2.13)
b= ﬁ]é’:;. (2.14)

Assuming g is the point convergence intensity at the point sink (Ry, 0, z’), the partially
penetrating well is a uniform line sink, the total flow rate of the well is Q, and there holds

q= . (2.15)
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Define dimensionless pressures

_ 4w L(KyKy)'2 (P - P)

Pp (1aB) , (2.16)
Py STLKKD) (P = Py) (2.17)
(qB)
Note that if ¢ is a positive constant, there holds [9]
O(cx) = @, (2.18)
consequently, (2.5) becomes [8, 9]
aZPDZ + aZPDz + aZPDZ _ 9P grs(xp - Rop)6(yp)6(zp - z),), in Qp, (2.19)
oxD* oyD* 08zD* Oip
where
Qp = {(xp,yp,zp) | x}, + v < R, 0<zp < Hp}. (2.20)

If point ry and point r are with distances py and p, respectively, from the circular center,
then the dimensionless off-center distances are

2p0
pop = = PD =7 (2.21)

There holds

T Ko\"2/ 7L\ /4R, 2p0 2p 2\/pop
(i) @Ren —po =0~ vwor) = () (3 ) (T~ 7~ T 10)
aR

1/2

N
o
Q

~

“\Kx H R. R. R,
K, 172 TR,
(5)" () o),

where

(2.23)
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Since the reservoir is with constant pressure outer boundary (edge water), in order to
delay water encroachment, a producing well must keep a sufficient distance from the outer
boundary. Thus in this paper, it is reasonable to assume

8 <06, B<06. (2.24)
If

K, R.
=8=0. =% -02 ¢ -1 22
B =0=06, < 0.25, 7 5 (2.25)

then

K H

> (2 -89 - 8 — VD)= 0.25"2 x (7 x 15) x (2.0 - 0.6 — 0.6 — V0.6 x 0.6),

exp(—4.7124) = 8.983 x 107%;
(2.26)

and if

=10, (2.27)

=
T| &

then

1/2
<%> (”5 > (2-89—8-/D8)= 0.5"2x (rx10)x (2.0 — 0.5 - 0.5 — v/0.5x0.5) = 11.107,
h

exp(~11.107) = 1.501 x 10™°.
(2.28)

Recall (2.22), according to the above calculations, without losing generality, there holds

a
exp [— <H—D) (ZReD — PoD — PD — A /PODPD)] = 0. (229)
In the same manner, we have

exp [ - <HLD> (2Rp - pop — pD)] = 0. (2.30)

3. Point Sink Solution

For convenience in the following reference, we use dimensionless transforms given by (2.10)
through (2.17), every variable, domain, initial and boundary conditions below should be
taken as dimensionless, but we drop the subscript D.
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Thus, if the point sink is at (x’,0, z), (2.19) can be written as

%_It’ ~ AP =876(x - X)6(y)6(z ~ Z), inQ, (3.1)

where

Q={(x,y,z) | ¥*+y* <R, 0<z<HJ,

2 2 2 (3.2)
AP = a_P + a_P + a_P
ox2  oy* 0z?

The equation of initial condition is changed to

P(t,x,y,2)|-o =0, in Q. (3.3)

The equation of lateral boundary condition is changed to

P(t,x,y,z) =0, onT, (3.4)

where

I={(x,y,2z) | x¥*+y*=R2, 0<z<H}. (3.5)

The problem under consideration is that of fluid flow toward a point sink from an off-
center position within a circular of radius R.. We want to determine the pressure change at
an observation point with a distance p from the center of circle.

Figure 2 is a geometric representation of the system. In Figure 2, the point sink ry and
the observation point r, are with distances py and p, respectively, from the circular center; and
the two points are separated at the center by an angle 0. The inverse point of the point sink
1o with respect to the circle is point r,. Point r, with a distance p, from the center, and p; from
the observation point. The inverse point is the point outside the circle, on the extension of the
line connecting the center and the point sink, and such that

RZ
. = —. 3.6
= (3:6)
Assume R’ is the distance between point r and point 1, then [9, 10]
R = \/p2 + p2 = 2ppo cos 6. (3.7)

If the observation point r is on the drainage circle, p = R,, then

R = \/Rg +p2 —2R.pg cos6, R.>po>0. (3.8)
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Figure 2: Geometric representation of a circular system.

If the observation point r is on the wellbore, then
R = Ry. (3.9)

Recall (2.9), obviously for impermeable upper and lower boundary conditions, there
holds [9, 10]

, = korz' korz
65(z—-2') = kz:;)cos<?>cos?/(Hdk), (3.10)
where

1, ifk=0,
dr=191 (3.11)

—, ifk>0

2
Let
L & korz
Ptx,y,zx,y,2) = Z(pk(t,x,y) cos ) (3.12)
k=0

and substitute (3.12) into (3.1) and compare the coefficients of cos(korz/H), we obtain

awk_FAz <52¢k_Faz¢k

korz' ,
—_ o 6_y2> = 8ar cos <%>6(x -x")6(y)/ (Hdyx) (3.13)

or kPRT
in circular Q; = {(x,y) | x* + y* < R2}, and
or =0, (3.14)
on circumference I'1 = {(x,y) | x> + y* = R2}, and

¢kli=0 =0, (3.15)
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where

k
A = ﬁ” (3.16)

Taking the Laplace transform at the both sides of (3.13), then

Ppr 0Pk o~ abx-x)6(y)
< x2 + oy2 ) — (s+ )k = - 5 = €, (3.17)
px=0, onIy, (3.18)
where
-8 karz'
Ak = <H_dk) cos <T>' (3.19)

and s is Laplace transform variable.

Define
1 -4 karz'
ﬁk = (g)dk = <H_dk> CcOS <T> (320)

Case 1. If k =0, then

o’y %o e ap6(x — x")6(y)

Q 21
ox?  0y? s¢o s e (321)
where
a < —8ar )
0=\~ )
H (3.22)
@6 = 0, on 1"1.
Case 2. If k > 0, then i, satisfies (3.17).
Define
Sk = )Li +s. (3.23)

Recall (3.8), and [—fk/5]Ko(¢kR') is a basic solution of (3.17), since k > 0, we have

o = <—16.71'> (karz’)
=\ )" )
=\ H H )’

(3.24)
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so let

Uk = Pr + M, (3.25)
where
thus

Pk = ¢k — ik, (3.27)

and @ satisfies homogeneous equation:

82/\ 62/\ - )
£+Wq;k— (s+A)gr =0, inQy,
(3.28)
ﬂkK()( S+ )le(R,)
P = S , only,

R’ has the same meaning as in (3.8).

Under polar coordinates representation of Laplace operator and by using methods of
separation of variables, we obtain a general solution [11-13]:

¥r(s,x,y;5,x,0) = [Awlo(Skp) + BoxKo(Skp)] [a0k6 + bok]

= (3.29)
+ Z [AmkIm (ng) + Bkam(CkP)] [amk cos(m@) + bmk sin(m@)],

m=1

where Aj, Bk, air,bix, i=0,1,2,..., are undetermined coefficients.
Because (s, x, y;s,x',0) is continuously bounded within Q;, but K;(0) = oo, there
holds

Bk =0, i=0,1,2,.... (3.30)
There hold [9, 10]

ari ;
K, _ (== U]l'l/ZHl()l) ),
(z) ( > >e (zi) (331)

Lo(2) = &2 ], (zi),

where K, (z) is modified Bessel function of second kind and order v, I,,(z) is modified Bessel
function of first kind and order v, J,(z) is Bessel function of first kind and order v, Hl(,l) (z) is
Hankel function of first kind and order v, and i = v/-1.
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And there hold (see [14, page 979])

H (0R) = Jo(opo) H (0R.) +2.3" T(0po) HY (oR.) cos(me), (3.32)
m=1
Ko(LkR) = <%i>Hél) (itkR). (3.33)

Let 0 = ik, (note that i* = —1), substituting (3.31) into (3.32) and using (3.33), we have
the following Cosine Fourier expansions of Ky (¢kR') (see [14, page 952]):

m=1

Ko(&R) = (%) []o (iGp0) H (i2Re) +23 Jon(itipo) H (it Re) cos(me))]

= Jo(idkp)Ko(GkRe) + 23 e/ ], (i8ipo) Kon(GeRe) cos(m) (334)

m=1

= T0(&p0) Ko(kRe) +2 " L (Gip) Kon (& Re) cos(m).

m=1
So, we obtain

PeKo(GkR) _ Pr [T0(8kpo) Ko (kRe) + 231 I (Gicpo) Ko ($k Re) cos(mB)]
S S

. (3.35)

Note that ¢gx = PrKo(¢kR')/s on I't, and comparing coefficients of Cosine Fourier
expansions of Ky (¢xR') /s in (3.35) and (3.29), we obtain

aok =0, bOk =1, bik =0, i=1,2,.... (3.36)

Define

Yok = Gpc Ak, k=0,1,2,... (3.37)

and recall (3.29), then we have

Pr(s,x,y;8,x,0) = iYmkIm(gkp) cos(md), k=0,1,2,..., (3.38)
m=0
where
~ PrKo(GkRe) Io(Skpo)
Yor = S E (339)
Ymk _ Zﬁka(gkRe)Im(gkpo) ) (3.40)

sIn(CkRe)
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In the appendix, we can prove

3|

k=1

P cos < Z)‘ =0. (3.41)

Thus we only consider the case k = 0, in (3.38) and (3.40), let k = 0, we have

Go(s, X, y;5,%,0) = g}’molm(gop) cos(m#), (3.42)

where
Go=1s, (3.43)
Yool (iop) = £ OK'”(ﬁif&fS”Im(ﬁp ) = fo(9) % fon(s), (3.44)

where
ﬁM@=<%ﬁg>Fm%wi?0@&), m=0,1,2,..., (3.45)
ﬁﬂﬂzﬁxﬁﬁzgﬁ?,nwaLzm. (3.46)

And there holds

LY fi(s)) = (’Zf:) [eXp ( ;ﬁgﬂt)) . m=0,1,2,..., (3.47)

where £7! is Inverse Laplace transform operator.
Since s =0, s = —y, are simple poles of meromorphic function f,,(s), if using partial
fraction expansion of meromorphic function, there holds [15]

[*e]

fom(s) = Z (3.48)

1 s+ Ymn

where By, By are residues at poles s =0, s = —Y;u,, respectively, and

B - (pop)™
m0 = Dmy R
) (3.49)
Ymn = Rig/

Emn 1s the nth root of equation J,,,(x) = 0.



Mathematical Problems in Engineering 13

From (3.48), we have

£ {f2m(s)} =Bmo + ian exp(_Ymnt) = ian exp(_Ymnt)r (350)

n=1 n=0

where y,,,0 = 0.
According to the convolution theorem [12], from (3.44), there holds

m o 2
L7 fim(s) X fam(s)} = ([;()fm ){ZanJ [W] exp [ = Ymn(t — T)]dT}

= CmO + Dy,

(3.51)

where

o - (B2 f [ (- (R§/4T>)] -

1+m m+1
2 T

(3.52)

_ [ﬁo(ﬁop)’" ”‘t [eXp (- (Rg/‘“))]d@

x 21+2m T+l
m o 5
Dm - <ﬁ201{ii > {ZanJ‘ [exp ( Tf(ﬂlfl /4T))] eXp Ymn(t — T)]dT} .
n=1

Recall (3.38), (3.44), and (3.51), there holds

wolt, x,y;x',0) = L H{@go(s, x,y;x',0) }

-1 {flm (s) x f2m (5)} cos(m0) (3.53)

iMs iMs
=

(Cyo + D) cos(m).

Using Laplace asymptotic integration (see [16, page 221]), when ¥, is sufficiently
large, then

_ &P (- (R%/471))

T (3.54)

It [exp (- (R§/4T))]

Tm+l

exp [ = Yun(t = 7)]d7

therefore,

oo [ﬂoRZ” exp (- (R2/4t))] & Bun (3.55)

1+ +1
21+mpm ) Ymn
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There holds [9]

- 1 x m+2k
Ln(x) = gm@

(3.56)
N o2 el () )
Using (3.48) and (3.56), and note that
1J1rx=1—x+x2—x3+0(x3), (3.57)

S0 (3.46) can be written as

me(S)

{(1/mt) (v3po/2)" [1+ A(V3po/2)" + - ] {1/ m) (vsp/2)" [L + A(v/5p/2)" +---])
s1m/2((1/m!) (v/5Re/2)"[1 + (1/ (m + 1)) (v/5Re/2) + -1}

_ Buo [1 Pgs Rgs ]

s *m*“‘”“%“” RCEH

- <%> <5;ep>m [4(m1+ my(Potp =R+ O(S)]’

(3.58)
where « denotes (m!/(m + 1)!), thus from (3.48), we obtain
2~ i | o (5) ~ 2
net T (3.59)
_ 1 Pop R
- [4(m +1)! <2Re> (po+p" = Re),
therefore,
D - [ﬂoRZ’ exp (- (R§/4t))] (3 +p* - R) <pop>’”
"o Qlmpm+1 4(m+1)! 2R,
(3.60)

_ [Boexp (= (RZ/4t)) pop\"
‘[ 8t(m +1)! ](”5“’2"@(?) :

RP is defined as real part operator, for example, RP(e®) means real part of 7,

RP (&) = cos(m®). (3.61)
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There holds
i0 © i0\ ™
pope _ i pope
exp< e >—mz=:0<m|>< e ) , (3.62)
and define
R; [ pope”
,1_?_< a ) (3.63)

71 is a complex number.
Note that fy = —4/H, recall (3.53), define

A1 = ZCmo cos(m0)

m=0

() [ oo s ey

(8) s [ o (22}
(3.64)
(% ) < RP { f [EXP(_SI/T)) dT}
0
~(8)wle(-1)
- <%> x RP{Ei( - ?) }
In (3.60), let
X= F%f, (3.65)
and define
Ay = iDm cos(m@)
m=0
S e TGN
(3.66)

_ [Poexp(- (R2/4t )]( P2+ Rﬁ)rg)RP{ (m-ll-l)! (pOZ:ie>m}

= _[%12/4”)] (p5 +p* - R2) x RP{ <%> [exp (xe) - 1] },
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thus we obtain
go =L {go} = A1+ Ay,

and there holds [9, 10]

ﬁ—l{w} = —%Ei<— Z—i>/

thus if we recall (3.26) and define
As = —po = -L7 {1},

then

e (B (e

and R’ has the same meaning as in (3.7).

In the above equations, Ei(—x) is exponential integral function,

Fi(-x) = f_x &u(”)du, (0 < x < ).

Recall (3.27), there holds
@o(t,x,y;x',0) = o — po = A1 + Ag + Az,

Combining (3.12), (3.26), (3.27), and (3.41), we obtain
P(t;x,y,z;x,y,2) =@y + L7 iAcos <@>
7 /]/, s /y/ _(PO kzl‘)ok H
:(p0+.£‘1 i((ﬁ—ﬁ;)cos <@>
k=1 H

H s

=y — Z cos
k=1

= (kﬂ'z)ﬁ_l{ﬁkKO( s+ ALR)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

Equation (3.73) is the pressure distribution equation of an off-center point sink in the

cylindrical body. If the point sink ry and the observation point r are not on a radius of the
drainage circle, 6 #0, recall (3.7), R’ cannot be simplified, we cannot obtain exact inverse
Laplace transform of (3.73), but if necessary, we may obtain numerical inverse Laplace

transform results.
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If the point sink is at the center of the drainage circle, then

RZ

po=0, 1= Zg,
2 R? P’ exp(—(R%/4t)) (374
= (Z)IEi( -=<)-Ei( - & T el P (RE - 2
= (i) [E(-5) 5 (-] - [P -
In Figure 2, if the point sink ry and the observation point r are on a radius, then
6-0 ,1=R_§_<@> (3.75)
7 4 4 7
2\ [.[ (RE-ppo [ (p=po)?
o= () mi]- (C5)]--
(3.76)

2 2 2 2 2
_(Potp R ppo—Re\ (_R_>]}
( PPo )[eXp< at > PN W/

4. Uniform Line Sink Solution

Although the off-center partially penetrating vertical well is represented in the model by a
line sink, we only concern in the pressures at the wellbore face.

For convenience, in the following reference, every variable below is dimensionless but
we drop the subscript D.

The well line sink is located along the line {(x’,0,z) : L1 < z < L,}. If the observation
point r is on the wellbore, R’ = R, note that Ry > Ry, and there hold

920, p:p0+Rw:R0+Rw,
po = Ro, P —po =Ry, (4.1)
pop =Ry, p+po=2p0=2R,,

then
R R
44 ) (4.2)
_ppo Ry
4t 4t7

and recall (3.64), then

Ai(t; Ry, 0) = —<%>Ei[— (Rg;t%)]. (4.3)
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Recall (3.66), then

N _[Zexp (;{élgé/zxt))] (2R - ) [exp <%> _ 1], (44)

and recall (3.70), then

As(E Ry, 0) = (%)Ei[— (p _4:’0)2 - (%)Ei(— %) (4.5)

Define

Ly
1“1 = f A1 (t,‘ Ro, O)dZ,
Ly

SARGIERESIE
—-(&) - LoEi] - (RZR%”
-Gl (51

L,
FZ = f Az(t,‘ Ro, O)dZ,

Ly
= Jj . [%11:;/41}))] (2R} - R2) [exp ({:—5)) - l] dz' (4.6)

[Py o ()

_ ZLPf 2 2 Ré—Ri Rﬁ
(i) -mler (555) o (5]

Ly
F3 = f A3(t,‘ Ro, O)dZ,
Ly

@) e(- B
~(C)e(-3)
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In order to calculate the pressure at the wellbore, using principle of potential super-
position, integrating z’ at both sides of (3.72) from L; to Ly, then

L
Wo(t) = | ¢o(t; Ro,0)dz’
Ly

=T+, +13

2L\ [ /R-R
‘(H)E’[‘< i )]

2Ly, _— R} - R; R’
_<HR5>(2R°_R8)[QXP< v ) o (- 5)] (47)

C)e(-5)
el ()]
(e lor(5) (5]}

Recall (3.26), and note that p — pg = Ry, we have

o ﬂkKo(Rw\/S + )LIZ() (4 8)
S , .

Pk

and define

L
a‘k = ﬁkdz’
Ly

:ﬂk<%>J‘iKo(RwM)dzl
= _<%>KO(RWM)Iij cos (%)dz'
= —<%>K0<me) [sin <k]Iile> —sin <kﬁ1>],

because when s is very small, (time ¢ is sufficiently long), there holds

Ko(Rw\/s +12) = Ko(RwAk\/1 + 5/12) = Ko(RowAk), (4.10)

(4.9)
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so when time is sufficiently long,

or = LG} = —(%)KO(RwAk) [sin (k’IZLZ) —sin <k’Ir{L1 >] (4.11)

Recall (3.12), (3.24), (3.27), and (3.41), when time t is sufficiently long, define

u = gok cos <%>
= g - (%)KO(Rw.)Lk) [sin <k7;1L2> —sin (kJIz'{Ll >] cos (%) (4.12)

(5B (25 an (5o (55)

Therefore, the wellbore pressure at point (Ry + Ry, z) is

L,
P(Ry,z) = ’[ P(Ry + Ry,0,z,t; Ry, 0,2 )dz
I (4.13)

= Wy(t) - U.

Considering the bottom point of the well line sink, then z = L,,, L1 =0, thus L, = L,,,
in this case, (4.12) reduces to

[ 8\ Ko(nrRy/H) . (nrLy nrz
U——<E>Z - sm< I >COS<F)

n=1
_ /4\&Ko(nxRy,/H) . (217l (4.14)
() z e e ()

n=1
211+Iz,

where

N 2nsrL,,
Il = —<é> KO(n]rRW/H) sin( P ),

b/ n H
s 2narL
12:_<i> s KorRu/H) <_P> (4.15)
T/ wiN+1 n H
_ [ H
- 7Ry

where [H/mR,,] is the integer part of H/ xRy,
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For I it holds the following estimate:

|| =
n

+

[OEC e

n

. i ( >1<0(an /H))
n=N+1 n
< Jw< )K0(4x/N) (4.16)
_ < 4 > f Ko®) 4,
B Jr
=27%x107°
= 0.
So, (4.14) reduces to
4\ X Ko(nrRy/H) . [/2nxLy,
Uz11:—<;>§ 0 - sm< H’” ) (4.17)

Combining (4.7), (4.13), and (4.17), pressure at the bottom point of the producing
portion is

(4.18)

< Ko(nrRy/H) . <2"”Lw>
Z S .
n H

P(Ru, Lyr) = Wo(t) + <%>

n=1

In order to obtain average wellbore pressure, recall (4.12) and (4.17), integrate both
sides of (4.13) with respect to z from L, to L, then divided by L,,, average wellbore pressure
is obtained:

1 (b
Pow=+—| P(Ry, z)dz
prJ L

< () SR [ (10 (][ con (252 )]

8H \ N, Ko(nrRo/H) [ . /noL _ /nxli\]
:‘Po(t)+<ﬁ2Lpr>Z 0 - [31n<T2>—31n< H1>]

n=1

32H )i Ko(norRy/H) sin? < nLy, >C082 |n7r(L2 +L) ]

—
ol®) + <Jr2Lpr 2 2H 2H

(4.19)
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where we use

1 (& nrz H nirl, narly
al i = i —si . 4.2
L, Llc‘”( I ) <mrL,,r>[S”‘< i)~ (" )] (4.20)

5. Dimensionless Wellbore Pressure Equations

Combining (4.7) and (4.19), the dimensionless average wellbore pressure of an off-center
partially penetrating vertical well in a circular cylinder drainage volume is

2Lop R - R2 R2
_ pr | [/ Rep " Top\| ./  Buwp
PwD_<HD >{El[ < 4tp )] El( 4fD>
R? R?
o0~ NeD\ _Kep
- () @~ ) o (2752 ) —exp (- 2] } 5,

(5.1)
where
32HD N KQ(Tl.ﬂ'RwD/HD) . 2<n~71—LprD> 2[71.71'(L2p+L1D)

= — b T D) 2

Sy (ﬂszrD ) ; " sin >Hp cos 2Hp , (5.2)
Hp

N =4 , 5.3

R (5.3)

[Hp/mRyp] is the integer part of Hp /7 Ryp.

Equation (5.1) is applicable to impermeable upper and lower boundaries and long
after the time when pressure transient reaches the upper and lower boundaries. And S,
denotes pseudo-skin factor due to partial penetration.

If L,, = L = H, the drilled well length is equal to formation thickness, for a fully
penetrating well, S, = 0, (5.1) reduces to

naofu- (S )] (- )
(et () -or (-52)]}

If the well is located at the center of the cylindrical body, then x' = Ry = 0, there holds

(2R RZD) RiD Rep Rep Rep
s [ 2] [o (R52) enn (- 32)] =52 ) o (G2

(5.5)

(5.4)
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Thus, (5.1) reduces to

2L, R R R R
Pw — P Eil - eD —Eil - wD> < eD) [_( eD)
b (HD >{ ’[ (4@)] l< atp ) "\, )P | T

where S, has the same meaning as in (5.2).
If the well is a fully penetrating well in an infinite reservoir, R, = oo, there holds

R2 R R2
Eil - eD — eD) < _ eD> =0. 7
l( 4t ) 0 <4tD exp( =g, )Y (57)

Thus, (5.6) reduces to

} +5,,  (56)

RZ
Pup = —2Ei< - ﬁ) (5.8)

Substitute (2.12) and (2.15) into (2.17), then simplify and rearrange the resulting
equation, we obtain

_p o #Q_B>
Pl Pw_(&ﬂ'Kthr PwD/ (59)

where Q is total flow rate of the well, and P,,p can be calculated by (5.1), (5.4), (5.6), and (5.8)
for different cases.

During production, the unsteady state pressure drop of an off-center partially
penetrating vertical well in a circular cylinder drainage volume can be calculated by (5.9).

6. Examples and Discussions

Recall (5.2), pseudo-skin factor due to partial penetration S, is a function of Ly, L, and H is
not a function of well off-center distance Ry or drainage radius R..
For an isotropic reservoir, (5.2) reduces to

, (6.1)

s _(32H iKO(””R’”/H)st narLy, o [nor(Ly + Ly)
P \a2Ly,, 2 2H 2H

n=1

and (5.3) reduces to

H
=4 — 2
N [m , 6.2)

[H/ xRy ] is the integer part of H/ 7 Ry,.
If we define

flzﬁr fZZEI f3:FI (63)
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Figure 3: Pseudo-skin factor versus R,/ H plot.

then (6.1) can be written as

Ko n.71'f3)

S, = (6.4)

[ﬂz(fz—fl)] 5 e o5 v 0

Example 6.1. Equation (6.4) shows that pseudo-skin factor S, is a function of the three
parameters f1, f2, f3, fix two parameters, and generate plots that show the trend of S, with
the third parameter.

Solution

Case 1. Figure 3 shows the trend of S, with f3 when f; = 0.2, f, = 0.8, it can be found that S,
is a weak decreasing function of f3.

Case 2. Figure 4 shows the trend of S, with f; when f, = 0.9, f3 = 0.002, it can be found that
Sp is an increasing function of fi. When f; is a constant, we may assume H is a constant,
then L, is also a constant; when f; increases, L; also increases, thus the well producing length
Lyy = Ly — Ly decreases, and pseudo-skin factor due to partial penetration increases.

Case 3. Figure 5 shows the trend of S, with f, when f; = 0.1, f3 = 0.002, it can be found
that S, is a decreasing function of f,. When f; is a constant, we may assume H is a constant,
then L, is also a constant; when f; increases, L, also increases, thus the well producing length
Lyy = Ly — Ly increases, and pseudo-skin factor due to partial penetration decreases.

Example 6.2. A fully penetrating off-center vertical well, if

Rop=20,  Ryp =001, (6.5)

compare the wellbore pressure responses when R,p = 5,10, 15.
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Figure 4: Pseudo-skin factor versus L; /H plot.
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Figure 5: Pseudo-skin factor versus L,/ H plot.

Solution

Equation (5.4) is used to calculate P,p, the results are shown in Figure 6.

Figure 6 shows that at early times, the well is in infinite acting period. When producing
time is long, the influence from outer boundary appears. Because the outer boundary is at
constant pressure, when the producing time is sufficiently long, steady state will be reached,
P,p becomes a constant.

At a given time tp, if drainage radius R.p is a constant, when well off-center
distance R,p increases, P,,p decreases, which indicates the effect from constant pressure outer
boundary is more pronounced.

Example 6.3. A fully penetrating off-center vertical well, if

Rop =10, R.,p =0.01, (6.6)

compare the wellbore pressure responses when R.p = 20, 30, 40.
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Figure 6: The effect of well off-center distance on wellbore pressure.

Solution

Equation (5.4) is used to calculate Py,p, the results are shown in Figure 7.

Figure 7 shows that at a given time tp, if well off-center distance R,p is a constant,
when drainage radius R.p increases, P,p also increases, which indicates the effect from
constant pressure outer boundary is more pronounced.

7. Conclusions

The following conclusions are reached.

(1) The proposed equations provide fast analytical tools to evaluate the performance
of a vertical well which is located arbitrarily in a circular drainage volume with
constant pressure outer boundary.

(2) The well off-center distance has significant effect on well pressure drop behavior,
but it does not have any effect on pseudo-skin factor due to partial penetration.

(3) Because the outer boundary is at constant pressure, when producing time is
sufficiently long, steady-state is definitely reached.

(4) Atagiven time in a given drainage volume, if the well off-center distance increases,
the pressure drop at wellbore decreases.

(5) When well producing length is equal to payzone thickness, the pressure drop
equations for a fully penetrating well are obtained.

Appendix

In this appendix, we want to prove (3.41).
For convenience, in the following reference, every variable below is dimensionless but
we drop the subscript D.
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Figure 7: The effect of drainage radius on wellbore pressure.

There hold [14]

1/2
Lu(x) = &(’C)z, Ky(o) = T/COT 1 vmso. (A1)
(2:/1'x)1/ exp(x)
Since
gkz\//\i+s>)uk=%ﬂ->0, Vk > 1, (A.2)

and note that H is in dimensionless form in the above equation, recall (2.11), (2.13) and (2.21),
for dimensionless H, R,, po, p, there hold

kR, > 1, Ckpo > 1, Ckp > 1, (A.3)

thus, we obtain

Kin(GkRe)

m = Jrexp(—ngRe), (A4)

L (kpo) I (G1p) = [ exp (Gpo) ] [ exp(gkp)

@rikpo)'? 1 L2 gip)'/?

_ explé(p +po)]

7 A.5
(2rék) (ppo)'? (A
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ZﬂkK gkRe)Im(CkPO)Im (ng)
shn(CkRe)

2p exp[gk(p + po)]
= <?k> [Jrexp(—ZékRe)]{ngk)(T)f/z}

<2pk> [W] P 8CR ~po=p)]

mkIm(gk )

(A.6)

B [Sgk(ﬁﬁ] exp [_ ¢k (2R, - po _p)]

There holds

k| = Z | Yok L (Sip) cos(m0) |

m=0

< 3 Yokl (Gep)| (A7)

m=0

0

2k Kn (G Re )Im(€kpo)1m(§kp)
shn(kRe)

m=0

Combining (2.21), (3.20), (A.6), and (A.7), we obtain

e

s (55)] < S
33

k=1 m=0

2ﬁka(CkRe)Im (ngO)Im (ékP)
SIm(gkRe)

2P Ko (SxRe) o (Skpo) o (Gkp)
sy (‘;kRe)

< Zﬂka (CkRe) L (Gkpo) L (Ckp) ] (A.8)

>

k=1

+2

el SIm (gkRe)

_ | 2PeKo (G Re) Lo (Skpo) Io (Srp)
p slo(SkRe)

& & | 2Bk Km (SkRe) L (G po) I (i p)
" ; mzl sIn(GkRe)

[*e]

M

=Z1 + 3y,
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where

[

2Pk Ko(SkRe) Io(Skpo) Lo (Gkp) )
SIO (gkRe)

Zﬁka (ékRe)Im (ngO)Im (Ckp)
sIn(GkRe)

[1

0
=1
0

1=,
k
0
=22
k=1 m=1
It is easy to prove if
x>y>0, a>0,

then

exp(—ax) - exp(-ay)
x y

7

since {x > Mg, thus

(é) exp [ - Gk(2R. = po - p)] < (ﬁ) exp [~ LR = po = p)]-

Thus, there holds
- ?{ 2o ol
. g #] exp [~ 8 2R~ o =)
< ki :#] exp [ (2R, — po p)]
= g :W] exp [— <k§> (2Re = po - p)]
Sl el ()

n

8 ] { exp[(or/H) (2R, - po - p)] }
s7(ppo)"/*1 L1 —exp[—(w/H)(2R. —po - p)] J*

0,

i

29

(A9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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where we use (2.30),

exp

-(§)er-m-p) =0,

x
x+x2+x3+x4+x5+"'=1—r 0<x<1
-x

If m > -1/2, there holds [14]

= (Z/Z)m ! m-1/2
@) = |t iz || 000 o
thus form > 1,
[ (Gkp/2
I (kp) < T + 1/2)F(1/2)]J cosh(gkpt)dt
_ 2(kp/2)™ '
[ @kp)T(m+ 1/2)r(1/2)] sinh(gkp)
T Gkp/2™! .
= |Tom+ 17210 /2) | SR kP
(Gkp/2)™
< |2+ 1721 72) | PP

where we use

2sinh(2ep)
kp

exp(Gkp)
5

1
f cosh(kpt)dt =
-1

sinh(&p) <

andif -1<t<1, m>1,then

m-1/2

(1-1) <1.

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)
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Substituting (A.18) into (A.10), we obtain

o 8| 2K (G4R i Ep0) T i)
= ;le sIn(GkRe) ‘
@, &/ 2|B] (Gep/2)" (Grpo/2)™™!
) é mzl< s > eXp [~ 62K = po = p)] [ZF(m n 1/2)r(1/2)] [ZF(m +1/2)I(1/2)
& & /6 (&ppo/H)™
B ,(Zzl mzl<_> [20(m+1/201/2) F [=62Re = po=p)]

_ (L6 ST
_Z<5H>6Xp[ (2R = po - ;ny:‘l[zr(m+1/2)r(1/2)] '

k=1
(A21)
Note that [14]
T(m+1/2) = 1X3X5X"'2:1(2m—1)\/7r
S 1X2X6X"-X(2m_2)\/f
g (A.22)
_ 2 m -y
= >
_(m-1\
=
Then we obtain
- < 16_‘71' _ B o] PPO/4)m—1
=2 <;<S >exp[ Gk (R, — po - mzl 2r(m+1/2)r o
(157 Y exp [ 2R~ - ) 3,020
= i(w—”> exp [ - &k (2R, — po - Z (Lk/PPo/2)™ (A.23)
k=1 ° n=0 ( ! )
) 2(5265;) exp [ - k(2Re — po = p)] 1o (/o)
< 16
) Z(SJI‘H> exp [~ &k (2Re — po = p)] 1o (Sk\/PpPo),
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where we use [14]

0 2n
h@ =200 1(3)=vE (A24)
n=0 .

It is easy to prove if a > 0, x > y > 0, there holds

<& (A.25)
NI
since
Ck > Ak, 2R, = po—p—~/pPpo >0, (A.26)
then
exp [~ & (2Re —po—p— pp0)] _ exp [~ Mk (2Re —po—p ~ o) (A27)
1/2 )Ll/z : ’
k k
Note that ¢x/ppo > 1, and we have
ex gkq/
Iy (gkw /PPO) =~ p(—pp(& (A.28)
(27¢k/PP0)
thus (A.23) can be simplified as follows:
- _~/ 16 exp (Gk+/
=< Z<_H) exp [~ ¢k(2Re — po — p)] [p(—Ppcl)Bz
=1 \ ST (27 8k~/PPO)
_ i 16 ]eXp [ Sk(2Re = po = p = /PP0)]
= .SJrH(Zyz')l/z(ppo)l/4 ,1(/2
=1 16 exp [~ Ak (2R. — po — p — \/PPo)]
<> 172 174 172
k=1 Lsar H (27r) " “(ppo) A
&0 16 (km’) ] (A.29)
= exp |- (== ) (2R. - po - p — \/PPo
2 .sar2<2kH>”2<ppo)“4] p |- (7 ) @R o= )
| 0 |- () Voo |
< exp|—-(—)2R.—po—p—
; .SJFZ(ZH)l/Z(ppo)l/4 P H ( po—pP PPO)

[ 16 ]{ exp [ (r/H) (2R = po - p = v/PP0) ] }
sw2(2H)"(ppo)'/* 1 L1 —exp [ - (7 /H) (2Re = po = p = /PP0) |
0

4

7
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where we use (A.16) and (2.29)
exp [— <%)(2R6—P0—P_\/PPO) = 0. (A.30)
Combining (A.8), (A.14), and (A.29), we prove (3.41).
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