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Dynamic behaviors of a particle (or a bouncing ball) in a generalized Fermi-acceleration oscillator
are investigated. The motion switching of a particle in the Fermi-oscillator causes the complexity
and unpredictability of motion. Thus, the mechanism of motion switching of a particle in
such a generalized Fermi-oscillator is studied through the theory of discontinuous dynamical
systems, and the corresponding analytical conditions for the motion switching are developed.
From solutions of linear systems in subdomains, four generic mappings are introduced, and
mapping structures for periodic motions can be constructed. Thus, periodic motions in the
Fermi-acceleration oscillator are predicted analytically, and the corresponding local stability and
bifurcations are also discussed. From the analytical prediction, parameter maps of periodic and
chaotic motions are achieved for a global view of motion behaviors in the Fermi-acceleration
oscillator. Numerical simulations are carried out for illustrations of periodic and chaotic motions
in such an oscillator. In existing results, motion switching in the Fermi-acceleration oscillator is not
considered. The motion switching for many motion states of the Fermi-acceleration oscillator is
presented for the first time. This methodology will provide a useful way to determine dynamical
behaviors in the Fermi-acceleration oscillator.

Copyright q 2009 A. C. J. Luo and Y. Guo. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The Fermi-acceleration oscillator was first presented [1] by Fermi in 1949, which was used to
explain the very high energy of cosmic ray. Since then, such an oscillator has been extensively
investigated to interpret many physical and mechanical phenomena. In 1961, Ulam [2]
pointed out the statistical properties of a particle in the Fermi-oscillator. In 1964, Zaslavskii
and Chirikov [3] gave a comprehensive study of the Fermi-acceleration mechanism in the
one-dimensional case. In 1972, Lieberman and Lichtenberg [4] discussed the stochastic
and adiabatic behaviors of particles accelerated by periodic forcing, but such analysis was
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based on the model presented by Zaslavskii and and Chirikov [3]. The corresponding
stability of periodic motion was discussed. Such results can be found from Lichtenberg
and Lieberman [5]. In 1978, Pustyl’nikov [6] discussed the reducibility of non-autonomous
systems to normal forms in the neighborhood of an equilibrium point, and in 1995 he gave a
detailed description about the Fermi-acceleration mechanism [7]. In 1986, Jose and Cordery
[8] studied a quantum Fermi-accelerator consisting of a particle moving between a fixed
wall and a periodic oscillator. In 1987, Celaschi and Zimmerman [9] gave an experimental
investigation to observe the period-doubling route to chaos for a 1D system with two
parameters. In 1988, Kowalik et al. [10] completed an experimental investigation on chaotic
behaviors of a ball in the bouncing ball system, and used the Zaslavski’s mapping to analyze
such chaotic behaviors. In 1989, Luna-Acosta [11] investigated the dynamics of the Fermi-
accelerator subject to a viscous friction. In 1996, Warr et al. [12] determined experimentally a
probability distribution function for a single-particle vibrating in one dimension. In 1998, Saif
et al. [13] studied the dynamics of both classical and quantum Fermi-acceleration oscillators
and determined the dynamical localization of position and momentum for a modulation
amplitude. Lopac and Dananić [14] investigated chaotic dynamics and energy conservation
in a gravitationally driven Fermi-accelerator. In 2004, Bouchet et al. [15] presented a simple
stochastic system to generate anomalous diffusion of both position and velocity for the Fermi-
accelerator. Leonel et al. [16] completed a scaling analysis of chaotic motion in the Fermi-
Ulam-simplified accelerator, and Leonel et al. [17] investigated the effect of a time-dependent
perturbation on a Fermi-accelerator model using discrete dynamical systems. In 2006, Leonel
and McClintock [18] discussed the influence of dissipation on a simplified Fermi-Ulam
accelerator model. In 2007, Leonel and de Carvalho [19] presented the Fermi-accelerator
model with inelastic collisions through a two-dimensional nonlinear area-contracting map.
In 2007, Karlis et al. [20] investigated the Fermi-acceleration of an ensemble of noninteracted
particles in two stochastic two-moving walls in the Fermi-Ulam model. Leonel and Silva
[21] discussed the dynamical properties of a prototype for the Fermi-acceleration modeled
by two nonlinear terms. Kamphorst et al. [22] numerically studied the energy change of a
particle bouncing in a time-varying billiard. In 2008, Leonel and Livorati [23] presented the
average velocity behavior on a dissipative Fermi-acceleration model with a scaling approach.
The scaling characteristics of a breathing circular billiard were investigated by Ladeira and da
Silva [24]. All the aforesaid investigations were based on the one motion state with impact.
The motion switching was not considered. In this paper, the motion switching from a motion
state into another one will be investigated.

The similar studies of impacting systems have also been carried out in mechanical
engineering because the impact is an important phenomenon in mechanical engineering.
For instance, in 1982, Holmes [25] investigated the dynamics of repeated impacts of a ball
with a sinusoidal vibrating table. It was assumed that the mass of the ball is much smaller
than the mass of the table, and the ball and table always impact at the same position. In
1983, Bapat et al. [26] investigated the asymptotically stable periodic motions of a ball in an
impact-pair. Shaw and Holmes [27] studied harmonic, subharmonic, and chaotic motions of
a single-degree-of-freedom nonlinear oscillator and analyzed the corresponding bifurcations.
In 1987, Whiston [28] studied the steady-state, vibroimpacting responses of one-dimensional,
harmonically excited, linear oscillator. In 1988, C. N. Bapat and C. Bapat [29] used Fourier
series and perturbation method to determine the stability regions of two equispaced impact
motion of an impact-pair under a prescribed periodic displacement. In 1991, Nordmark
[30] studied the singularity caused by grazing impact in a single degree of freedom impact
oscillator. In 1992, Foale and Bishop [31] investigated a periodically forced linear oscillator
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with instantaneous impacts at one or two stops. In 1994, Budd and Dux [32] investigated the
chattering behavior of a periodically forced, single-degree-of-freedom impact oscillator with
a restitution law for each impact. Foale [33] tried to determine bifurcations in a periodically
driven impact oscillator analytically, and the impact wall is fixed. In 1995, Bapat [34] studied
the motion of an inclined impact damper with friction and collision on both sides. In order
to understand dynamical behaviors of a bouncing ball on a vibrating table, in 1996, Luo and
Han [35] presented a reasonable model and analytically predicted the periodic motions. In
2002, Luo [36] investigated the stability and bifurcation of unsymmetrical periodic motions
in a horizontal impact oscillator with a periodic excitation. In 2004, Giusepponi et al. [37]
discussed the randomness of motion of the bouncing ball on a sinusoidally vibrating table.
Luo [38] discussed the stability, saddle-node and period-doubling bifurcations for the LR
model motion in a horizontal impact oscillator.

In 2005, Luo [39] presented the mapping dynamics of periodic motions in a nonsmooth
piecewise system. To understand the complexity in discontinuous dynamical systems, Luo
[40, 41] developed a theory of the non-smooth dynamical systems on connectable and
accessible subdomains. Luo and Chen [42] applied such a theory to investigate the grazing
bifurcation and periodic motions in an idealized gear-transmission system with impacts. In
2006, Luo and Gegg [43] used such a theory to develop the force criteria of stick and nonstick
motion in harmonically forced, friction-induced oscillators. In 2007, Luo [44] discussed
switching bifurcations of a flow to the separation boundary. Luo and Rapp [45] studied
the switching dynamics of a flow from one domain into another adjacent domain in a
periodically driven, discontinuous dynamical system. Luo and O’Connor [46, 47] discussed
the dynamics mechanism of impact chatters and possible stick motions in a gear transmission
system, and the moving boundaries are controlled by other dynamical systems. In the
gear model, the two boundaries are movable. However, the Fermi-acceleration oscillator
possesses both static and time-varying boundaries in phase space for impacts and motion
switching. In existing investigations on the Fermi-acceleration oscillator or impact oscillators,
the dynamical systems are not switched except for impacts. Thus, in this paper, the impacting
and sticking of two systems on the boundaries will be considered, which will provide a
practical model to predict the motions of the Fermi-acceleration oscillator.

This paper will investigate dynamics of a generalized Fermi-acceleration oscillator.
The domains and boundaries for such a problem will be introduced because of the
discontinuity, and the analytical conditions of stick and grazing motions will be developed at
the boundaries. The mapping technique will be used for the analytical prediction of periodic
motions of the extended Fermi-acceleration oscillator. The local stability and bifurcation of
periodic motions will be discussed using the eigenvalue analysis. Bifurcation scenario and
analytical prediction of motions will be presented, and numerical simulations of periodic
and chaotic motions will be carried out. In addition, the Poincare mapping sections will be
presented for illustrations of chaotic motions, and the parameter maps will be presented as
well.

2. Physical Problem Statement

A generalized Fermi-acceleration oscillator consists of a particle moving vertically between
a fixed wall and the moving piston in a vibrating oscillator. The piston of mass m2 is
connected with a spring of constant k and a damper with coefficient c, and they are set
on a periodically oscillating base, as shown in Figure 1. The mass of particle is m1 and the
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Figure 1: Mechanical model.

restitution coefficients of impact are e1 and e2 for the wall and piston, respectively. The gap
between the fixed wall and the equilibrium position of piston is h. The displacement of the
oscillating base is D(t) = Q cosΩt.

If the particle does not stay on the piston, the corresponding motion of such a system
is called the nonstick motion. For this case, the equation of motion for such a system is given
from the Newton’s law, that is,

ẍ(1) = −g,

ẍ(2) + 2d(2)ẋ(2) +
(
ω(2))2

x(2) =
(
ω(2))2

Q cosΩt − 2d(2)QΩ sinΩt,
(2.1)

where d(2) = c/2m2, and ω(2) =
√
k/m2. ẍ

(i), ẋ(i) and x(i) (i = 1, 2) are acceleration, velocity,
and displacement, respectively. g is the gravitational acceleration. The superscripts i = 1 and
2 represent the particle and piston, accordingly.

If the particle stays on the piston and they move together, such a motion is called the
stick motion. For the stick motion, there is a relation (x(1) = x(2) and ẋ(1) = ẋ(2)) and the
corresponding equation of motion becomes

ẍ(i) + 2d(0)ẋ(i) +
(
ω(0))2

x(i) =
(
ω(0))2

Q cosΩt − 2d(0)QΩ sinΩt, (2.2)

where d(0) = c/2(m1 + m2), ω(0) =
√
k/(m1 +m2). The superscripts i = 1, 2 represent the

particle and piston, respectively.
For nonstick motion, the impact relation between the particle and the fixed wall is

x
(1)
+ = x(1)

− = h, ẋ
(1)
+ = −e1ẋ

(1)
− ,

x
(2)
+ = x(2)

− , ẋ
(2)
+ = ẋ(2)

− ,

(2.3)
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where (+) and (−) represent the after and before impact. The impact relations between the
particle and the vibrating piston are

x
(1)
+ = x(2)

+ = x(1)
− = x(2)

− ,

ẋ
(1)
+ =

m1ẋ
(1)
− +m2ẋ

(2)
− −m2e2(ẋ

(1)
− − ẋ

(2)
− )

m1 +m2
,

ẋ
(2)
+ =

m1ẋ
(1)
− +m2ẋ

(2)
− +m1e2

(
ẋ
(1)
− − ẋ

(2)
−
)

m1 +m2
.

(2.4)

3. Analytical Conditions

In this section, the domains and boundaries of the extended Fermi-oscillator will be
introduced in the absolute and relative coordinates. From such domains and boundaries,
the analytical conditions of stick and grazing motions to each switching boundary will be
developed from the theory of discontinuous dynamical systems.

3.1. Domains and Boundaries for Absolute Motions

To analyze the motion discontinuity in the Fermi-acceleration oscillator, the origin of the
absolute coordinates is set at the equilibrium of piston. The domains for the particle and
piston without stick in the absolute coordinates are defined as

Ω(1)
1 =

{(
x(1), ẋ(1)) | x(1) ∈

(
x(2), h

)}
,

Ω(2)
1 =

{(
x(2), ẋ(2)) | x(2) ∈

(
−∞, x(1))}.

(3.1)

The corresponding boundaries are defined as

∂Ω(i)
1(+∞) =

{(
x(i), ẋ(i))∣∣ϕ(1)

1(+∞) ≡ x
(1) − h = 0, ẋ(1)

/= 0
}
,

∂Ω(i)
1(−∞) =

{(
x(i), ẋ(i))∣∣ϕ(i)

1(−∞) ≡ x
(i) − x(i) = 0, ẋ(i)

/= ẋ(i)},
(3.2)

where i = 1 and 2 are for i = 2 and 1, accordingly. The subscripts “±∞” represent
the permanent boundaries at x(1) = h and x(i) = x(i). If a flow in a subdomain of a
dynamical system cannot pass over a switching boundary into another subdomain without
any transport law, such a boundary is called the permanent boundary (e.g., Luo [48]). For
this problem, the impact law, as a transport law, should be applied for such permanent
boundaries. In other words, the impact relations in (2.3) and (2.4) will be applied for such
permanent boundaries. The subdomains and boundaries for motions of particle and piston
in phase space are sketched in Figure 2. The subdomains are filled with diagonal lines. The
boundary (∂Ω(1)

1(+∞)) for the particle is a dashed line with x(1) = h and the boundaries (∂Ω(1)
1(−∞)

and ∂Ω(2)
1(−∞)) with x(1) = x(2) for the particle and piston are two dashed curves.
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Figure 2: Absolute domains and boundaries without stick: (a) particle and (b) piston.

For this system, there is a stick motion of the particle and piston. Thus, the stick
motion will appear and vanish under certain conditions. Such onset and disappearance of
the sticking motion will generate new boundaries and domains. The domains Ω(i)

0 and Ω(i)
1

(i = 1, 2) for the particle and piston with stick in the absolute coordinates are defined as

Ω(1)
0 =

{(
x(1), ẋ(1)) | x(1) ∈

(
−∞, x(2)

cr

)
, ẋ(1) = ẋ(2)},

Ω(2)
0 =

{(
x(2), ẋ(2)) | x(2) ∈

(
x(1), h

)
, ẋ(1) = ẋ(2)},

Ω(1)
1 =

{(
x(1), ẋ(1)) | x(1) ∈

(
x
(2)
cr , h

)
, ẋ(1)

/= ẋ(2)},

Ω(2)
1 =

{(
x(2), ẋ(2)) | x(2) ∈

(
−∞, x(1)

cr

)
, ẋ(1)

/= ẋ(2)}.

(3.3)

The corresponding boundaries are defined as

∂Ω(i)
1(+∞) =

{(
x(i), ẋ(i))∣∣ϕ(1)

1(+∞) ≡ x
(1) − h = 0, ẋ(1)

/= 0
}
,

∂Ω(i)
10 =

{(
x(i), ẋ(i))∣∣ϕ(i)

10 ≡ x
(i) − x(i)

cr = 0, ẋ(i) = ẋ(i)
cr

}
,

(3.4)

where x
(i)
cr is an instantaneous value for the appearance or vanishing of stick motion with

ẋ
(1)
cr = ẋ(2)

cr and x(1)
cr = x(2)

cr . The instantaneous values are dependent on time, which cannot give
specified values. The domains (Ω(i)

1 and Ω(i)
0 ) describe the domains for the nonstick and stick

motions of the particle and piston, respectively. ∂Ω(1)
1(−∞) is the impact chatter boundary for

the particle impacting with the piston, and ∂Ω(1)
10 and ∂Ω(1)

01 are the stick onset and vanishing
boundaries for the particle sticking with the piston. Similarly, ∂Ω(2)

1(−∞) is the impact chatter

boundary for the piston impacting with the particle, and ∂Ω(2)
10 and ∂Ω(2)

01 are the stick onset
and vanishing boundaries for the piston sticking with particle. In Figure 3, the nonstick
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x
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Figure 3: Absolute domains and boundaries with stick: (a) particle and (b) piston.

and stick domains (Ω(i)
1 and Ω(i)

0 ) are presented through the filled and shaded regions. The
boundaries (∂Ω(i)

10 and ∂Ω(i)
01 , i = 1, 2) for the particle and piston are given by the dashed

curves in the absolute frame. The nonstick, permanent boundary (∂Ω(1)
1(+∞)) for the particle is

a dashed line, and such a boundary is also applied for the piston as a permanent boundary.
From the aforedefined domains, the vectors for absolute motions are defined as

x(i)
λ

=
(
x
(i)
λ
, ẋ

(i)
λ

)T
, f(i)

λ
=
(
ẋ
(i)
λ
, F

(i)
λ

)T
for i = 1, 2, λ = 0, 1, (3.5)

where the subscript (λ = 0, 1) represents the corresponding domain. The equation of absolute
motion of the generalized Fermi-oscillator is rewritten in a state vector form of

ẋ(i)
λ

= f(i)
λ

(
x(i)
λ
, t
)

for i = 1, 2, λ = 0, 1, (3.6)

and one obtains

F
(1)
1

(
x
(1)
1 , t
)
= −g,

F
(2)
1

(
x
(2)
1 , t
)
= −2dẋ(2)

1 −ω
2x

(2)
1 +ω2Q cosΩt − 2dQΩ sinΩt

(3.7)

for the nonstick motion, and

F
(i)
1

(
x
(i)
0 , t
)
= −2d(0)ẋ

(i)
0 −

(
ω(0))2

x
(i)
0 +

(
ω(0))2

Q cosΩt − 2d(0)QΩ sinΩt (3.8)

for the stick motion.
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∂Ω(1)
1(+∞)∂Ω(1)

1(−∞)

z(1)

∂Ω(1)
01

∂Ω(1)
10 ,Ω

(1)
0

Ω(1)
1

ż(1)

(a)

z̈(1)

∂Ω(1)
01

ż(1)

∂Ω(1)
10

Ω(1)
0 Ω(1)

1

(b)

∂Ω(2)
1(−∞)

z(2)

∂Ω(2)
01

∂Ω(2)
10 ,Ω

(2)
0

Ω(2)
1

ż(2)

(c)

z̈(2)

∂Ω(2)
10

ż(2)

∂Ω(2)
01

Ω(2)
1 Ω(2)

0

(d)

Figure 4: Relative domains and boundaries definition: (a) (z, ż)-plane for particle, (b) (ż, z̈)-plane for
particle, (c) (z, ż)-plane for piston, (d) (ż, z̈)-plane for piston.

3.2. Domains and Boundaries for Relative Motions

Because the switching boundary varies with time, it is very difficult to develop the switching
conditions. Thus, the relative coordinates for such a Fermi-oscillator are adopted herein. The
relative displacement, relative velocity, and relative acceleration between the particle and the
piston are z(i) = x(i) − x(i), ż(i) = ẋ(i) − ẋ(i), and z̈(i) = ẍ(i) − ẍ(i), where the index i = 1, 2 (with
i = 2, 1) represents the particle and piston, respectively. The stick domain and boundaries
in the relative phase space become points, as shown in Figures 4(a) and 4(c). Because the
piston and particle have the same displacement and velocity for the entire stick motion,
the boundary and domains in the relative phase plane become zero. However, the relative
interaction force between the particle and position are different before or after the stick. Thus,
the plane of relative velocity and acceleration should be considered, and the stick domains
and boundaries in the relative velocity and acceleration (i.e., (ż(i), z̈(i))) are presented in
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Figures 4(b) and 4(d). The filled domains are for stick motion. The shaded regions are for
nonstick motion. The domains Ω(i)

0 and Ω(i)
1 for the relative motions of the particle and piston

are defined as

Ω(i)
0 =

{(
z(i), ż(i)

)
| ż(i) = 0, z(i) = 0

}
for i = 1, 2,

Ω(1)
1 =

{(
z(1), ż(1)

)
| z(1) ∈

(
0, h − x(2))},

Ω(2)
1 =

{(
z(2), ż(2)

)
| z(2) ∈ (−∞, 0)

}
.

(3.9)

The boundaries ∂Ω(i)
1(+∞), ∂Ω

(i)
1(−∞), ∂Ω

(i)
10 , and ∂Ω(i)

01 for the relative motions of the particle
and piston are defined as

∂Ω(i)
1(+∞) =

{(
z(i), ż(i)

)∣∣ϕ(1)
1(+∞) ≡ z

(1) − h + x(2) = 0
}
,

∂Ω(i)
1(−∞) =

{(
z(i), ż(i)

)∣∣ϕ(i)
1(−∞) ≡ z

(i) = 0
}
,

∂Ω(i)
10 = ∂Ω(i)

01 =
{(
z(i), ż(i)

)∣∣ϕ(i)
10 ≡ ż

(i)
cr = 0, z(i)cr = 0

}
,

(3.10)

where ∂Ω(1)
1(−∞) is the impact chatter boundary for the particle, and two stick boundaries for

the particle are ∂Ω(1)
10 and ∂Ω(1)

01 . Similarly, ∂Ω(2)
1(−∞) is the impact chatter boundary for the

piston, and ∂Ω(2)
10 and ∂Ω(2)

01 are two stick boundaries for the piston. ∂Ω(i)
1(+∞) is the impact

boundary for the particle and the fixed wall.
The vectors for relative motions are

z(i)
λ

=
(
z
(i)
λ
, ż

(i)
λ

)T
, g(i)

λ
= ż(i)

λ
=
(
ż
(i)
λ
, g

(i)
λ

)T
, (3.11)

where the superscript (i = 1, 2) represents the particle and piston, respectively. The subscript
(λ = 0, 1) represents the corresponding domains. The equation of relative motion is rewritten
in a vector form of

ż(i)
λ

= g(i)
λ

(
z(i)
λ
, x(i)

λ
, t
)
, ẋ(i)

λ
= f(i)

λ

(
x(i)
λ
, t
)
, (3.12)

where

g
(1)
1

(
z(1)1 , x(2)1 , t

)
= −g + 2d(2)ẋ

(2)
1 +

(
ω(2))2

x
(2)
1 −

(
ω(2))2

Q cosΩt + 2d(2)QΩ sinΩt,

g
(2)
1

(
z(2)1 , x(1)1 , t

)
= −2d(2)ż

(2)
1 −

(
ω(2))2

z
(2)
1 +

(
ω(2))2

Q cosΩt − 2d(2)QΩ sinΩt

− 2d(2)ẋ
(1)
1 −

(
ω(2))2

x
(1)
1 + g,

(3.13)
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for nonstick motion

ż
(i)
0 = 0,

g
(i)
0

(
z(i)0 , x(i)0 , t

)
= 0,

for i = 1, 2 with i = 2, 1, (3.14)

for stick motion.

3.3. Analytical Conditions

The analytical conditions of stick and grazing motion will be developed from the theory of
non-smooth dynamical systems in Luo [40, 41, 44, 49, 50]. The grazing motion is a motion
tangential to the switching boundary in phase space. In the Fermi-acceleration oscillator,
once the ball meets with the piston or the wall, there is a motion tangential to the switching
boundary in phase space. Such a motion is called the grazing motion. To develop the
analytical conditions of the grazing and stick motion to the switching boundaries, the normal
vectors of such boundaries should be determined, that is,

n
∂Ω(i)

αβ
= ∇ϕ(i)

αβ =

(
∂ϕ

(i)
αβ

∂z(i)
,
∂ϕ

(i)
αβ

∂ż(i)

)T

for the relative frame,

n∂Ωαβ = ∇ϕ
(i)
αβ =

(
∂ϕ

(i)
αβ

∂x(i)
,
∂ϕ

(i)
αβ

∂ẋ(i)

)T

for the absolute frame.

(3.15)

The normal vectors to the stick boundaries (n
∂Ω(1)

10
,n

∂Ω(1)
01
) and impact boundary (n

∂Ω(1)
1(+∞)

,

n
∂Ω(1)

1(−∞)
) are

n
∂Ω(1)

10
= n

∂Ω(1)
01

= (0, 1)T , n
∂Ω(1)

1(−∞)
= (1, 0)T in the relative frame,

n
∂Ω(1)

1(+∞)
= (1, 0)T in the absolute frame.

(3.16)

Before the analytical conditions are developed, the zero-order and first-order G-functions in
the relative frame will be presented. For the straight-line boundary, the zero-order and first-
order G-functions are given from Luo [49, 50], that is,

G
(0,0)

∂Ω(i)
01

(
z(i)0 , tm±

)
= nT

∂Ω(1)
01

·g(i)(z(i)0 , x(i)0 , tm±
)
= g(i)

0

(
z(i)0 , x(i)0 , tm±

)
= z̈(i)0

(
tm±
)
,

G
(0,1)

∂Ω(i)
10

(
z(i)1 , tm±

)
= nT

∂Ω(1)
10

·g(i)(z(i)1 , x(i)1 , tm±
)
= g(i)

1

(
z(i)1 , x(i)1 , tm±

)
= z̈(i)1

(
tm±
)
,

G
(1,0)

∂Ω(i)
01

(
z(i)0 , tm±

)
= nT

∂Ω(1)
01

·Dg(i)(z(i)0 , x(i)0 , tm±
)
=
d

dt
g
(i)
0

(
z(i)0 , x(i)0 , t

)
∣∣∣∣
t=tm±

=
...
z (i)

0

(
tm±
)
,

G
(1,1)

∂Ω(i)
10

(
z(i)1 , tm±

)
= nT

∂Ω(1)
10

·Dg(i)(z(i)1 , x(i)1 , tm±
)
=
d

dt
g
(i)
1

(
z(i)1 , x(i)1 , t

)
∣∣∣∣
t=tm±

=
...
z (i)

1

(
tm±
)
.

(3.17)
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Notice that the switching time tm is the motion at the corresponding switching boundary,
and tm± = tm ± 0 represents the motion in domains rather than on the boundary. In G

(k,λ)

∂D(i)
1

,

two superscripts λ (λ = 0, 1) and k (k = 0, 1) represent the λ-subdomain and the kth order of
G-functions, respectively. Again i = 1 and 2 are for the particle and piston. The zero-order
G-function (k = 0) is the normal component of the vector field in the normal direction
of boundary, and the first-order G-function (k = 1) is the time-change rate of the normal
component of vector fields. The detailed discussion of G-functions can be referred to Luo
[48–50]. Similarly, the G-functions for the impact boundaries are given by

G
(0,1)

∂Ω(1)
1(+∞)

(
x(1)1 , tm±

)
= nT

∂Ω(1)
1(+∞)

· f(1)
(
x(1)1 , tm±

)
= f (1)(x(1)1 , tm±

)
= ẍ(1)

1 = −g,

G
(1,1)

∂Ω(1)
1(+∞)

(
x(1)1 , tm±

)
= nT

∂Ω(1)
1(+∞)

·Df(1)
(
x(1)1 , tm±

)
=
d

dt
f (1)(x(1)1 , t

)
∣
∣
∣
∣
t=tm±

=
...
x (1)

1 = 0

for ∂Ω(1)
1(+∞) in the absolute frame,

G
(0,1)

∂Ω(i)
1(−∞)

(
z(i)1 , tm±

)
= nT

∂Ω(i)
1(−∞)

·g(i)(z(i)1 , x(i)1 , tm±
)
= g(i)(z(i)1 , x(i)1 , tm±

)
= z̈(i)1

(
tm±
)
,

G
(1,1)

∂Ω(i)
1(−∞)

(
z(i)1 , tm±

)
= nT

∂Ω(i)
1(−∞)

·Dg(i)(z(i)1 , x(i)1 , tm±
)
=
d

dt
g(i)(z(i)1 , x(i)1 , t

)
∣∣∣∣
t=tm±

=
...
z (i)

1

(
tm±
)

for ∂Ω(i)
1(−∞) in the relative frame.

(3.18)

Based on the normal vectors and G-functions, the analytical condition for stick motion is
obtained for the condition for a passable flow from domain Ω(i)

1 to Ω(i)
0 in Luo [49] or [50],

that is,

(−1)iG(0,1)

∂Ω(i)
10

(
z(i)1 , tm−

)
> 0, (−1)iG(0,1)

∂Ω(i)
10

(
z(i)0 , tm+

)
> 0. (3.19)

Therefore, one obtains

(−1)ig(i)
1

(
z(i)1 , x(i)1 , tm−

)
> 0, (−1)ig(i)

0

(
z(i)0 , x(i)0 , tm+

)
> 0. (3.20)

With the relative force function per unit mass (i.e., relative acceleration z̈(i) = ẍ(i) − ẍ(i)),
equations of (3.20) gives

ẍ(2)(tm±
)
> ẍ(1)(tm±

)
= −g. (3.21)

From (3.21), the stick motion requires that the acceleration of the piston ẍ(2)(tm±) is greater
than ẍ(1)(tm±) = −g. In a similar fashion, the condition for vanishing of the stick motion at
∂Ω(i)

01 in the relative frame is given by

G
(0,0)

∂Ω(i)
01

(
z(i)0 , tm−

)
= 0, G

(0,1)

∂Ω(i)
01

(z(i)1 , tm+
)
= 0,

(−1)iG(1,0)

∂Ω(i)
01

(
z(i)0 , tm−

)
< 0, (−1)iG(1,1)

∂Ω(i)
01

(
z(i)1 , tm+

)
< 0.

(3.22)
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From equations of (3.22), one obtains the relative force relations or ∂Ω(i)
01 as

g
(i)
0

(
z(i)0 , x(i)0 , tm−

)
= 0, g

(i)
1

(
z(i)1 , x(i)1 , tm+

)
= 0,

(−1)i
d

dt
g
(i)
0

(
z(i)0 , x(i)0 , tm−

)
< 0, (−1)i

d

dt
g
(i)
1

(
z(i)1 , x(i)1 , tm+

)
< 0.

(3.23)

With the relative acceleration (z̈(i) = ẍ(i) − ẍ(i)) and relative jerk (
...
z (i) =

...
x (i) − ...

x (i)), equations
of (3.22) can be rewritten as

ẍ(2)(tm±
)
= ẍ(1)(tm±

)
= −g, ...

x (2)
m± <

...
x (1)
m± = 0 for ∂Ω(i)

01 . (3.24)

The stick motion vanishing at the switching boundary requires that the piston’s jerk is less
than zero as both accelerations are the gravitational acceleration.

Based on the G-functions of a flow to the impacting boundaries, the conditions of
grazing motions are also developed, that is,

G
(0,1)

∂Ω(1)
1(+∞)

(
x(1)1 , tm±

)
= 0, G

(1,1)

∂Ω(1)
1(+∞)

(
x(1)1 , tm±

)
< 0 for ∂Ω(i)

1(+∞),

(−1)iG(0,1)

∂Ω(1)
1(−∞)

(
z(i)1 , tm±

)
= 0, (−1)iG(0,1)

∂Ω(1)
1(−∞)

(
z(i)1 , tm±

)
< 0 for ∂Ω(i)

1(−∞).

(3.25)

The grazing conditions for the boundaries of nonstick motions reduce to

ẋ(1) = 0, ẍ(1) = −g < 0 for ∂Ω(1)
1(+∞),

ẋ(1) = ẋ(2), ẍ(2) < ẍ(1) = −g for ∂Ω(i)
1(−∞).

(3.26)

From the first equation of (3.26), the ball grazing at the fixed wall requires that the velocity
of ball be zero because the acceleration of ball (ẍ(1) = −g) is always zero. However, from the
second equation of (3.26), for the ball grazing at the impacting boundary with piston, the
piston acceleration should be less than the ball acceleration (i.e., ẍ(1) = −g). In other words,
this condition is also for the piston motion grazing at this impacting boundary with the ball.

In a similar fashion, the grazing conditions for the boundary of the stick motion are

G
(0,1)

∂Ω(i)
10

(
z(i)1 , tm±

)
= 0, (−1)iG(1,1)

∂Ω(i)
10

(
z(i)1 , tm±

)
< 0 for ∂Ω(i)

10 ,

G
(0,0)

∂Ω(i)
01

(
z(i)0 , tm±

)
= 0, (−1)iG(1,0)

∂Ω(i)
01

(
z(i)0 , tm±

)
> 0 for ∂Ω(i)

01 .

(3.27)
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z̈(1)
∂Ω(1)

10

ż(1)

G
(0,1)

∂Ω(1)
10

(z(1)1 , tm−) < 0

Ω(1)
0 Ω(1)

1

n
∂Ω(1)

01

G
(0,0)

∂Ω(1)
10

(z(1)0 , tm+) < 0

(a)

ẋ(1)

Ω(1)
1

x(1)

G
(1,1)

∂Ω(1)
1(−∞)

(x(1)1 , tm±) > 0

h

n
∂Ω(1)

01

G
(0,1)

∂Ω(1)
1(−∞)

(x(1)1 , tm±) = 0

(b)

Figure 5: (a) Passable motion and (b) grazing motion.

Again, with the relative acceleration (z̈(i) = ẍ(i) − ẍ(i)) and relative jerk (
...
z (i) =

...
x (i) − ...

x (i)), the
grazing conditions are given by the accelerations and jerks of piston and ball, that is,

ẍ(2) = ẍ(1) = −g, ...
x (2) <

...
x (1) = 0 for ∂Ω(i)

10 ,

ẍ(2) = ẍ(1) = −g, ...
x (2) >

...
x (1) = 0 for ∂Ω(i)

01 .
(3.28)

To geometrically explain the above analytical conditions, consider a flow of the motion
approaching the stick boundary ∂Ω(1)

10 at (z(1)1 , tm−). In order for such a flow to pass the
boundary, the normal vector fields of G(0,1)

∂Ω(i)
10

and G
(0,0)

∂Ω(i)
01

have to point toward the stick domain

Ω(i)
1 (i.e., (−1)iG(0,1)

∂Ω(i)
10

> 0, (−1)iG(0,0)

∂Ω(i)
01

> 0) because the normal vector points to the domain

Ω(i)
1 . Such conditions are given in (3.19) (or (3.21)) and the flow of motion will pass over

the boundary and gets into the stick domain Ω(i)
0 . Such a motion is a passable motion to the

boundary ∂Ω(1)
10 , as shown in Figure 5(a). For this case, the stick motion is formed. Similarly,

for a flow from a stick domain to the nonstick domain, a flow of motion needs to satisfy the
conditions in (3.22) (or (3.23)). Such a passable flow is called the vanishing of stick motion.
When a flow of motion approaches the impact chatter boundary ∂Ω(1)

1(−∞) at (z(1)1 , tm−), if the

normal vector field G
(0,1)

∂Ω(1)
1(−∞)

be equal to zero and the total change rate of the normal vector

field G
(1,1)

∂Ω(1)
1(−∞)

is greater than zero in domain Ω(1)
1 (i.e., G(0,1)

∂Ω(1)
1(−∞)

= 0 and G
(1,1)

∂Ω(1)
1(−∞)

> 0), the flow of

motion will leave the boundary and stay in domain Ω(1)
1 , as sketched in Figure 5(b). Such a

motion is called a grazing motion to the boundary ∂Ω(1)
1(−∞). The corresponding condition for

grazing at ∂Ω(1)
1(−∞) is presented in (3.25). Similarly, for the stick boundary ∂Ω(1)

01 , the grazing
condition in (3.27) can be geometrically explained.

4. Mapping Structures and Motions

In this section, the switching sets and mapping structures will be introduced to symbolically
describe motions in the generalized Fermi-acceleration oscillator. The switching sets will be
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defined from the switching boundaries. From the switching sets, the generic mappings in
domains will be introduced. The mapping structure for periodic and chaotic motions will be
constructed from such generic mappings. The stability and bifurcation conditions will also be
discussed via the eigenvalue analysis.

4.1. Switching Sets and Generic Mappings

Based on the switching boundaries in (3.2), the switching sets of the generalized Fermi-
acceleration oscillator without stick are defined as

Σ1(−∞) = Σ(1)
1(−∞) ⊗ Σ

(2)
1(−∞) =

{(
x
(1)
i , ẋ

(1)
i , x

(2)
i , ẋ

(2)
i , ti

)
| x(1)

i = x(2)
i+ , ẋ

(1)
i /= ẋ

(2)
i

}
,

Σ1(+∞) = Σ(1)
1(+∞) ⊗ Σ

(2)
1(+∞) =

{(
x
(1)
i , ẋ

(1)
i , x

(2)
i , ẋ

(2)
i , ti

)
| x(1)

i = h, ẋ(1)
i /= 0

}
,

(4.1)

where the symbol ⊗ represents the direct product of switching subsets, and the switching
subsets (Σ(i)

1(−∞) and Σ(i)
1(+∞)) on the boundaries (∂Ω(i)

1(−∞) and ∂Ω(i)
1(+∞)) are defined as

Σ(i)
1(−∞) =

{(
x
(i)
k
, ẋ

(i)
k
, tk
)
| x(i)

k
= x(i)

k
, ẋ

(i)
k /= ẋ

(i)
k

}
⊂ ∂Ω(i)

1(−∞),

Σ(i)
1(+∞) =

{(
x
(i)
k , ẋ

(i)
k , tk

)
| x(1)

k = h, ẋ(1)
k /= 0

}
⊂ ∂Ω(i)

1(+∞).
(4.2)

Thus, the generic mappings for motions without stick are defined as

P1 : Σ1(−∞) −→ Σ1(+∞), P2 : Σ1(+∞) −→ Σ1(−∞), P3 : Σ1(−∞) −→ Σ1(−∞), (4.3)

where the mappings P1 and P2 are the global mappings and the mapping P3 is a local
mapping. No any mapping exists from Σ1(+∞) to Σ1(+∞) because ẍ(1) = −g. The global
mapping will map one switching set into another one. However, the local mapping will map
a switching set into itself. Since the resultant switching set is the direct product of the two
switching subsets, a resultant mapping should have two components, that is,

P1 = ((1)P1,
(2)P1), P2 = ((1)P2,

(2)P1), P3 = ((1)P3,
(2)P1),

(i)P1 : Σ(i)
1(−∞) −→ Σ(i)

1(+∞),
(i)P2 : Σ(i)

1(+∞) −→ Σ(i)
1(−∞),

(i)P3 : Σ(i)
1(−∞) −→ Σ(i)

1(−∞).

(4.4)

From the above definitions, the switching subsets and submappings are sketched in Figures
6(a) and 6(b) for the particle and piston. The switching points in the switching sets are
presented by the circular symbols, and the mappings are depicted by the curves with arrows.

Similarly, from the switching boundaries in (3.2) and (3.4), the switching sets of the
generalized Fermi-acceleration oscillator with stick are defined as

Σ10 = Σ(1)
10 ⊗ Σ

(2)
10 =

{(
x
(1)
k
, ẋ

(1)
k
, x

(2)
k
, ẋ

(2)
k
, tk
)
| x(1)

k
= x(2)

k
, ẋ

(1)
k

= ẋ(2)
k

}
,

Σ1(+∞) = Σ(1)
1(+∞) ⊗ Σ

(2)
1(+∞) =

{(
x
(1)
k
, ẋ

(1)
k
, x

(2)
k
, ẋ

(2)
k
, tk
)
| x(1)

k
= h, ẋ(1)

k /= 0
}
,

(4.5)
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ẋ(1)Σ(1)
1(−∞) Σ(1)

1(+∞)

(1)P1

x(1)

Ω(1)
1

(1)P2

(1)P3

(a)

ẋ(2)

Ω(2)
1

Σ(1)
1(+∞)

Σ(2)
1(−∞)Σ(2)

1(+∞)

(2)P2

x(2)h

(2)P1

(2)P3

(b)

Figure 6: Switching sets and generic mappings for nonstick motion (in absolute coordinates): (a) particle
and (b) piston.

where the switching set Σ10 is defined on the boundary ∂Ω10

Σ(i)
10 =

{(
x
(i)
k
, ẋ

(i)
k
, tk
)
| x(i)

k
= x(i)

k
, ẋ

(i)
k

= ẋ(i)
k

}
⊂ ∂Ω(i)

10 ,

Σ(i)
1(+∞) =

{(
x
(i)
k , ẋ

(i)
k , tk

)
| x(1)

k = h, ẋ(1)
k /= 0

}
⊂ ∂Ω(i)

1(+∞).
(4.6)

Thus, the generic mappings are defined as

P0 : Σ10 −→ Σ10, P1 : Σ10 −→ Σ1(+∞), P2 : Σ1(+∞) −→ Σ10, P3 : Σ1(−∞) −→ Σ10.
(4.7)

Similarly, a resultant mapping should have two components, so one obtains

P0 =
((1)

P0,
(2)P0

)
, P1 =

((1)
P1,

(2)P1
)
, P2 =

((1)
P2,

(2)P2
)
, P3 =

((1)
P3,

(2)P3
)
,

(i)P0 : Σ(i)
10 −→ Σ(i)

10 ,
(i)P1 : Σ(i)

1(−∞) −→ Σ(i)
1(+∞),

(i)P2 : Σ(i)
1(+∞) −→ Σ(i)

1(−∞),
(i)P3 : Σ(i)

1(−∞) −→ Σ(i)
1(−∞),

(4.8)

where P1 and P2 are the global mappings and P0 and P3 are the local mappings. The mappings
in (4.8), are sketched in Figure 7.

From the above definitions, a mapping will map a switching set into another switching
set (or itself) through the corresponding dynamical system in a specified domain. In such a
domain, the dynamical system given in (2.1) or (2.2) is continuous. The solutions for such a
continuous system are listed in the appendix. From the displacement and velocity solutions
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ẋ(1)Σ(1)
10

Σ(1)
1(+∞)

(1)P0

(1)P1

x(1)
Ω(1)

1

(1)P2

(1)P3

(a)

ẋ(2)
Σ(2)

10
Σ(1)

1(+∞)

(2)P2 (2)P0

x(2)

h

Ω(2)
1

(2)P1

(2)P3

Σ(2)
1(+∞)

(b)

Figure 7: Switching sets and generic mappings for stick motion: (a) particle and (b) piston.

of the particle and piston in the appendix, with switching sets, four algebraic governing
equations for a generic mapping Pj (j = 1, 2, 3) can be expressed in a form of

Pj :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(j)
1

(
x
(1)
k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1

)
= 0,

f
(j)
2

(
x
(1)
k
, ẋ

(1)
k
, x

(2)
k
, ẋ

(2)
k
, tk, x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1

)
= 0,

f
(j)
3

(
x
(1)
k
, ẋ

(1)
k
, x

(2)
k
, ẋ

(2)
k
, tk, x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1

)
= 0,

f
(j)
4

(
x
(1)
k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk, x

(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1

)
= 0,

(4.9)

with

x
(1)
k = h, x

(1)
k+1 = x(2)

k+1 for P1,

x
(1)
k

= x(2)
k
, x

(1)
k+1 = h for P2,

x
(1)
k

= x(1)
k
, x

(1)
k+1 = x(2)

k+1 for P3.

(4.10)

The governing equations for the stick mapping P0 can be expressed by

P0 :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f
(0)
1

(
x
(i)
k
, ẋ

(i)
k
, tk, x

(i)
k+1, ẋ

(i)
k+1, tk+1

)
= 0,

f
(0)
2

(
x
(i)
k
, ẋ

(i)
k
, tk, x

(i)
k+1, ẋ

(i)
k+1, tk+1

)
= 0,

f
(0)
4

(
x
(i)
k+1, ẋ

(i)
k+1, tk+1

)
= g(i)

1

(
0, x(i)

k+1, tk+1
)
= 0,

(4.11)
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with

x
(i)
k

= x(i)
k
, ẋ

(i)
k

= ẋ(i)
k
,

x
(i)
k+1 = x(i)

k+1, ẋ
(i)
k+1 = ẋ(i)

k+1,

ẍ
(2)
k

> −g, ẍ
(2)
k+1 < −g,

for mapping P0. (4.12)

4.2. Motions with Mapping Structures

The notation for mapping action is introduced as

Pjkjk−1···j1 = Pjk ◦ Pjk−1 ◦ · · · ◦ Pj1 , (4.13)

where jm ∈ {0, 1, 2, 3} with m = 1, 2, . . . , k. For a motion with n-time repeats of mapping
structure of Pj1j2···jk , the mapping structure is expressed as

P
(m)
jkjk−1···j1 =

(
Pjk ◦ Pjk−1 ◦ · · · ◦ Pj1

)
◦ · · · ◦

(
Pjk ◦ Pjk−1 ◦ · · · ◦ Pj1

)

︸ ︷︷ ︸
n

= P(jkjk−1···j1)n . (4.14)

Any periodic motion can be described using the above notations. Consider a mapping
structure for the generalized Fermi-acceleration oscillator as

P = P3n ◦ P0k3 ◦ P3m ◦ P2k2 ◦ P1k1 = P3n0k3 3m2k2 1k1 , (4.15)

where kj ∈ {0, 1} and m,n ∈ {0,N}. From the mapping of (4.15), a periodic motion can be
expressed. By period-doubling, the corresponding mapping structures for motion relative to
the foregoing mapping structure P3n0k3 3m2k2 1k1 of (4.15) are

P = P3n0k3 3m2k2 1k1 ◦ P3n0k3 3m2k2 1k1 = P(3n0k3 3m2k2 1k1 )2 ,

...

P = P
(3n0k3 3m2k2 1k1 )2l−1 ◦ P

(3n0k3 3m2k2 1k1 )2l−1 = P
(3n0k3 3m2k2 1k1 )2l .

(4.16)

For l → ∞, the chaotic motion relative to P3n0k3 3m2k2 1k1 can be obtained.
Once the grazing bifurcation of the periodic motion of P3n0k3 3m2k2 1k1 occurs, the

corresponding mapping structure will change dramatically. For instance, the changed
mapping structure can be expressed by two parts of mapping structures, that is,

P = P3n2 0k32 3m2 2k22 1k12 ◦ P3n1 0k31 3m1 2k21 1k11

= P(3n2 0k32 3m2 2k22 1k12 )(3n1 0k31 3m1 2k21 1k11 ),
(4.17)
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where kjs ∈ {0, 1} and ms, ns ∈ N (s = 1, 2). For a generalized case, the mapping structure is

P = P3nl 0k3l 3ml 2k2l 1k1l ◦ · · · ◦ P3n1 0k31 3m1 2k21 1k11︸ ︷︷ ︸
l-terms

= P(3nl0k3l3ml2k2l1k1l) · · · (3n1 0k31 3m1 2k21 1k11)
︸ ︷︷ ︸

l-terms

, (4.18)

where kjs ∈ {0, 1} and ms, ns ∈ N (s = 1, 2, . . . , l). Such mapping structure can be used to
express all possible motions in the generalized Fermi-acceleration oscillator. In addition, the
grazing bifurcation of chaotic motions will cause the strange attractor fragmentation (see Luo
[41]).

Without stick, there are two types of motions: (i) impact only at the boundary ∂Ω1(−∞)

and (ii) impacts at both of the boundaries ∂Ω1(−∞) and ∂Ω1(+∞). For the first case, the motion
interacts with the boundary ∂Ω1(−∞) (k1s = 0, k2s = 0, and k3s = 0, s ∈ N) only. This motion
can be described by the generic mapping P3. The motion pattern relative to P3m , caused by
the period-doubling bifurcation, is given by

P = P3m,

P = P3m ◦ P3m = P32m,

...

P = P32l−1m ◦ P32l−1m = P32lm .

(4.19)

The motion pattern relative to P3m can be generated by the grazing bifurcation, and the
corresponding mapping structures are

P = P3m,

P = P3m1 ◦ P3 ◦ P3m2 = P3m+1 ,

...

P = P3m ◦ P3n = P3m+n .

(4.20)

The second case is that the motion interacts with boundaries ∂Ω1(−∞) and ∂Ω1(+∞) (k3s = 0,
s ∈ N, m,n ∈ {0,N}). Consider a mapping structure of P3m2k2 1k1 . The motion pattern generated
by the period-doubling is expressed by

P = P3m2k2 1k1 ◦ P3m2k2 1k1 = P(3m2k2 1k1 )2 , . . . ,

P = P
(3m2k2 1k1 )2l−1 ◦ P

(3m2k2 1k1 )2l−1 = P
(3m2k2 1k1 )2l .

(4.21)

Similarly, the motion pattern generated by the grazing bifurcation can be discussed. To
illustrate such mapping structures, the relation between the mappings and motions in phase
plane are sketched in Figure 8. The mappings and motions for the piston can be similarly
presented. A motion pertaining to mapping P3m21 is sketched in Figure 8(a). In such a motion,
no any stick motions exists. However, a motion with stick is associated with mapping
P3n03m21 in Figure 8(b). The mappings are depicted through thick curves, and the impacts
are represented by the thin arrows. The stick motion is in the shaded area with mapping P0.
In a similar fashion, any motion with a specific mapping structure can be illustrated.
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Figure 8: Mapping structure for motions: (a) P13m2 and (b) P13n03m2.
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+ẋ

(1)
k+1)

(tk, x
(1)
k
, ẋ

(1)
k
)

(tk+2, x
(1)
k+2,

+ẋ
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Figure 9: The mapping structure of a simple periodic motion of P21.

4.3. Periodic Motions and Local Stability

Consider a map Pj (j = 0, 1, 2, 3) mapping from the initial state (x(1)
k
, ẋ

(1)
k
, x

(2)
k
, ẋ

(2)
k
, tk) to the

final state (x(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1):

Pj :
(
x
(1)
k , ẋ

(1)
k , x

(2)
k , ẋ

(2)
k , tk

)
−→
(
x
(1)
k+1, ẋ

(1)
k+1, x

(2)
k+1, ẋ

(2)
k+1, tk+1

)
. (4.22)

From (4.9), the mapping in (4.22) gives four algebraic equations. With boundary constraints,
the five variables for the final state can be determined. Without loss of generality, substitution
of the boundary constraint into the four algebraic governing equations for Pj (j = 0, 1, 2, 3)
yields

f(j)
(
Xk,Yk+1

)
= 0, (4.23)
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where Xk = (Xk1, Xk2, Xk3, Xk4)
T with Xkr ∈ {x(1)

k , ẋ
(1)
k , x

(2)
k , ẋ

(2)
k , tk} and Yk = (Yk1, Yk2, Yk3,

Yk4)
T with Ykr ∈ {x(1)

k
, ẋ

(1)
k
, x

(2)
k
, ẋ

(2)
k
, tk} and f(j) = (f (j)

1 , f
(j)
2 , f

(j)
3 , f

(j)
4 )T . Taking the total

derivative of (4.23) with respect to Xk leads to

[
∂f(j)

∂Xk

]

+

[
∂f(j)

∂Yk+1

][
∂Yk+1

∂Xk

]

= 0 or

∂f
(j)
I

∂XkJ
+

4∑

R=1

∂f
(j)
I

∂Y(k+1)R

∂Y(k+1)R

∂XkJ
= 0 for I, J = 1, 2, 3, 4.

(4.24)

From the equation of (4.24), one obtains

DPj =

[
∂Yk+1

∂Xk

]

= −
[
∂f(j)

∂Yk+1

]−1[
∂f(j)

∂Xk

]

, (4.25)

where

[
∂f(j)

∂Yk+1

]

=

[
∂f

(j)
I

∂Y(k+1)J

]

4×4

for I, J = 1, 2, 3, 4;

[
∂f(j)

∂Xk

]

=

[
∂f

(j)
I

∂XkJ

]

4×4

for I, J = 1, 2, 3, 4;

DPj =

[
∂Yk+1

∂Xk

]

=

[
∂Y(k+1)I

∂XkJ

]

4×4

for I, J = 1, 2, 3, 4.

(4.26)

Consider a simple periodic motion of the mapping structure of P21 = P2 ◦ P1 as an example,
sketched in Figure 9. With the mapping structure P21 = P2 ◦ P1, one obtains

P1 :
(
tk, x

(2)
k
, ẋ

(1)
k
, ẋ

(2)
k

)
−→
(
tk+1, x

(2)
k+1, ẋ

(1)
k+1, ẋ

(2)
k+1

)
,

P2 :
(
tk+1, x

(2)
k+1, ẋ

(1)
k+1, ẋ

(2)
k+1

)
−→
(
tk+2, x

(2)
k+2, ẋ

(1)
k+2, ẋ

(2)
k+2

)
.

(4.27)

Let Xk1 = x(2)
k

= x(1)
k
, Xk2 = ẋ(1)

k
, Xk3 = ẋ(2)

k
, Xk4 = tk because the impact occurs at x(1)

k
= x(2)

k
.

However, Yk1 = x
(2)
k
, Yk2 = ẋ

(1)
k
, Yk3 = ẋ

(2)
k
, Yk4 = tk because the impact occurs at x(1)

k
= h.

The corresponding governing equations for such a periodic motion are

f(1)
(
Xk,Yk+1

)
= 0 for P1,

f(2)(Yk+1,Xk+2) = 0 for P2.

(4.28)
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For a period-N motion, the periodicity requires

X∗k = X∗k+2, (4.29)

or

x
∗(i)
k+2 = x∗(i)k , ẋ

∗(i)
k+2 = ẋ∗(i)k ,

t∗k+2 = t∗k +
2Nπ

Ω
, N = 1, 2, . . . ,

for i = 1, 2. (4.30)

Solving (4.28) and (4.29) produces the switching sets of the periodic motion. The Jacobian
matrix for each mapping is developed from (4.28) for j = 1, 2

DPj =

⎡

⎣
∂
(
tk+j , x

(2)
k+j , ẋ

(1)
k+j , ẋ

(2)
k+j

)

∂
(
tk+j−1, x

(2)
k+j−1, ẋ

(1)
k+j−1, ẋ

(2)
k+j−1

)

⎤

⎦

4×4

. (4.31)

The total Jacobian matrix of the periodic motion can be computed by

DP = DP2 ·DP1. (4.32)

The Jacobian matrix of a periodic motion with a generalized mapping structure can be
developed in a similar fashion. For a stable periodic motion, the magnitudes of all the
eigenvalues should be inside a unit circle, that is,

|λi| < 1, (i = 1, 2, 3, 4). (4.33)

If (4.33) cannot be satisfied, then the periodic motion is unstable. Consider a pair of complex
eigenvalues (λ1,2) and the others (λ3,4). If |λ1,2| = 1 and |λ3,4| < 1, the Neirmark bifurcation
of the periodic motion takes place. Consider two real eigenvalues (λ1,2) and the others (λ3,4).
If λ1 = −1 and |λ2,3,4| < 1, the period doubling bifurcation of the periodic motion occurs. If
λ1 = 1 and |λ2,3,4| < 1, the saddle-node bifurcation of the periodic motion occurs. However,
the eigenvalue analysis cannot be used to predict stick motion and grazing bifurcation. Both
of them should be determined through the normal vector fields, and the stick motion is
determined by (3.19) and the grazing bifurcation is determined by (3.25).

5. Predictions and Simulations

In this section, bifurcation scenario for the generalized Fermi-acceleration oscillator will be
presented first, and analytical predictions of periodic motions will be completed through
the mapping structures. Periodic and chaotic motions will be presented for illustration of
the analytical conditions. Poincare mapping sections will be given for illustrations of chaotic
motions in the Fermi-acceleration oscillator. The parameter maps for certain parameters will
also be presented for an overview of dynamical behaviors of particle and piston in the
generalized Fermi-acceleration oscillator.
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5.1. Bifurcation Scenario

To obtain a bifurcation scenario in the generalized Fermi-acceleration oscillator, the closed-
form solutions of particle and piston in the appendix are used for numerical simulations. To
achieve a motion with stick, the stick conditions in (3.21) (or ẍ(2)

k
> −g) with x

(1)
k

= x
(2)
k

and
ẋ
(1)
k

= ẋ(2)
k

should be embedded in the computer program. Before stick, the particle and piston
are separated. One should set a tolerance of the velocity difference (i.e., |ẋ(1)

k
− ẋ(2)

k
| < ε).

In computation, the tolerance ε < 10−4 is used for the stick motion. In other words, when
|ẋ(1)
k − ẋ

(2)
k | < 10−4, it was assumed ẋ

(1)
k ≈ ẋ

(2)
k . If ẍ(2)

k > −g, the stick motion of particle and
piston is formed, and the two separated dynamical systems in (2.1) will be switched into
one dynamical system in (2.2) for the stick motion. Further, the solution of the stick motion
in the appendix will be employed for numerical simulations. For the vanishing of the stick
motion, the condition in (3.24) (i.e., ẍ(2)(tm±) = ẍ(1)(tm±) = −g and

...
x (2)
m± <

...
x (1)
m± = 0) will also

be embedded in the computer program. Once the stick motion disappears, the system in (2.2)
will become two separated dynamical systems for particle and piston in (2.1). Similarly, the
grazing conditions in (3.26) and (3.28) at the corresponding boundaries were embedded in
the computer program. The switching points for the particle and piston with switching times
are recorded for bifurcation scenarios.

Consider a set of parameters (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 =
0.7, h = 1, Q = 0.5). Switching points on the boundaries versus excitation frequency in a
bifurcation scenario are shown in Figure 10. The acronyms PD, SN, and GB denote the period-
doubling, saddle node, and grazing bifurcations, respectively. In Figure 10(a), the switching
displacement of particle versus excitation frequency is presented. The corresponding
bifurcations are marked by dashed vertical lines and labeled by the corresponding acronyms
(i.e., PD, SN, and GB). The switching displacements for particle impacts for x(1) = h lie
on a straight line. However, the switching displacement for the particle impacting with the
piston will be changed. The region for the stick motion is labeled. It is observed that the
stick motion occurs at the low excitation frequency. Many windows of periodic motions are
also observed. The first obvious window of periodic motions is relative to mapping P21 for
Ω ∈ (21.2, 35.1) with one excitation period (1T). However, the second obvious window of
periodic motions is relative to mapping P21 for Ω ∈ (59.3, 70.2) with two excitation periods
(2T). In Figure 10(b), shown are the switching velocities of particle before impact. So the
upper branch of the switching velocity of particle is relative to impacts at the fixed wall,
and the lower branch of the switching velocity shows the impacts between the particle and
piston. In Figure 10(c), the switching displacements of piston are plotted. The switching
displacements of impacts and stick between the piston and particle are the same, which are
presented by the lower branch of switching displacement. The upper branch of the switching
displacement of piston is to record the displacement of piston at impacts between the particle
and the fixed wall. Before and after such impacts, the corresponding switching velocity of the
piston will not be changed. Therefore, the switching velocities of piston before impacts are
plotted in Figure 10(d). In addition, switching times for switching points are very important.
Thus, switching phases pertaining to the switching times are plotted in Figure 10(e). From the
bifurcation scenario, the motion of P21 lies in the range of Ω ∈ (21.2, 35.1) and Ω ∈ (59.3, 70.2).
The motion of P(21)2 lies in the range of Ω ∈ (19.4, 21.2) and Ω ∈ (56.8, 59.3). The motion of
P(21)4 is in the range of Ω ∈ (19.1, 19.4) and Ω ∈ (56.4, 56.8). In the region of Ω ∈ (0, 19.1), the
zone of complex motions exists, and in the region of Ω ∈ (35.1, 56.4) and Ω ∈ (70.2, 80),the
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Figure 10: Bifurcation scenario varying with driving frequency: (a) switching displacement and (b)
switching velocity of the particle; (c) switching displacement and (d) switching velocity of the piston;
(e) Switching phase (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5).

zone of chaos exists. In the zone of complex motion, the majority of motions are observable
periodic motions with complicated mapping structure. In the zone of chaos, the majority of
motions is chaotic. Inside the range of Ω ∈ (0, 6.3) there are some simple stick motions. The
detailed mapping structures for periodic motions are tabulated in Table 1.
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Table 1: Summary of driving frequency for periodic motions (m1 = 0.01,m2 = 1, k = 10, c = 6, e1 = 0.9, e2 =
0.7, h = 1, Q = 0.5).

Mapping Excitation Mapping Excitation
Structure Frequency Structure Frequency

1 P(321)2 P(2T) (6.33, 6.56) 16 P(32121)2 P(4T) (11.01, 11.05)
(11.35, 11.40)

2 P321 P(T) (6.56, 7.01) 17 P32121 P(2T) (11.05, 11.16)
(11.40, 11.52)

3 P(333321)2 P(2T) (7.41, 7.43) 18 P(321)4 P(8T) (11.75, 11.76)

4 P3(321)2 P(3T) (7.60, 7.80)
(7.91, 7.93) 19 P(321)2 P(4T) (11.76, 11.77)

5 P
(33(321)2)

2 P(6T) (7.87, 7.89) 20 P32 P(4T) (11.77, 11.79)

6 P33(321)2 P(3T) (8.05, 8.07)
(8.18, 8.20) 21 P34 P(8T) (11.79, 11.80)

7 P
3(3(321)2)

2 P(6T) (8.27, 8.29) 22 P(21)4 P(4T) (19.15, 19.40)

8 P(33321)2 P(6T) (8.62, 8.64) 23 P(21)2 P(2T) (19.40, 21.25)
9 P

(3(3321)2)
2 P(8T) (8.76, 8.78) 24 P21 P(T) (21.25, 35.20)

10 P3(3321)2 P(4T) (8.94, 8.96) 25 P(21)4 P(8T) (56.42, 56.92)
11 P(3321)4 P(8T) (9.06, 9.07) 26 P(21)2 P(4T) (56.92, 59.35)

12 P(3321)2 P(4T) (9.07, 9.09)
(9.81, 9.83) 27 P21 P(2T) (59.35, 70.23)

14 P(321)233(21)2 P(6T) (10.42, 10.44) 28
Chaos &
Complex
Motion

—

(7.01, 19.15)
(19.15, 35.20)
(70.23, 80.00)

15 P(32121)4 P(8T) (11.00, 11.01)
(11.34, 11.35)

5.2. Analytical Prediction

The analytical prediction of periodic motions is based on the corresponding mapping
structures presented in Section 4 to solve the switching points of the periodic motions. In
other words, for a specified mapping structure, a set of nonlinear algebraic equations can
be developed, and such nonlinear algebraic equations are solved by the Newton-Raphson
method to obtain the switching points. The local stability and bifurcation analysis of the
periodic motion are also completed as presented in Section 4.2. In this section, the analytical
prediction of periodic motions will be presented via two examples, and the corresponding
eigenvalue analysis will be given.

Consider m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5. The
analytical prediction of the periodic motions pertaining to mapping P(21)k (k = 1, 2, 22 · · · )
is presented in Figure 11, and the corresponding eigenvalues of the periodic motions are
shown in Figure 12. The solid curves represent stable solutions, which can be observed in
the bifurcation scenario. The dashed curves denote unstable solutions that may exist in the
region of chaotic motion in the bifurcation scenario. The acronyms PD, SN, and GB represent
the period-doubling, saddle-node, and grazing bifurcations, respectively. From this analytical
prediction of periodic motions, the stable solution disappears at the saddle-node bifurcation
with Ω = 35.20. The unstable solution of mapping structure P21 disappears at the grazing
bifurcation with Ω = 5.88. The unstable solutions of mapping structure P(21)2 and P(21)4 vanish
at the grazing bifurcations with Ω = 9.39. The saddle-node bifurcation of the periodic motion
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Figure 11: Analytical prediction of periodic motion for Ω ∈ (21, 35): (a) switching displacement and (b)
switching velocity of the particle; (c) switching displacement and (d) switching velocity of the piston;
(e) switching phase. Solid and dashed curves represent the stable and unstable solutions, respectively,
(m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5.)

of P21 occurs at Ω = 35.20. This is because one of the eigenvalues equals 1 and all the others are
inside a unit circle, as shown in Figure 12. At Ω = 19.1, 19.4, and 21.2, one of the eigenvalues
is equal to −1 and all the others are inside a unit circle, and the period-doubling bifurcations
of the corresponding motion of P(21)4 , P(21)2 , and P21 occur. At Ω = 5.88 and 9.39, the grazing
bifurcations of periodic motions of P21 and (P(21)4 , P(21)2) occur, and such periodic motions are
unstable. Such a grazing bifurcation should be determined from the normal vector fields and
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Figure 12: Eigenvalues varying with excitation frequency for Ω ∈ (19.15, 35.20): (a) magnitude and (b) real
part. Solid and dashed curves represent the stable and unstable solutions, respectively. (m1 = 0.01, m2 =
1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5).

the corresponding grazing conditions are given in (3.26) and (3.28). The grazing bifurcations
of unstable solutions imply that the corresponding motion relative to a specific mapping
structure will disappear in the region of a chaotic motion. The chaotic motion will be switched
into another motion with a sudden switching of motion. Both grazing and stick bifurcations
give a catastrophe mechanism of the motion switching in the Fermi-acceleration oscillator.

The methodology presented in Section 4 can give the analytical prediction of any
periodic motions. For a further demonstration of this technique, consider the same set
of parameters except for the range of excitation frequency for the analytical prediction
of periodic motions relative to the mapping structures of P(132)k (k = 1, 2, 22 · · · ). With
varying excitation frequency, the switching displacements, switching velocities and switching
phases of periodic motions of particles, and piston are analytically predicted and presented
in Figure 13. The periodic motion of P132 is stable for Ω ∈ (3.24, 4.38) ∪ (6.57, 7.00) and
unstable for Ω ∈ (4.38, 6.57). The corresponding period-doubling bifurcations occur at
Ω = 4.38 and 6.57 and the saddle-node bifurcations occur at Ω = 3.24 and 7.00. The periodic
motion of P(132)2 is unstable for Ω ∈ (4.80, 6.31) and stable for Ω ∈ (4.38, 4.80) ∪ (6.31, 6.57).
The period-doubling bifurcations of the periodic motion of P(132)2 are at Ω = 4.80 and 6.31,
and the corresponding saddle-node bifurcations are at Ω = 4.38 and 6.57. In the vicinity
of Ω = 4.80 and 6.31, there are many periodic motions relative to P(132)4 , P(132)8 , and chaos.
Since the ranges of excitation frequency for periodic motions are very small, herein such
analytical results will not be presented. For this analytical prediction of periodic motions
relative to P132 and P(132)2 , the corresponding stability and bifurcations of the periodic motions
are presented through the magnitudes and real parts of eigenvalues, as shown in Figure 14.
For such periodic motions, no grazing and stick bifurcation can be observed. The motion in
the range of Ω ∈ (4.80, 6.31) is complex periodic motions and chaotic motions.

For a better understanding of the switching dynamics of the Fermi-acceleration
oscillator, a parameter map for periodic motions and chaos should be developed from
the analytical prediction, and the corresponding local stability and bifurcation conditions
with the grazing and stick conditions will be adopted. The parameter map about excitation
amplitude and frequency is presented in Figure 15 for parameters (m1 = 0.01, m2 = 1, k =
10, c = 6, e1 = 0.9, e2 = 0.7, h = 1). The “forbidden area” in the parameter map exists
because the displacement of piston cannot pass over the location of the fixed wall. In
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Figure 13: Analytical prediction of periodic motion relative to mapping structure P123 for Ω ∈ (3, 7.5):
(a) switching displacement and (b) switching velocity of the particle; (c) switching displacement and (d)
switching velocity of the piston; (e) switching phase. Solid and dashed curves represent the stable and
unstable solutions, respectively, (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5).

Figure 15(a), the parameter map of (Ω, Q) for Ω ∈ (0, 200) and Q ∈ (0, 35) is presented.
Periodic motions of P(12)k (k = 1, 2, 22, 23, . . .), P(312), and P(312)2 with complex and chaotic
motions are presented. The small regions of periodic motions cannot be clearly illustrated.
To illustrate such regions, a zoomed view of the parameter map in such regions is given in
Figure 15(b). The regions for periodic motion of P(21)4 , P312, and P(312)2 are presented clearly.
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Figure 14: Eigenvalues varying with excitation frequency for Ω ∈ (19.15, 35.20): (a) magnitude and (b) real
part. Solid and dashed curves represent the stable and unstable solutions, respectively, (m1 = 0.01, m2 =
1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5).
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Figure 15: Parameter maps: (a) overall view, (b) zoomed view, (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 =
0.9, e2 = 0.7, h = 1).

5.3. Simulations

From the previous section, periodic motions were analytically predicted. It is significant
to illustrate motions for a better understanding of the dynamics of the Fermi-acceleration
oscillator. To illustrate motions in the generalized Fermi-acceleration oscillator, the closed-
form solutions of particle and piston in the appendix are used again for numerical
simulations. As in the section of bifurcation scenario, the corresponding conditions for motion
switching should be embedded in the computer program. The time histories of displacement
and velocity of both the particle and piston will be presented for periodic motions. In
addition, phase planes of both particle and piston will be illustrated. For chaotic motions, the
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Poincare mapping sections consisting of the switching points on the switching boundaries
will be presented. In numerical illustrations, the switching points are labeled by circular
symbols. The large and small circular symbols are for the particle and piston in the Fermi-
acceleration oscillator, respectively.

Consider a set of parameters (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h =
1, Q = 0.5) with Ω = 6.7. From the analytical prediction, one obtains the initial condition (i.e.,
t0 = 0.0741633079, x(1)

0 = 1.0, ẋ(1)
0 = 5.4104888431, x(2)

0 = 0.3280350633, ẋ(2)
0 =1.1504459376)

for a periodic motion of P213. Using such an initial condition, a numerical simulation gives
phase plane and the time histories of displacements and velocities of particle and piston,
as shown in Figure 16. The initial conditions are marked by green circular symbols. The
arrows give the directions of motions for the particle and piston. The switching points
are marked by the hollow circular symbols. The corresponding mappings are labeled by
(1)Pλ,

(2)Pλ (λ = 1, 2, 3). In Figure 16(a), the switching displacements of particle and piston at
the impacting points are of the same. However, the switching velocities for both of them are
different because impacts cause the velocity to be discontinuous, as shown in Figure 16(b).
In Figures 16(a) and 16(b), the solid and dashed curves depict the motions of particle and
piston, respectively. When the particle impacts with the fixed wall, the piston motion will
not be influenced because the piston moves by itself. Thus, the piston velocity will not be
changed. When the impact between the particle and piston occurs, the velocity change of the
piston is very small because the particle’s mass is much smaller than the piston’s mass. If the
particle’s mass is with the same quantitative level of the piston’s mass, the velocity change
before and after impacts can be clearly observed. In Figure 16(c), a trajectory of particle for
such a periodic motion of P213 in phase plane is plotted. The dashed curves are the switching
boundary for the particle motion, which is given by the displacement of piston. The periodic
motion of particle consists of three pieces of trajectories. Similarly, a trajectory of piston with
the corresponding switching boundary for the periodic motion is plotted in Figure 16(d).

As discussed before, there are two kinds of motions for motion switching: (i) stick
motion and nonstick motion. In other words, the nonstick motion means that the particle
does not stay on the piston, and the stick motion means that the particle stays on the piston
and moves together. In Figure 16, the impacting motion of the particle and piston without
stick are presented. The stick motion of particle and piston is an important phenomenon.
Thus, consider parameters (m1 = 0.001, m2 = 1, k = 20, c = 8, e1 = 0.9, e2 = 0.01, h =
1, Q = 0.5) with Ω = 6.5 to demonstrate a periodic motion with stick. From the analytical
prediction, one obtains an initial condition (t0 = 0.70442282, x(1)

0 = x(2)
0 = −0.38755043, ẋ(1)

0 =
ẋ
(2)
0 =1.97682140) for a periodic motion with stick, which is relative to a mapping structure

of P032 . When such an initial condition is used for a numerical simulation, the corresponding
results are presented in Figure 17. Before the stick motion is formed, there are two times
of the impact chattering between the particle and piston. In numerical computations, the
relative velocity tolerance of the particle and piston at the impact boundary is set to be |ẋ(1)

0 −
ẋ
(2)
0 | < ε = 10−4. Under such a condition, it is assumed that the velocities of particle and

piston are of the same. If the chosen impact restriction coefficient is relatively large, this set of
parameters is very difficult to observe the periodic motion with stick. The detailed discussion
of such impact chattering can be referred to Luo and O’Connor [46, 47]. To observe the stick
motion of particle and piston in periodic motions, the acceleration and jerk of particle and
piston are very important from the analytical conditions for motion switching in Section 3.3.
So the time histories of the displacements, velocities, accelerations and jerks of particle and
piston are presented in Figure 17, and the trajectories of particle and piston in phase plane
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Figure 16: Periodic motion of P(213) (Ω = 6.7 and e2 = 0.7): (a) displacement history, (b) velocity history,
(c) phase plane of particle, and (d) phase plane of piston. Solid and dashed curves indicate the motion
of particle and piston, respectively, (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, h = 1, Q = 0.5, t0 =
0.0741633079, x(1)

0 = 1.0, ẋ(1)
0 = 5.4104888431, x(2)

0 = 0.3280350633, ẋ(2)
0 =1.1504459376).

are plotted in Figure 18. For the nonstick part of motion, the discussion is the same as in
Figure 16. For the part of stick motion, the displacement and velocity for particle and piston
should be x(1) = x(2) and ẋ(1) = ẋ(2), as shown in Figures 17(a) and 17(b). Such a stick motion
is labeled by ((1)P0,

(2)P0). The solid and dashed curves depict the motions of particle and
piston, respectively. In addition, the condition of stick motion in (3.19) should be satisfied,
which is expressed by the relative acceleration (i.e., g(i) = ẍ(i) − ẍ(i), i ∈ {1, 2}) with a(i) ≡
ẍ(i), a(i) ≡ ẍ(i). The condition of stick motion (i.e., g(1) < 0 or g(2) > 0) gives the absolute
acceleration relation (i.e., −g = ẍ(1) < ẍ(2)) under which the stick motion will be formed. Such
a condition of stick motion is observed in the shaded area in Figure 17(c). The vanishing
condition of stick motion is given by g(i) = ẍ(i) − ẍ(i) = 0 with the relative jerks ((d/st)g(i) =
J(i)−J(i)) with J(i) ≡ ...

x (i), J(i) ≡ ...
x (i). In other words, (d/dt)g(1) = J(1)−J(2) > 0 or (d/dt)g(2) =

J(2) − J(1) < 0. From such conditions, one obtains J(2) < J(1) = 0 from which the stick motion
will disappear. Such a condition can be observed in Figures 17(c) and 17(d). For the nonstick
motion, the acceleration and jerk for particle are constants (i.e., a(1) = −g and J(1) = 0). The
dashed curves in Figures 17(c) and 17(d) give the acceleration and jerks for the piston. For
a further observation of the analytical condition of stick, the phase plane, acceleration, and
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Figure 17: Periodic motion of P034 (Ω = 6.5 and e2 = 0.01): (a) displacement time-history, (b) velocity time-
history, (c) phase plane of particle, and (d) phase plane of piston. Solid and dashed curves represents the
motions of particle and piston, respectively, (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, h = 1, Q = 0.5)
(t0 = 0.70442282, x(1)

0 = −0.38755043, ẋ(1)
0 = 1.90527812, x(2)

0 = −0.38755043, ẋ(2)
0 =1.96895970).

jerk versus displacement for particle and piston are presented in Figure 18. In Figures 18(a)
and 18(d), the trajectories of periodic motion with stick for particle and piston are presented,
and the dashed curves are the displacement boundaries for motion switching. The arrows
still show the directions of flows for such a periodic motion. The stick motion portions are
shaded by the gray color. It is observed that the displacement and velocity for the stick motion
are overlapped. To look into the condition for stick motion, in Figures 18(b), 18(c), 18(e), and
18(f), the vertical arrows show the motion switching at the switching boundaries. At the
initial condition (or stick starting point), the acceleration of particle is less than the piston’s
acceleration (i.e., a(2) > a(1) = −9.8) with the same displacement and velocity. So the stick
motion will be formed, because the jerk of particle is zero, and the jerk of piston is negative.
With increasing time, the acceleration of piston becomes small. Until a(2) = a(1) = −9.8, the
stick motion should still exist. However, for a(2) = a(1) = −9.8, if the jerk of the piston is still
negative, then the acceleration of piston will be less than the particle’s acceleration. Thus, the
stick motion will disappear and the nonstick motion is formed. Such a switching mechanism
of the stick motion is clearly observed in Figures 18(b), 18(c), 18(e), and 18(f). Finally, the
trajectories in phase plane for a set of periodic motions are presented in Figures 19(a)–19(f)
with parameters (m1 = 0.001, m2 = 1, k = 20, c = 8, e1 = 0.9, h = 1, Q = 0.5). The mapping
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Figure 18: Periodic motion of P33 (Ω = 6.5 and e2 = 0.01). Particle: (a) phase plane, (b) acceleration
and (c) jerks versus displacement of particle. Piston: (d) phase plane, (e) acceleration, and (f) jerks
versus displacement of piston, (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, h = 1, Q = 0.5)
(t0 = 0.70442282, x(1)

0 = −0.38755043, ẋ(1)
0 = 1.90527812, x(2)

0 = −0.38755043, ẋ(2)
0 =1.96895970).

structures, other parameters, and initial conditions are listed in Table 2 for periodic motions.
The green points are the starting points (initial points), and the solid and dashed curves
represent the motions of particle and piston, respectively. The other periodic motions can be
similarly illustrated.
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Figure 19: Phase planes. Solid and dashed curves represent motions of particle and piston, respectively,
(m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, Q = 0.5): (a) P032 (Ω = 6.5, e2 = 0.01) (t0 = 0.70442282,
x
(1)
0 = x(2)

0 = −0.38755043, ẋ(1)
0 = 1.90527812, ẋ(2)

0 =1.96895970), (b) P32 (Ω = 11.8, e2 = 0.01) (t0 = 0.51035890,
x
(1)
0 = x

(2)
0 = 0.01422235, ẋ(1)

0 = 0.87719897, ẋ(2)
0 =2.83304464), (c) P(213) (Ω = 6.7, e2 = 0.7) (t0 = 0.07416331,

x
(1)
0 = 1.0, ẋ(1)

0 = 5.41048884, x(2)
0 = 0.32803506, ẋ(2)

0 =1.15044594), (d) P(213)2 (Ω = 6.5, e2 = 0.7) (t0 =

0.08347153, x(1)
0 = 1.0, ẋ(1)

0 = 5.54878710, x(2)
0 = 0.34730036, ẋ(2)

0 =0.98801503), (e) P12 (Ω = 22.7, e2 = 0.7)
(t0 = 0.08699328, x(1)

0 = 1.0, ẋ(1)
0 = 8.11298196, x(2)

0 = 0.04059727, ẋ(2)
0 =−1.64929089), and (f) P(12)2 (Ω = 20.4,

e2 = 0.7) (t0 = 0.39975776, x(1)
0 = 1.0, ẋ(1)

0 = 8.17571963, x(2)
0 = 0.07102098, ẋ(2)

0 = − 1.44790328).
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Table 2: Initial conditions for periodic motions (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, h = 1, Q =
0.5).

Mapping (Ω, e2) Initial time t0 (x(1)
0 , ẋ

(1)
0 ) (x(2)

0 , ẋ
(2)
0 )

P320 (6.5, 0.01) 0.70490614 (−0.38755043, 1.97682140) (−0.38755043, 1.97682140)

P32 (11.8, 0.01) 0.51035890 (0.01422235, 0.87719897) (0.01422235, 2.83304464)

P(213) (6.7, 0.7) 0.07416331 (1.0, 5.41048884) (0.32803506, 1.15044594)

P(213)2 (6.5, 0.7) 0.08347153 (1.0, 5.54878710) (0.34730036, 0.98801503)

P12 (22.7, 0.7) 0.08699328 (1.0, 8.11298196) (0.04059727,−1.64929089)

P(12)2 (20.4, 0.7) 0.39975776 (1.0, 8.17571963) (0.07102098,−1.44790328)

Finally, a chaotic motion relative to P···21212121333 is illustrated for parameters (m1 =
0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5, Ω = 12) and the initial
conditions (t0 = 0.40024561, x

(1)
0 = x

(2)
0 = −0.22472018, ẋ

(1)
0 = 2.58913681, ẋ(2)

0 =1.19198278)
are used. The time histories of displacement and velocity of particles and piston are presented
in Figures 20(a) and 20(b), respectively. In addition, the trajectories of particle and piston in
phase plane are plotted in Figures 20(c) and 20(d), accordingly. The particle motion is very
chaotic and such a chaotic motion of particle takes a big region in phase plane. However,
the trajectory of piston is in a small region of ring in phase plane. This is because the
particle’s mass is much smaller than the piston’s mass. The impact effect on the particle
motion is much bigger than on the piston motion. To further looking into the chaotic behavior
of this motion, the corresponding Poincare mapping sections for such chaotic motion are
presented in Figure 21. The Poincare mapping sections consist of the switching points on
the switching boundaries. In Figure 21(a) and ??, the switching displacement (x(1)

k ) and
velocity (ẋ(1)

k
) versus switching phase (mod(Ωtk, 2π)) for the particle are presented. The

switching displacement and velocity of piston versus switching phase (mod (Ωtk, 2π)) are
also illustrated in Figures 21(c) and 21(d), respectively. The Poincare mapping sections in
phase space for the particle and piston are shown in Figures 21(e) and 21(f), respectively.
Again, because the particle’s mass is chosen to be much smaller than the piston’s mass, the
impact effect on the piston is not very obvious. Therefore, one often assumed the piston have
a fixed sinusoidal motion. Once the particle’s mass is not much less than the piston’s mass, the
impact effect on the piston motion will become significant. The aforementioned assumption
should not be adequate. For a further investigation of chaos in such a Fermi-acceleration
oscillator, the Lyapunov exponent can be used, and the scaling properties of chaotic motions
can be studied. This paper mainly focuses on the motion switching of the multimotion
states. Therefore, the other investigations on nonlinear dynamics of the generalized Fermi-
acceleration oscillator can be performed in sequel.

6. Conclusion

In this paper, the mechanism of motion switching of a particle in such a generalized Fermi-
oscillator was studied through the theory of discontinuous dynamical systems, and the
corresponding analytical conditions for the motion switching were developed. From the
solutions of linear systems in each domain, the generic mappings are introduced. Further, the
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Figure 20: Chaotic motion (Ω = 12): (a) displacement time-history, (b) velocity time-history, (c) phase
plane for particle, and (d) phase plane for piston. Solid and dashed curves represent the motion of particle
and piston, respectively, (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 = 0.9, e2 = 0.7, h = 1, Q = 0.5) and the
initial condition (t0 = 0.40024561, x(1)

0 = x(2)
0 = −0.22472018, ẋ(1)

0 = 2.58913681, ẋ(2)
0 =1.19198278).

mapping structures for periodic motions were developed, and such periodic motions in the
Fermi-acceleration oscillator were predicted analytically. The corresponding local stability
and bifurcation are carried out. From the analytical prediction, parameter maps of regular
and chaotic motions were achieved for a global view of motions in the Fermi-acceleration
oscillator. Illustrations of periodic and chaotic motions in such an oscillator were done. This
methodology will provide a useful way to determine dynamical behaviors in the Fermi-
acceleration oscillator.

Appendix

Equation of motion for the particle in the generalized Fermi-oscillator is

ẍ(1) = −g. (A.1)



36 Mathematical Problems in Engineering

0 2 4 6

Switching phase (mod(Ωtk, 2π))

−0.4

−0.2

0

0.2

1

1.2

Sw
it

ch
in

g
d

is
pl

ac
em

en
tx

(1
)

k

(a)

0 2 4 6

Switching phase (mod(Ωtk, 2π))

−10

−5

0

5

10

Sw
it

ch
in

g
ve

lo
ci

ty
y
(1
)

k

(b)

0 2 4 6

Switching phase (mod(Ωtk, 2π))

−0.4

−0.2

0

0.2

0.4

Sw
it

ch
in

g
d

is
pl

ac
em

en
tx

(2
)

k

(c)

0 2 4 6

Switching phase (mod(Ωtk, 2π))

−4

−2

0

2

4

Sw
it

ch
in

g
ve

lo
ci

ty
y
(2
)

k

(d)

−0.3 −0.1 0.1 0.3 1

Switching displacement x(1)
k

−10

−5

0

5

10

Sw
it

ch
in

g
ve

lo
ci

ty
y
(1
)

k

(e)

−0.4 −0.2 0 0.2 0.4

Switching displacement x(2)
k

−4

−2

0

2

4

Sw
it

ch
in

g
ve

lo
ci

ty
y
(2
)

k

(f)

Figure 21: Poincare mapping sections of chaotic motion (Ω = 12). (a) Switching displacement of particle,
(b) switching velocity of particle, (c) switching displacement of piston, (d) switching velocity of piston,
(e) Poincare section of particle, and (f) Poincare section of piston. (m1 = 0.01, m2 = 1, k = 10, c = 6, e1 =
0.9, e2 = 0.7, h = 1, Q = 0.5) and initial condition (t0 = 0.40024561, x(1)

0 = x
(2)
0 = −0.22472018, ẋ(1)

0 =
2.58913681, ẋ(2)

0 =1.19198278).

The solution for the particle motion is

ẋ(1) = ẋ(1)
k
− g
(
t − tk

)
,

x(1) = x(1)
k + ẋ(1)

k

(
t − tk

)
− 1

2
g
(
t − tk

)2
.

(A.2)
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Solution for Piston

The equation of motion for piston and stick motion in the extended Fermi-oscillator is

ẍ(α) + 2d(α)ẋ(α) +
(
ω(α))2

x(α) =
(
ω(α))2

Q cosΩt − 2d(α)QΩ sinΩt. (A.3)

Superscript indices (α = 0, 2) denote stick and nonstick motions of piston, respectively. The
subscripts k and k + 1 represent the initial and final states.

Case 1 (d(α) = ω(α)).

x(α) =
[
C

(α)
1 + C(α)

2

(
t − tk

)]
er

(α)
1 (t−tk) +A(α) cosΩt + B(α) sinΩt,

ẋ(α) = C(α)
2 er

(α)
1 (t−tk) + r(α)1

[
C

(α)
1 + C(α)

2

(
t − tk

)]
er

(α)
1 (t−tk)

−A(α)Ω sinΩt + B(α)Ω cosΩt,

ẍ(α) = 2r(α)1 C
(α)
2 er

(α)
1 (t−tk) +

(
r
(α)
1

)2[
C

(α)
1 + C(α)

2

(
t − tk

)]
er

(α)
1 (t−tk)

−A(α)Ω2 cosΩt − B(α)Ω2 sinΩt,

(A.4)

where

C
(α)
1 = x(α)

k
−A(α) cosΩtk − B(α) sinΩtk,

C
(α)
2 = ẋ(α)

k +A(α)Ω sinΩtk − B(α)Ω cosΩtk − r(α)1 C
(α)
1 ,

A(α) =

(
ω(α))2

Q
[(
ω(α))2 −Ω2] + 4(d(α))2Ω2Q

4
(
d(α)
)2Ω2 +

[(
ω(α)
)2 −Ω2

]2 ,

B(α) =
2d(α)Ω3Q

4
(
d(α)
)2Ω2 +

[(
ω(α)
)2 −Ω2

]2 ,

r
(α)
1 = −d(α).

(A.5)

Case 2 (d(α) > ω(α)).

x(α) = C(α)
1 er

(α)
1 (t−tk) + C(α)

2 er
(α)
2 (t−tk) +A(α) cosΩt + B(α) sinΩt,

ẋ(α) = C(α)
1 r

(α)
1 er

(α)
1 (t−tk) + C(α)

2 r
(α)
2 er

(α)
2 (t−tk) −A(α)Ω sinΩt + B(α)Ω cosΩt,

ẍ(α) = C(α)
1

(
r
(α)
1

)2
er

(α)
1 (t−tk) + C(α)

2

(
r
(α)
2

)2
er

(α)
2 (t−tk) −A(α)Ω2 cosΩt − B(α)Ω2 sinΩt,

(A.6)
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where

C
(α)
1 =

r
(α)
2

(
x
(α)
k −A

(α) cosΩtk − B(α) sinΩtk
)
−A(α)Ω sinΩtk + B(α)Ω cosΩtk − ẋ(α)

k

r
(α)
2 − r(α)1

,

C
(α)
2 = x(α)

k −A
(α) cosΩtk − B(α) sinΩtk − C(α)

1 ,

A(α) =

(
ω(α))2

Q
[(
ω(α))2 −Ω2] + 4(d(α))2Ω2Q

4
(
d(α)
)2Ω2 +

[(
ω(α)
)2 −Ω2

]2 ,

B(α) =
2d(α)Ω3Q

4
(
d(α)
)2Ω2 +

[(
ω(α)
)2 −Ω2

]2 ,

r
(α)
1,2 = −d(α) ±

√(
d(α)
)2 −

(
ω(α)
)2
.

(A.7)

Case 3 (d(α) < ω(α)).

x(α) = e−d
(α)(t−tk)[C(α)

1 cosω(α)
d

(
t − tk

)
+ C(α)

2 sinω(α)
d

(
t − tk

)]
+A(α) cosΩt + B(α) sinΩt,

ẋ(α) = e−d
(α)(t−tk)( − d(α)C
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2 − C(α)

1 ω
(α)
d

)
sinω(α)

d

(
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(α)(t−tk)( − d(α)C
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1 + C(α)

2 ω
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d

)
cosω(α)

d

(
t − tk
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(A.8)

where

C
(α)
1 = x(α)

k −A
(α) cosΩtk − B(α) sinΩtk,

C
(α)
2 =

ẋ
(α)
k

+A(α)Ω sinΩtk − B(α)Ω cosΩtk + d(α)C
(α)
1

ω
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d
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