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1. Introduction

This paper is concerned with the following Cauchy problem for the nonlinear Schrödinger
type equation:

iut + (−Δ)mu = μ|u|αu, x ∈ Rn, t ∈ R+,

u(x, 0) = u0(x), x ∈ Rn,
(1.1)

where μ ∈ R is a constant,m ≥ 1 is an integer, u = u(t, x) is a complex-valued function defined
on R+ × Rn (R+ ≡ [0,+∞)), and the initial data u0(x) is a complex-valued function defined in
Rn. Pecher andWahl [1] have established the existence of the classical solution to the Cauchy
problem for the higher-order Schrödinger equation (1.1) bymaking use of Lp-estimates of the
associated elliptic equation in conjunction with the compactness method. Recently Sjögren
and Sjölin studied the local smoothing effect of the solutions to the Cauchy problem (1.1)
by means of the Strichartz estimates in nonhomogeneous spaces ([2, 3]). Moreover, there are
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some work ([4–6]) which is devoted to the investigation of the global well-posedness and
the scattering theory of the problem (1.1). However, little attention is paid to the self-similar
solutions of the Cauchy problem (1.1).

Our goal is to prove the existence of the global self-similar solutions to the Cauchy
problem (1.1) for some admissible parameter α. From the scaling principle, it is easy to see
that if u(t, x) is a solution of the Cauchy problem (1.1), then uλ(t, x) = λ2m/αu(λ2mt, λx) with
λ > 0 is also a solution of equation in (1.1) with the initial value λ2m/αu0(λx). We thus have
the following definition.

Definition 1.1. u(t, x) is said to be a self-similar solution to the higher-order Schrödinger
equation in (1.1) if

u(t, x) = uλ(t, x) = λ2m/αu
(
λ2mt, λx

)
, ∀λ > 0. (1.2)

By Definition 1.1, we know that the self-similar solution to (1.1) is of the form

u(t, x) = t−(1/α)U
(

x
2m
√
t

)
, (1.3)

whereU : Rn → C is called profile of the solution, and the initial value u0 is of the form

u0(x) =
Ω(x′)

|x|2m/α
, (1.4)

where x′ = x/|x| andΩ is defined on the unit sphere Sn of Rn. Therefore the problem (1.1) can
be studied through a nonlinear higher-order elliptic equation on U. However, this is usually
very complicated. By virtue of this method, Kavian and Weissler [7] have dealt with the
radially symmetric solutions of (1.1) in the casem = 1, u0(x) = |x|−(2/α).

Another important way of looking for self-similar solutions for the nonlinear
Schrödinger equation in (1.1) is to study the small global well-posedness of associated
Cauchy problem (1.1) in some suitable function spaces. These global solutions admit a class
of self-similar solutions. As a consequence, if u(t, x) is the unique solution of the Cauchy
problem (1.1) with the initial data u0 given by (1.4), then u(t, x) is a self-similar solution of
the problem.

On the other hand, if u(t, x) is a self-similar solution to the problem (1.1), then
the initial function is u0(x) = λ2m/αu0(λx). So u0(x) is homogeneous of degree −(2m/α).
In general, such homogeneous functions do not belong to the usual Lebesgue spaces and
Sobolev spaces.

To do our work, several definitions and notations are required. Denote by S(Rn) and
S′(Rn) the Schwartz space and the space of Schwartz distribution functions, respectively.
Lr(Rn) denotes the usual Lebesgue space on Rn with the norm ‖ · ‖r for 1 ≤ r ≤ ∞. For
s ∈ R and 1 < r < ∞, let Hs

r (R
n) = (1 − Δ)−(s/2)Lr(Rn), the inhomogeneous Sobolev space in

terms of Bessel potentials; let Ḣs
r (R

n) = (−Δ)−(s/2)Lr(Rn), the homogeneous Sobolev space in
terms of Riesz potentials, and writeHs(Rn) = Hs

2(R
n) and Ḣs(Rn) = Ḣs

2(R
n). We will omit Rn

from spaces and norms. For any interval I ⊂ R+ (or I = R+) and for any Banach space X, we
denote by C(I;X) the space of strongly continuous functions from I to X and by Lq(I;X) the
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space of strongly measurable functions from I to X with ‖u(·)‖X ∈ Lq(I). Finally, let q > 0, q′

stands for the dual to q, that is, (1/q) + (1/q′) = 1; [a] denotes the largest integer less or equal
to a.

Whenm = 1, the equation in (1.1) becomes the classical Schrödinger equation

iut −Δu = μ|u|αu, x ∈ Rn, t ∈ R+,

u(x, 0) = u0(x), x ∈ Rn,
(1.5)

which describes many physical phenomena, and the well-posedness as well as the scattering
theory for the Cauchy problem (1.5) has been extensively studied by many authors ([8–
11]). Cazenave and Weissler [12, 13] (also Ribaud and Youssfi [14]) have studied the self-
similar solutions of the equation in (1.5)with initial value u0(x) as (1.4). Their common ideas
are to introduce the new function space Es,p = Es,p(R+ × Rn) which consists of all Bochner
measurable functions u : (0,∞) → Ḣs

p(R
n) such that ‖u‖Es,p = supt>0t

σ‖u(t, x)‖Ḣs
p
<∞, where

2 ≤ p < ∞, 0 ≤ s < n/p and σ = σ(s, p) = (1/2)((2/α) − (n/p) + s). They then established the
existence of global self-similar solutions in Es,p for the problem (1.5) under the condition that
‖u0‖Es,p < ε.

This paper is organized as follows. In the next section, we will recall the definition and
basic properties of function spaces that we require. Then in Section 3 we state the main results
and the related propositions. The last section is devoted to the proof of main results.

2. Function Spaces

2.1. Lorentz Spaces Lp,q(Rn)

Definition 2.1. Let f∗(t), t ∈ (0,∞), be the nonincreasing rearrangement of a measurable
function f(x), x ∈ Rn, then f ∈ S′(Rn) is said to be in Lp,q(Rn) if and only if

∥∥f∥∥
p,q =

{∫∞

0

(
t1/pf∗(t)

)q dt
t

}1/q

, (2.1)

when 1 ≤ p, q <∞, and

∥∥f∥∥
p,∞ = sup

t≥0
t1/pf∗(t) < +∞, (2.2)

when 1 ≤ p <∞, where ‖u‖p,q is the quasinorm of space Lp,q(Rn).

We refer the reader to [15, 16] for the definitions and detailed properties of the
nonincreasing rearrangement functions and Lorentz spaces. In fact, Lorentz space Lp,q(Rn)
is a generalization of Lebesgue space Lp(Rn). We have Lp,q(Rn) = Lp(Rn) as p = q, and
Lp(Rn) ⊂ Lp,q(Rn) ⊂ Lp,∞(Rn) as q > p. Meanwhile, a lot of properties of Lebesgue spaces
are still valid in Lorentz spaces.

We may prove the following results according to Definition 2.1.
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Proposition 2.2. Suppose that 1 ≤ p <∞, 1 ≤ q ≤ ∞, then

∣∣∣∣
∫

Rn
f(x)g(x)dx

∣∣∣∣ ≤ C
∥∥f∥∥

p,q ·
∥∥g∥∥p′,q′ , (2.3)

∥∥∥∥
∫

Rn
f(·, y)dy

∥∥∥∥
p,q

≤ C
∫

Rn

∥∥f(·, y)∥∥p,qdy, (2.4)

∥∥∣∣f∣∣α∥∥
p,q =

∥∥f∥∥α
pα,qα. (2.5)

The inequalities (2.3) and (2.4) are essentially the Hölder and Minkowski inequality
in Lorentz spaces, respectively, and they can be proved by using Definition 2.1. Furthermore,
noting that Lp,q(Rn) is a real interpolation of Lebesgue space, we immediately obtain the
following proposition.

Proposition 2.3. Let 0 < α < n, 1 ≤ p < r <∞, 1 ≤ q ≤ ∞ and 1/r = (1/p) − (α/n), then

∥∥∥∥∥
∫

Rn

f(y)∣∣x − y∣∣n−α dy
∥∥∥∥∥
r,q

≤ C∥∥f∥∥
p,q. (2.6)

2.2. Besov Spaces

We first recall briefly the definition of Besov spaces. For detailed properties and embedding
theorems, we are referred to [15, 17].

Let ϕ0 ∈ S(Rn) satisfy ϕ̂0(ξ) = 1 as |ξ| ≤ 1 and ϕ̂0(ξ) = 0 as |ξ| ≥ 2,

ϕ̂j(ξ) = ϕ̂0

(
2−j ξ

)
, ψ̂j(ξ) = ϕ̂0

(
2−j ξ

)
− ϕ̂0

(
2−j+1ξ

)
, j ∈ Z, (2.7)

then we have the Littlewood-Paley decomposition

ϕ̂0(ξ) +
∞∑
j=0

ψ̂j(ξ) = 1, ξ ∈ Rn,

∑
j∈Z
ψ̂j(ξ) = 1, ξ ∈ Rn \ {0},

lim
j→+∞

ϕ̂j(ξ) = 1, ξ ∈ Rn.

(2.8)

For convenience, we introduce the following notions:

Δjf = F−1ψ̂jFf = ψj ∗ f, Sjf = F−1ϕ̂jFf = ϕj ∗ f, j ∈ Z, (2.9)

where F and F−1 stand for Fourier and inverse Fourier transforms, respectively.
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Definition 2.4. Assume that s ∈ R, 1 ≤ q ≤ ∞, then

B
s,q
p =

⎧
⎪⎨
⎪⎩
f ∈ S′(Rn) | ∥∥f∥∥

B
s,q
p

=
∥∥S0f

∥∥
p +

⎛
⎝

∞∑
j=1

2jsq
∥∥Δjf

∥∥q
p

⎞
⎠

1/q

=
∥∥ϕ0 ∗ f

∥∥
p +

⎛
⎝

∞∑
j=1

2jsq
∥∥ψj ∗ f

∥∥q
p

⎞
⎠

1/q

<∞

⎫
⎪⎬
⎪⎭

(2.10)

is called Besov space, and

Ḃ
s,q
p =

⎧
⎪⎨
⎪⎩
f ∈ S′(Rn) | ∥∥f∥∥

Ḃ
s,q
p

=

⎛
⎝

∞∑
j=−∞

2jsq
∥∥Δjf

∥∥q
p

⎞
⎠

1/q

=

⎛
⎝∑

j∈Z
2jsq

∥∥ψj ∗ f
∥∥q
p

⎞
⎠

1/q

<∞

⎫
⎪⎬
⎪⎭
(2.11)

is homogeneous Besov space.

In particular, we have

Ḃs,∞p =

{
f ∈ S′(Rn) | ∥∥f∥∥

Ḃs,∞p
= sup

j∈Z
2js

∥∥Δjf
∥∥
p
= sup

j∈Z
2js

∥∥ψj ∗ f
∥∥
p
<∞

}
. (2.12)

Besides the classical Besov spaces, we also need the so-called generalized Besov spaces.

Definition 2.5. Let E be a Banach space, then, for s ∈ R and 1 ≤ q ≤ ∞, defines Ḃs,qE as

Ḃ
s,q

E =

⎧
⎪⎨
⎪⎩
f ∈ E | ∥∥f∥∥

Ḃ
s,q

E
=

⎛
⎝∑

j∈Z
2jsq

∥∥Δjf
∥∥q
E

⎞
⎠

1/q

<∞

⎫
⎪⎬
⎪⎭
, (2.13)

where Δj is the Littlewood-Paley operator on Rn defined as above.

Remark 2.6. If E is the Lorentz space Lp,r(Rn), then

Ḃ
s,q

Lp,r =

⎧
⎪⎨
⎪⎩
f ∈ Lp,r | ∥∥f∥∥

Ḃ
s,q

Lp,r
=

⎛
⎝∑

j∈Z
2jsq

∥∥Δjf
∥∥q
Lp,r

⎞
⎠

1/q

<∞

⎫
⎪⎬
⎪⎭
. (2.14)

This space is useful in the study of self-similar solutions.
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Remark 2.7. Let E = Lq(I;Lr) with I = R+ or I ⊂ R+ being an interval, then we have

Ḃ
s,p

Lq(I;Lr) =

⎧
⎪⎨
⎪⎩
f ∈ Lq(I;Lr) | ∥∥f∥∥

Ḃ
s,p

Lq(I;Lr )
=

⎛
⎝∑

j∈Z
2jsp

∥∥Δjf
∥∥p
Lq(I;Lr)

⎞
⎠

1/p

<∞

⎫
⎪⎬
⎪⎭
,

Ḃs,∞
Lq(I;Lr) =

{
f ∈ Lq(I;Lr) | ∥∥f∥∥

Ḃs,∞
Lq(I;Lr )

= sup
j∈Z

2js
∥∥Δjf

∥∥
Lq(I;Lr) <∞

}
,

(2.15)

where 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞, 1 ≤ p <∞.

Remark 2.8. In addition to the Besov spaces norm in Definition 2.4, we usually use the
following equivalent norms for the Besov spaces Ḃs,qp and Bs,qp :

‖v‖Ḃs,qp =
∑
|α|=N

⎛
⎝

∫∞

0
t−qσsup

|y|≤t

∥∥∥Δ2
y∂

αv
∥∥∥
q

p

dt

t

⎞
⎠

1/q

,

‖v‖Bs,qp = ‖v‖p + ‖v‖Ḃs,qp ,

(2.16)

where Δ2
yv = τyv + τ−yv − 2v, τ±yv(·) = v(· ± y); ∂α = ∂α11 ∂

α2
2 · · · ∂αnn , ∂i = ∂/∂xi, i = 1, 2, . . . , n :

α = (α1, α2, . . . , αn), and s =N + σ with a nonnegative integerN and 0 < σ < 2. When s is not
an integer, (2.16) is also equivalent to the following norm:

‖v‖Ḃs,qp =
∑

|α|=[s]

(∫∞

0
t−q(s−[s])sup

|y|≤t

∥∥Δy∂
αv

∥∥q
p

dt

t

)1/q

, (2.17)

where Δ±yv(·) = τ±yv − v. In the case when q = ∞, the above norm should be modified as
follows:

‖v‖Ḃs,∞p =
∑
|α|=N

sup
t>0

sup
|y|≤t

t−σ
∥∥∥Δ2

y∂
αv

∥∥∥
p
, s ∈ R,

‖v‖Ḃs,∞p =
∑

|α|=[s]
sup
t>0

sup
|y|≤t

t−s+[s]
∥∥Δy∂

αv
∥∥
p
, s /∈Z.

(2.18)

3. Main Results

To solve our problems, we may rewrite (1.1) in the equivalent integral equation of the form

u(t) = S(t)u0(x) − iμ
∫ t

0
S(t − τ)(|u(τ)|αu(τ))dτ, (3.1)

where S(t) = ei(−Δ)mt = F−1(ei|ξ|
2mtF·) is the free group generated by the free equation of

Schrödinger type ivt + (−Δ)mv = 0.
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Definition 3.1. One calls (q, r) a classical admissible pair with respect to the 2m-order
Schrödinger operator if

2
q
=
n

m

(
1
2
− 1
r

)
, (3.2)

where 2 ≤ r <∞ for n ≤ 2m; 2 ≤ r ≤ 2n/(n − 2m) for n > 2m.

To prove Theorem 3.3 we need the following generalized Strichartz estimates which
follow directly from the stationary phase method, the Strichartz estimates, and interpolation
theorems (see [5, 15, 18] for details).

Proposition 3.2. Let S(t) = ei(−Δ)mt, 2 ≤ p, l ≤ ∞ and (q, r) satisfy (3.2); then

∥∥S(t)ϕ(x)∥∥p,l ≤ C|t|−(n/m)((1/2)−(1/p))∥∥ϕ(x)∥∥p′,l, (3.3)

∥∥S(t)ϕ(x)∥∥Lq,2(I;Lr,2) ≤ C
∥∥ϕ(x)∥∥2, (3.4)

∥∥∥∥∥
∫ t

0
S(t − τ)f(x, τ)dτ

∥∥∥∥∥
L∞(I;L2)

≤ C∥∥f∥∥
Lq

′ ,2(I;Lr′ ,2), (3.5)

∥∥∥∥∥
∫ t

0
S(t − τ)f(x, τ)dτ

∥∥∥∥∥
Lq,2(I;Lr,2)

≤ C∥∥f∥∥
Lq

′ ,2(I;Lr′ ,2). (3.6)

Moreover, if α > 4m/n, 2/β = (n/m)((1/2) − (sc/n) − (1/(α + 2))), then

∥∥S(t)ϕ(x)∥∥Lβ,∞(I;Lα+2,∞) ≤ C
∥∥ϕ(x)∥∥Ḃsc ,∞2

, (3.7)

where sc = (n/2) − (2m/α).

Our main results state as follows.

Theorem 3.3. (i) Let β = 2mα(α + 2)/(4m − (n − 2m)α), 4m/n < α < ∞ for n ≤ 2m; 4m/n <
α < 4m/(n − 2m) for n > 2m. There exists an ε > 0 such that if u0 ∈ Ḃsc,∞2 with ‖u0‖Ḃsc ,∞2

≤ ε, then
the Cauchy problem (1.1) (or (3.1)) has a unique global solution u(t, x) with

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Lβ,∞
(
R+;Lα+2,∞

)
, n ≤ 2m

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Ḃsc,∞
L2(R+;L2n/(n−2m),2) ∩ L

β,∞
(
R+;Lα+2,∞

)
, n > 2m.

(3.8)

(ii) Let α ∈ 2N, n > 2m, and α ≥ 4m/(n−2m). There exists an ε > 0 such that if u0 ∈ Ḃsc,∞2
with ‖u0‖Ḃsc ,∞2

≤ ε, then (1.1) has a unique global solution

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Ḃsc,∞
L2(R+;L2n/(n−2m),2). (3.9)
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(iii) Let α/∈ 2N, and let the condition (a) 2m < n < 4
√
2m for 1 ≤ m < 8, α ≥ 4m/(n−2m);

or (b) n > 2m for m ≥ 8, α ∈ [4m/(n − 2m), α−) ∪ (α+,∞) be satisfied, where α− and α+ are two
positive roots of equation 2x2−nx+4m = 0 and α− < α+. There exists an ε > 0 such that if u0 ∈ Ḃsc,∞2
with ‖u0‖Ḃsc ,∞2

≤ ε, then the problem (1.1) has a unique global solution:

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Ḃsc,∞
L2(R+;L2n/(n−2m),2). (3.10)

Corollary 3.4 (see [19]). Let u0(x) = ε0|x|−(2m/α), where ε0 is a positive constant, α satisfies the
assumptions in Theorem 3.3; then there exists a unique global self-similar solution for the Cauchy
problem (1.1) with the initial value u0(x).

Theorem 3.5. Let u0(x) ∈ Ḣsc satisfy the conditions of Theorem 3.3; then the global solution u(t, x)
obtained in Theorem 3.3 satisfies u(t, x) ∈ C(R+; Ḣsc).

4. The Proof of Main Results

To prove the main results, we need the following lemmas.

Lemma 4.1 (see [20]). Let δp = n ·max(0, (1/p) − 1) andm ∈N withm ≥ 2. Suppose that

min
k=1,2,...,m

∑
k /= j

1
rk

< 1,
1
p
=

1
pj

+
∑
k /= j

1
rk
, j = 1, 2, . . . , m. (4.1)

If s > δp, then there exists a constant C > 0 such that

∥∥∥∥∥
m∏
i=1

fi

∥∥∥∥∥
Ḃ
s,q
p

≤ C
m∑
j=1

(∥∥fj
∥∥
Ḃ
s,q
pj

)∏
k /= j

∥∥fk
∥∥
Lrk (4.2)

for all (f1, f2, . . . , fm) ∈
∏m

j=1(Ḃ
s
pj ,q ∩ Lrj ).

Lemma 4.2. Let F = Lβ,∞ (R+;Lα+2,∞), where β = 2mα(α + 2)/(4m − (n − 2m)α), 0 < α < ∞ for
n ≤ 2m; 0 < α < 4m/(n − 2m) for n > 2m, then

∥∥∥∥∥
∫ t

0
S(t − τ)(|u(τ)|αu(τ))dτ

∥∥∥∥∥
F

≤ C‖u‖α+1F . (4.3)

Proof. By (2.4) in Proposition 2.2, we have

∥∥∥∥∥
∫ t

0
S(t − τ)(|u(τ)|αu(τ))dτ

∥∥∥∥∥
F

≤ C
∥∥∥∥∥
∫ t

0

∥∥S(t − τ)(|u(τ)|αu(τ))∥∥Lα+2,∞dt
∥∥∥∥∥
Lβ,∞

. (4.4)
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We get from (3.3) in Proposition 3.2

∥∥S(t − τ)(|u(τ)|αu(τ))∥∥Lα+2,∞ ≤ C|t − τ |−nα/(2m(α+2))∥∥|u(τ)|αu(τ)∥∥L(α+2)/(α+1),∞

≤ C|t − τ |−nα/(2m(α+2))‖u(τ)‖α+1Lα+2,∞ .
(4.5)

Therefore, we obtain from Proposition 2.3 and (2.5)

∥∥∥∥∥
∫ t

0
S(t − τ)(|u(τ)|αu(τ))dτ

∥∥∥∥∥
F

≤ C
∥∥∥∥∥
∫ t

0
C|t − τ |−nα/(2m(α+2))‖u(τ)‖α+1Lα+2,∞dτ

∥∥∥∥∥
Lβ,∞

≤ C
∥∥∥‖u‖α+1Lα+2,∞

∥∥∥
L2mα(α+2)/[4m−(n−2m)α](α+1),∞

≤ C‖u‖α+1F .

(4.6)

Lemma 4.3 (see [21]). Suppose that E = Ḃsc,∞
L4m(α+2)/nα(R+;Lα+2,2); F = Lβ,∞(R+;Lα+2,∞), then one has

∥∥|u|αu∥∥Ḃsc ,∞
L4m(α+2)/(8m−(n−4m)α),2(R+ ;L(α+2)/(α+1),2)

≤ C‖u‖αF‖u‖E (4.7)

for n ≤ 2m.

Lemma 4.4 (see [22]). Let f(u) = |u|αu, sc = (n/2) − (2m/α) and 1 ≤ sc < α, then
∥∥f(u)∥∥Ḃsc ,∞

L2(R+ ;L2n/(n+2m),2)

≤ C‖u‖Ḃsc ,∞
L2(R+ ;L2n/(n+2m),2)

‖u‖αL∞(R+;Ḃsc ,∞2 ), (4.8)

∥∥f ′(u)
∥∥
Ḃsc ,∞
L2(R+ ;Ll,2)

≤ C‖u‖Ḃsc ,∞
L2(R+ ;L2n/(n+2m),2)

‖u‖α−1
L∞(R+;Ḃsc ,∞2 ), (4.9)

where l = 2nα/((n + 2m)α − 4m).

4.1. The Proof of Theorem 3.3

We first prove (i). Defining the following map by (3.1),

Φ(u)(t) = S(t)u0(x) − iμ
∫ t

0
S(t − τ)(|u(τ)|αu(τ))dτ. (4.10)

For n ≤ 2m, we have from Lemma 4.2 and (3.7) in Proposition 3.2,

‖Φ(u)‖F ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1F

)
, (4.11)

‖Φ(u) −Φ(v)‖F ≤ C(‖u‖αF + ‖v‖αF
)‖u − v‖F. (4.12)
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Let Fε = {u | u ∈ F, ‖u‖F ≤ 2Cε} ⊂ F and choose

ε ≤
(

1
2C

)1+(1/α)

, (4.13)

then we get by (4.11) and (4.12)

‖Φ(u)‖Fε ≤ 2Cε

‖Φ(u) −Φ(v)‖Fε ≤
1
2
‖u − v‖Fε

(4.14)

for all u, v ∈ Fε.
This implies that Φ is a contraction map from Fε into Fε. Thus, there exists a unique

solution u ∈ F of (1.1)with ‖u‖F ≤ 2Cε.
Let E = Ḃsc,∞Π , where Π = L4m(α+2)/nα,2(R+;Lα+2,2). Then we derive from (3.4) and (3.6)

‖u‖E ≤ ‖S(t)u0‖E +
∣∣μ∣∣

∥∥∥∥∥
∫ t

0
S(t − τ)(|u|αu)dτ

∥∥∥∥∥
E

≤ C
(
sup
j

2jsc
∥∥ΔjS(t)u0

∥∥
Π + sup

j

2jsc
∥∥∥∥∥
∫ t

0
S(t − τ)Δj

(|u|αu)dτ
∥∥∥∥∥
Π

)

≤ C
(
‖u0‖Ḃsc ,∞2

+
∥∥|u|αu∥∥Ḃsc ,∞

Π′

)

(4.15)

for u ∈ Fε, where Π′ = L4m(α+2)/(8m−(n−4m)α),2(R+;L(α+2)/(α+1),2). As a consequence, we get by
Lemma 4.3 that

‖u‖E ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖E‖u‖αF
)
. (4.16)

It follows that from (4.13), C‖u‖αF ≤ 1/2. So, (4.16) implies that

‖u‖E ≤ 2C‖u0‖Ḃsc ,∞2
<∞. (4.17)

Taking the L∞(R+; Ḃsc,∞2 ) norm in both sides of (3.1), we obtain from the definition of
generalized Besov spaces, Lemma 4.3 and (3.4) and (3.5)

‖u‖L∞(R+;Ḃsc ,∞2 ) ≤ ‖S(t)u0‖L∞(R+;Ḃsc ,∞2 ) +
∣∣μ∣∣

∥∥∥∥∥
∫ t

0
S(t − τ)(|u|αu)(τ)dτ

∥∥∥∥∥
L∞(R+;Ḃsc ,∞2 )

≤ C
(
‖u0‖Ḃsc ,∞2

+
∥∥|u|αu∥∥Ḃsc ,∞

Π′

)

≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖E‖u‖αF
)
<∞,

(4.18)
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which implies u ∈ L∞(R+; Ḃsc,∞2 ). Therefore, in the case of n ≤ 2m, we have

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Lβ,∞
(
R+;Lα+2,∞

)
. (4.19)

For n > 2m, let G = L∞(R+; Ḃsc,∞2 ), H = Ḃsc,∞
L2(R+;L2n/(n−2m),2) and X = F ∩ G ∩H, then we

obtain from the assumption in (i) 0 < sc < m. In the case of 0 < sc < 1, according to the
equivalent norm of Besov spaces and Hölder inequality it follows that

‖|u|αu‖Ḃsc ,∞
L2(R+ ;L(2n/(n+2m)),2)

= sup
|y|≤τ

τ−sc
∥∥Δy(|u|αu)

∥∥
L2(R+;L(2n/(n−2m)),2)

≤ Csup
|y|≤τ

τ−sc
∥∥Δyu

∥∥
L2(R+;L(2n/(n−2m)),2)

∥∥∣∣τyu
∣∣α + |u|α∥∥

L∞(R+;Ln/2m,∞)

≤ Csup
|y|≤τ

τ−sc
∥∥Δyu

∥∥
L2(R+;L2n/(n−2m),2)‖u‖

α
L∞(R+;Lnα/2m,∞).

(4.20)

Using the Sobolev embedding theorem Ḃsc,∞2 ↪→ Lnα/2m,∞, we get that

∥∥|u|αu∥∥Ḃsc ,∞
L2(R+ ;L2n/(n+2m))

≤ C‖u‖H · ‖u‖αG. (4.21)

Consequently, from Remark 2.7, (3.4), (3.5), and (4.21), it follows that

‖Φ(u)‖H ≤ ‖S(t)u0‖H +
∣∣μ∣∣

∥∥∥∥∥
∫ t

0
S(t − τ)(|u|αu)dτ

∥∥∥∥∥
H

≤ C
(
‖u0‖Ḃsc ,∞2

+
∥∥|u|αu∥∥Ḃsc ,∞

)

≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖H · ‖u‖αG
)

≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1X

)
.

(4.22)

Similarly

‖Φ(u) −Φ(v)‖H ≤ ∣∣μ∣∣
∥∥∥∥∥
∫ t

0
S(t − τ)(|u|αu − |v|αv)dτ

∥∥∥∥∥
H

≤ C(‖u‖αG + ‖v‖αG
)‖u − v‖H

≤ C(‖u‖αX + ‖v‖αX
)‖u − v‖X.

(4.23)
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By using (3.4), (3.5), and (4.21), and arguing similarly as in deriving (4.18) one obtain
that

‖Φ(u)‖G ≤ ‖S(t)u0‖G +
∣∣μ∣∣

∥∥∥∥∥
∫ t

0
S(t − τ)(|u|αu)dτ

∥∥∥∥∥
G

≤ C
(
‖u0‖Ḃsc ,∞2

+
∥∥|u|αu∥∥L2(R+;L2n/(n+2m))

)

≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖H · ‖u‖αG
)

≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1X

)
,

(4.24)

‖Φ(u) −Φ(v)‖G ≤ C(‖u‖αX + ‖v‖αX
)‖u − v‖X. (4.25)

From (4.11) and (4.12), it follows that

‖Φ(u)‖F ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1X

)
(4.26)

‖Φ(u) −Φ(v)‖F ≤ C(‖u‖αX + ‖v‖αX
)‖u − v‖X. (4.27)

Thus, by (4.22)–(4.27) we have

‖Φ(u)‖X ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1X

)
, (4.28)

‖Φ(u) −Φ(v)‖X ≤ C(‖u‖αX + ‖v‖αX
)‖u − v‖X. (4.29)

Letting Xε = {u | u ∈ X, ‖u‖X ≤ 2Cε}, and choosing ε ≤ (1/(2C)α+1)
1/α

, then (4.28) and
(4.29) imply thatΦ is a contraction map from Xε into Xε. By the Banach contraction mapping
principle we conclude that there is a unique solution u(t, x) ∈ Xε ⊂ X such that

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Lβ,∞
(
R+;Lα+2,∞

)
∩ Ḃsc,∞

L2(R+;L2n/(n−2m),2). (4.30)

In the case of 1 < sc < m, the proof above can see that of (iii) below.
For a proof of (ii) see [18].
We now prove (iii). Note that sc = (n/2)−(2m/α) ≥ m > 1 and sc = (n/2)−(2m/α) ≤ α

under the assumption in (iii).
Let Y = L∞(R+; Ḃsc,∞2 ) ∩ Ḃsc,∞

L2(R+;L2n/(n−2m),2) = G ∩H, then by using (4.8) in Lemma 4.4 and
arguing similarly as in deriving (4.24)we have

‖Φ(u)‖H ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1Y

)
. (4.31)
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On the other hand, since f(u) − f(v) =
∫1
0(u − v) · f ′(u + θ(v − u))dθ, where f(u) = |u|αu, it

follows from Proposition 3.2, Lemma 4.1, and (4.9) in Lemma 4.4 that

‖Φ(u) −Φ(v)‖H =
∣∣μ∣∣

∥∥∥∥∥
∫ t

0
S(t − τ)(f(u) − f(v))dτ

∥∥∥∥∥
H

≤ C∥∥f(u) − f(v)∥∥Ḃsc ,∞
L2(R+ ;L2n/(n+2m),2)

= C

∥∥∥∥∥(u − v)
∫1

0
f ′(u + θ(v − u))dθ

∥∥∥∥∥
Ḃsc ,∞
L2(R+ ;L(2n/(n+2m)),2)

≤ C‖v − u‖Ḃsc ,∞
L2(R+ ;L2n/(n−2m),2)

·
∥∥∥∥∥
∫1

0
f ′(u + θ(v − u))dθ

∥∥∥∥∥
L∞(R+;Ln/2m)

+ ‖u − v‖L∞(R+;Lnα/2m) ·
∥∥∥∥∥
∫1

0
f ′(u + θ(v − u))dθ

∥∥∥∥∥
Ḃsc ,∞
L2(R+ ,Ll,2)

,

(4.32)

where l = 2nα/((n + 2m)α − 4m).
Because f ′(u + θ(u − v)) = (α + 1)|(1 + θ)u − θv|α, So we derive from (4.9) and the

Sobolev embedding theorem L∞(R+; Ḃsc,∞2 ) ↪→ L∞(R+;Lnα/2m) that

‖Φ(u) −Φ(v)‖H ≤ ‖u − v‖H · ∥∥|u|α + |v|α∥∥L∞(R+;Ln/2m) + C‖u − v‖H · ‖u − v‖αG
≤ C‖u − v‖H

(‖u‖αG + ‖v‖αG
) ≤ C‖u − v‖Y

(‖u‖αY + ‖v‖αY
)
.

(4.33)

By arguing similarly as in deriving (4.24) and (4.25)we get

‖Φ(u)‖G ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1Y

)
, (4.34)

‖Φ(u) −Φ(v)‖G ≤ C(‖u‖αY + ‖v‖αY
)‖u − v‖Y . (4.35)

it follows from (4.31)–(4.35) that

‖Φ(u)‖Y ≤ C
(
‖u0‖Ḃsc ,∞2

+ ‖u‖α+1Y

)
(4.36)

‖Φ(u) −Φ(v)‖Y ≤ C(‖u‖αY + ‖v‖αY
)‖u − v‖Y . (4.37)

Let YM = {u | u ∈ Y, ‖u‖Y ≤ M} withM = 2C‖u0‖Ḃsc ,∞2
and choose ε < (1/2C)(α+1)/α,

then (4.36) and (4.37) imply that Φ is a contraction map from YM into YM. By the Banach
contraction mapping principle we obtain that there is a unique solution u(t, x) ∈ YM ⊂ Y
such that

u(t, x) ∈ L∞(
R+; Ḃsc,∞2

) ∩ Ḃsc,∞
L2(R+;L2n/(n−2m),2). (4.38)

This complete the proof of Theorem 3.3.
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4.2. The Proof of Theorem 3.5

Without loss of generality we only consider the case n > 2m. From Theorem 3.3 it follows
that the Cauchy problem (1.1) has a unique solution u(t, x) ∈ L∞(R+; Ḃsc,∞2 ) ∩ Ḃsc,∞

L2(R+;L2n/(n−2m),2)

provided that ‖u0‖Ḃsc ,∞2
is suitably small. If, in addition, u0 ∈ Ḣsc = Ḃsc,22 , then we have by

letting I = L∞(R+; Ḃsc,22 ) ∩ Ḃsc,2
L2(R+;L2n/(n−2m),2) that

‖u‖I ≤ C
(
‖u0‖Ḣsc +

∥∥∥∥∥
∫ t

0
S(t − τ)(|u|αu)dτ

∥∥∥∥∥
I

)

≤ C
(
‖u0‖Ḣsc +

∥∥|u|αu∥∥Ḃsc ,2
L2(R+ ;L(2n/(n−2m)),2)

)

≤ C
(
‖u0‖Ḣsc + ‖u‖αL∞(R+;Lnα/2m,∞)‖u‖Ḃ

L2(R+ ;L(2n/(n−2m)),2)

)

≤ C
(
‖u0‖Ḣsc + ‖u‖αL∞(R+;Ḃsc ,∞2 )‖u‖I

)
.

(4.39)

From Theorem 3.3 it follows that the problem (1.1)–(1.4) has a unique solution u(t, x)
such that ‖u‖αL∞(R+;Ḃsc ,∞2 ) ≤ 1/2 provided that ‖u0‖Ḃsc ,∞2

≤ δ with enough small δ. Then we have
that from (4.39)

‖u‖I ≤ 2C‖u0‖Ḣsc <∞. (4.40)

The continuity with respect to t of u(t, x) is obvious; so u(t, x) ∈ C(R+; Ḣsc).
The proof of Theorem 3.5 is thus completed.
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