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1. Introduction

A singular value decomposition of a matrix A € C™" is a factorization A = UXZV*, where
2 =diag{oy,0,...,0.} € R™", r =min{m,n}, oy >0, >---> 0, > 0and both U € C™" and
V € C" are unitary. The diagonal entries of X are called the singular values of A. The columns
u; of U are called left singular vectors of A and the columns v; of V are called right singular
vectors of A. Every A € C™" has a singular value decomposition A = UXV* and the following
relations hold: Av; = oju;, A*u; = ojv;, and u;.‘Av]- = 0j. If A € R™", then U and V may be
taken to be real (see [1]).

Let A be an m x n positive matrix with singular values o1 > o, > -+ > o, >
0,7 = min{m,n} and left and right singular vectors u;, v, j = 1,....m;k = 1,...,n,
respectively. In this paper we study how singular values and singular vectors of A change,
under matrix perturbations of the form A + au;v} and A + aupv;, p#4q, a € R. Perturbations
of the form A + au;v; were used in [2] to construct nonnegative matrices with prescribed
extremal singular values. Both kinds of perturbations are closely related to the inverse singular
value problem (ISVP), which is the problem of constructing a structured matrix from its
singular values. ISVP arises in many areas of application, such as circuit theory, computed
tomography, irrigation theory, mass distributions, and so forth (see [3]). The ISVP can be
seen as an extension of the inverse eigenvalue problem (IEP), which look for necessary and
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suffcient conditions for the existence of a structured matrix with prescribed spectrum. This
problem arises in different applications, see for instance [4]. When the matrix is required to
be nonnegative, we have the nonnegative inverse eigenvalue problem (NIEP).

In [5, 6] and references therein, in connection with the NIEP, it was used as a
perturbation result due to Brauer [7], which shows how to modify one single eigenvalue of a
matrix via a rank-one perturbation, without changing any of the remaining eigenvalues. This
result was extended by Rado and presented by Perfect [8] to modify r eigenvalues of a matrix
of order n, r < n, via a perturbation of rank-r, without changing any of the n — r remaining
eigenvalues. It was also used in conection with NIEP in [8, 9]. Since the eigenvalues and
singular values of a matrix are closely related, the perturbation results of this paper, which
preserve nonnegativity, may be also important in the NIEP. In particular, for the symmetric
case, that is, the construction of a symmetric nonnegative matrix with prescribed spectrum,
since the singular values are absolute values of the eigenvalues, similar results are obtained
(see [10]). In [2] the following simple singular value version of the Rado and Brauer results
were given.

Theorem 1.1. Let A be an mxn matrix with singular values o1 > 0, > --- > 0, 2 0, r = min{m, n}.
Let

U=(w|ul--|u), V=(vi|va]---]v,), p<r, (1.1)

be matrices of order mxp and nxp, whose columns are the left and right singular vectors, respectively,
corresponding to o;, i = 1,...,p. Let D = diag{dy, d>, ..., d,} with o; +d; > 0. Then A+ UDV™ has
singular values

{ov+dy,...,0p+dy,0ps1,...,0.}. (1.2)

Note that the singular values of A + UDV" are not necessarily in nondecreasing order.
However we can reorderer them by using an appropriate permutation.

Corollary 1.2. Let A be an m x n matrix with singular values oy > oo > --- > o, 2 0, 7

min{m,n}. Let u; and v;, respectively, the left and right singular vectors corresponding to oj, i
1,...,7.Let a € Rsuchthat a +0; >0,i=1,...,r. Then A + aw;v} has singular values

o1,...,0i-1,0; + &, 0j4+1,...,0p. (13)

Remark 1.3. The perturbation given by Theorem 1.1 allow us to have certain control on the
spectral condition number of the perturbed matrix. That is, if x,(A) = 01/0,, then we may
choose 0 < a; < 0y — 07 and 0 < a, < 0r_1 — 0y in such a way that

o1 —a
K2 (A - ayup vy + a,u,vy) =
Or r

< x2(A). (1.4)

The paper is organized as follows. In Section 2 we consider perturbations of the form
A + au;v;, which we will call simple perturbations, and give sufficient conditions under which
the perturbation preserves nonnegativity. In Section 3 we discuss perturbations of the form
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A+ aupvy, p#q, which, because of their different indices, we will call mixed perturbations. We
also give sufficient conditions in order that mixed perturbations preserve nonnegativity. It is
also shown that both, simple and mixed perturbations, preserve doubly stochastic structure.
Finally, we show some examples to illustrate the results.

2. Nonnegativity Preservation under Simple Perturbations

Let A be an m x n positive matrix with singular values 01 > 0, > --- > 0, > 0, r = min{m, n}.
In this section we consider perturbations A + au;v], which preserve nonnegativity. Note
that if A is an m x n nonnegative matrix, then the left and right singular vectors u; and

vy, corresponding to the maximal singular value oy, respectively, are nonnegative. Hence, in

this case, the matrix A + (xulv{ is nonnegative for all a > 0.

Now, let us consider the perturbation A + auiviT, with i > 1. Let ugz and v, be the left
and right singular vectors corresponding to os, s > 1, respectively. Let & > 0 and let the entry
in position (i, k) of usv! be negative. That is, (usvg)ik < 0. Then if A = (ajx) is nonnegative,

) T . aik
ai + a<usvs>ik >0 iff0<a< —| (usvg)ikl . (2.1)

Thus, to preserve the nonnegativity of A it is enough to choose a in the interval

. Aik
0, min———|, (2.2)
< ik |(u5V£)ik|]

provided that a; > 0, otherwise (usv!), must be zero. Then from (2.2) and Theorem 1.1 we
have the following result.

Lemma 2.1. Let A be an m x n positive matrix with singular values 61 > 0, > --- > 0, > 0, 7 =
min{m,n}. Let a be in the interval

<0, min minL] . (2.3)

. T
sk | (ugvs ), |
Then A + ausvf, s =2,...,r,is nonnegative with singular values

O1,...,04-1,05 + A, 0441, .. .,0r. (2.4)

Remark 2.2. Tt is clear that if in Lemma 2.1, a is taken in

. . ik
0, minmin———— ), (2.5)
( s ik | (“svz)ik| >

then A + ausv!,2 < s < r, is positive with singular values

O1,...,05.1,05 + A, 0541,...,0%. (2.6)
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Moreover, for a in intervals in Lemma 2.1 and this remark, the nonnegativity is obtained
independently of the chosen singular vectors us, v;.

A more handle interval for a is given by the following lemma.
Lemma 2.3. Let A be an m x n positive matrix with singular values oo > --- > o, > 0, r =

min{m,n}. Let a be in the interval

Oy Min; i dik

0, r-1
o1 + Zj:l O']'

(2.7)

Then A + auyvl,2 < s <, is nonnegative with singular values
O1,...,05.1,05 + A, 0541,...,0%. (2.8)

Proof. From (2.2) and since |ajc| < 01, see [1, Corollary 3.1.3], we have

T Aik Oj T
max|(usvg ) | =max|—= - Z —(uvi).
1 1

ik
T
<u] Vi >ik|

1 s O']'
< —max|ag|+ Y max—
Os ik =1 #s ik Og

1 C Oj

< —max|ajk| + E max—

Os ik ik O
j=Lj#s

IN

,
o1 Oj
o, 39
O Os

j=Li#s

.
<—(20m+ D o (2.9)
j=2j#s

.
= — 20‘1 —O0g + ZO']'
=2

.
[ Oj
=2—-1+> -2
GS ]',ZO-S

-
[ Oj
<2—-1+3 -2
ar j=20-1'

r-1
o1 Oj
+ ]
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Then
1 Oy
= _ 7
maxirk|(uSV£)ik| oy + Z]r':%oj
(2.10)
min; k dik > O/ MIN; k Ak
maxi,k|(usvg)ik| oy + Z] 10]'
Hence we have
o,min; ra; min; xa;
o, Srminiadie | (0, wan | <0 min—%__
o1+ Z 101 max; | (usvs ) | ik |(usvs )1k|
(2.11)
Oymin;  ajk Aik
0, —— 7 0, min mm—
01+ 251 0j sk |(usvd) ] |
Then, from Lemma 2.1 the result follows. O

Remark 2.4. For positive A = (a;j), and a € R, we repeat the arguments from Lemmas 2.1 and
2.3 to obtain that if a is in the interval

O,min; kdjx  OyMIN; kA

r-1_"7 r-1
o1 + ijloj o1 + ijloj

, (2.12)

then A +augvl,s=2,...,7,is nonnegative with singular values

O1,...,0s-1,|0s + &|,Os41, - . ., Op. (2.13)
Now we consider rank-2 perturbations, A + UDV*, where U = (us;,w), D =
diag{aj, az}, V. = (v, v¢). That is, perturbations of the form A + ajugvl + a2utvtT as in

Theorem 1.1. Let A be an m x n positive matrix with singular values oy > -+ > 0, >0, r =
min{m,n}. Then A + ajusvl + azutvtT will be nonnegative if

aijx + o (usvz>ik + a2<utvtT)ik >0, i=1,....m; j=1,...,n (2.14)

From the family of straight lines

T
ugv?). ‘
a2=—( ° s)’kle— ik , i=1l...m j=1,...,n, (2.15)

(utVtT)ik (ustT) ik
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it follows that they intersect the axes a; and a, at points

Gk Aik
< @)y 0> <°’ <usv£>ik>’ (210

where (usv!l). #0and (uv!), #0, respectively. Let
s ik t ik p Y-

E = max; ( >
(“Svg)iﬁo (llsVs )1k
F = max;k < >
(u,vt )1k>0 (utvt )1k
(2.17)
= mmlk
(usvS < (usvs )zk>
= mlnlk
ufvt )zk<0< (utvt )zk >
Let
F H
R, = {([Xl,az) E<m SO/\—EQ1+F§d2§—fd1+H},
(2.18)
F H
R, = (al,az):OSal SG/\—ECX1+FS[X2 S—Ea1+H .
Then A + ajusv! + zxzutvtT is nonnegative for (a1, a2) € R; U Ry.
A more handle region for (aj, ay) is given by the following lemma.
Lemma 2.5. Let A be an m x n positive matrix with singular values oy > -+ > o > 0,1 =

min{m,n}. Let P, = (E,0), P, = (0,F), P; = (G,0), P, = (0, H) be the intersection points in
(2.17). Let

(ar,a2) €S ={(x,y) : |, ¥} < Jin {IIPell1}, (2.19)

where || - ||; is the l norm. Then A + ayusvl + zxzutvtT, 2 < s, t < 1, is nonnegative with singular
values oy, ...,|l0s +a1l,...,|ov + az|, ..., 0.

Example 2.6. Let
124

A=|5638], (2.20)
494



Mathematical Problems in Engineering 7

with singular values o7 = 15.5687298, 0, = 3.9581084, and o3 = 0.9736668. Let

U= (uz|u), V= (vz2]v3), D = diag{ay, a2}, (2.21)
where
0.4219823 0.8658718
u = 0.5264618 |, uz = | -0.4753192 |,
—0.7380847 0.1560054
(2.22)
0.0257579 -0.9106840
vy = | —0.6669921 |, V3 = 0.2915541
0.7446195 0.2926616

From (2.17) we compute E, F, G, H. Then, the intersection points are

(-12.7300876,0), (7.1058357,0), (0,-7.9224079), (0,1.2681734), (2.23)

and S = {(x,y) : [|(x,y)|l; <1.2681734}. Thus, from Lemma 2.5, for (ay, az) = (-1/2,1/2) we
have

0.60030 2.2670 3.9696
A+aupvl + apusvi = | 52097 6.1063 7.7344 |, (2.24)
3.9385 8.7766 4.2976

with singular values o1, 05 + a1, 03 + .

Remark 2.7. Let A be an m x n complex matrix with singular values o1 >0, >--- >0, >0, r =
min{m,n} and singular value decomposition A = UXV*. In [11] it was defined the concept
of energy of A as £(A) = 01 +0, +---+0,. If Ais positive, then as an application of the rank-2
perturbation result, from Lemma 2.5 and Remark 2.4, we may construct, for

. O,min; k Ak
0 <a<ming ———=,0; ¢, (2.25)
o1 + ijlo']‘

a family of nonnegative matrices B = A + auiviT - aujv]T, with £(B) = £(A). Now, suppose
A is nonnegative with £(A) < C, where C is an upper bound. Then from (1.2), by taking

a = C - &(A) we may construct a family of nonnegative matrices B = A + zxulv{ with &(B) =
E(A)+a=C.

Now, in order to show that simple perturbations preserve doubly stochastic structure
we need the following lemma. First we introduce a definition and a notation. An n x n matrix
A = (aj;) is said to be with constant row sums if Z;’zlai]- =a,i=1,2,...,n. We denote by CS,
the set of all matrices with constant row sums equal to a.
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Lemma 2.8. Let A be an n x n irreducible doubly stochastic matrix and let Ax = Ax, xI =
(x1,...,xn), with A#1. Then

Sx)=x1+x24+---+x, =0. (2.26)

Proof. Since A is doubly stochastic, then

S(AX) = Zaljx]- + Zazjxj toet Z:anjxj

=x12a; + x22Ap + - + X 2din (2.27)
=5(x),
and S(Ax) = S(Ax) = AS(x). Then,
S(x) = AS(x), (2.28)
and since A#1, S(x) = 0. O

The following result shows that simple perturbations preserve doubly stochastic
structure.

Proposition 2.9. Let A be an n x n irreducible doubly stochastic matrix. Then,

(i) (A + alulv{) € CStsar, (A + alulv{)T € CStar,
(i) (A+auv])ecs, (A+ aiuiviT>T €CSy; i=2,...,m, (2.29)
(iii) (A + Z;aiuivf) € CStoay.

Proof. Since A, AT € CS;, then AAT € CS; and AT A € CS;. Hence, the singular vectors u; and
v, are

1 1
u-l:Vl:—e:

7 \/—ﬁ(l,l, DT (2.30)

Then ayuyv] = ayviu] = (1/n)asee’ and ayuyvl € CS,,. Thus (i) holds. From Lemma 2.8,
aiu;v] e = a;(vl e)u; = 0 and (ii) holds. From (i) and (ii) we have (iii). O

Example 2.10. Consider the matrix

4321
1432

A= , (2.31)
2143

3214
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which is nonnegative generalized doubly stochastic, that is, A is nonnegative with A, AT €
CSyp, and A has singular values 10, 2.8284, 2,8284, 2. Let UXV™ be the singular value
decomposition of A. Let D = diag{4,3,2,1}. Then

6.2596 4.8500 2.2404 0.6501

1.0822 6.0081 4.4178 2.4919
B=A+UDV* = (2.32)
2.2404 0.6501 6.2596 4.8500

44178 2.4919 1.0822 6.0081

is nonnegative generalized doubly stochastic with singular values 14, 5.8284, 4.8284, 3.

3. Nonnegativity Preservation under Mixed Perturbations

In this section we discuss matrix perturbations of the form A + aukv;, with k # j, which we
will call mixed perturbations, and we study how the singular values and vectors change
under this kind of perturbations. We also give sufficient conditions under which mixed
perturbations preserve nonnegativity and preserve doubly stochastic structure. Let us start
by considering the following particular case: let A be a 4 x 3 matrix with singular values
01, 02, 03. Let A=UZV* withU = (u; |uy | uz | ug) and V = (vq | v | v3). Leta > 0. That is,

01 0 0 .
Vi
0 (0] 0 3 .
A= (ur|uy|uz|uy) vy | = ZGkuka~ (3.1)
0 0 o3 i k=1
V3
0 0 0

The matrix au;v} has the singular value decomposition:

a 00
/ \ V;
. 000
awvy = (ug |z | us | uy) vi

\ 0 00/ 3

a 00
/ \010 \
(w [z | I)OOO 100 > (3.2)
= (ux |u3 |1 \% .
1 2 | U3 | U4 000 o i
V.
\000/ }

/00{0\ i,
000 !
=(u |uy |uz | uy) 000 V%
\o oo/
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10
Then,
op a 0
vi
* 02 0 *
A+auvy = (u | up | uz | ug) vy |. (3.3)
0 0 (o)} R
00 0 ’
Now we compute the singular values of the matrix
op a 0
0 (0)0] 0
C= (3.4)
0 0 03
0 00
. . ~ = ~ oL@ .
by computing the eigenvalues of CCT, where C = ( 0 o > Since
o a’+o? ao
GCT = Ly (3.5)
240} 0'22
then
tr<66T> =a®+ 012 + 0% = A+ Ay,
(3.6)
det(CCT) = olo? = 11y
with Ay, A, being the eigenvalues of CC*. Thus, we obtain
N cx2+012+o§+\/((x2+012+o§)2—40'fc722
1= ,
2
(3.7)
N cx2+012+0§—\/(a2+012+o§)2—40'5022
2 — .
2

Hence, the singular values of A + au;v} are \/A1,\/\2, 03.
Now we generalize these results for m x n matrices.

Theorem 3.1. Let A be an mxn matrix with singular values oy > 0, > -+- > 0, > 0,7 = min{m, n},
and with singular value decomposition A = UXV*, where

U:(u1|---|uk|---|um), VZ(V1|"'|V;'|"'|Vn),
(3.8)

2 =diag(o1,02,...,0:), k,j<r.
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Let a € R. Then A + augv; has singular values,
{Olr e Gk—l/ 57(/ Gk+1/ crcy Gj—l/ 5]/ O"j+‘l/ crcy Gr }/ (39)
where
1/2
a2+o£+0.2+\/<a2+0k+0 ) ~4ojo? \
~ j
Ok = , (3.10)
2 /
1/2
a2+0',f+0.2—\/<a2+0,3+0 ) ~4ojo? \
~ i
oj = 5 (3.11)

/

Proof. Without loss of generality we may assume that m > n and j > k. The matrix auiv; has

a singular value decomposition

aukv

= (tug | -

where 3 = diag{|a|,0,.

aukv}‘ = UPkinV*,

|llk—1|ll1 |11k+1|"'

| wn)E

vio|, (3.12)

\v. /

,0}. The decomposition in (3.12) can be written as

(3.13)

where Py and Q; are m x m and n x n permutation matrices of the form

W 0 w; 0
Py = , Q=
0 Ly« 0 In_]'
with
1
W, = I of order I.

)

(3.14)

(3.15)
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Since

MR
Il

, then PXQ, = (@) , (3.16)

where if & < 0, we multiply the uy vector by minus one. Then
~ A
A+ auv) = u(z + PkZQj>V* -u v, (3.17)
where

(o \

O'k DY a
A= L . (3.18)

\ 0./

By applying row and column permutations on the matrix X + Pkin, it follows from (3.17)
and (3.18) that the singular values of A + aukv; are

{Gll <y Ok-1, 6](/ Ok+1s+-+/ O-]'—lr 6]/ U]'+1, o Ion}l (319)

where Gy and G; are as in (3.10) and (3.11), respectively. O

Observe that in Theorem 3.1, A + aukv}f has singular values
{01/ -+ Ok-1, 61(/ Ok+1s---,0j-1, 6]/ Oj+1,---,0r }/ (320)

ifk,j <r.1fr < k < m,then only o, corresponding to the right singular vector v;, changes and
take the form G; = 4 /a? + 0']2. A straightforward calculation shows that for a > 0, 6x < ok + a.
Observe that

G =1/a%+ sz <oj+a (3.21)
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Example 3.2. Let

120

613
A= ) (3.22)
041

150
with singular values o1 = 7.8207, 0, = 5.6257, 03 = 1.09. Let

u; = (0.26030 0.70386 0.39776 0.52784)",
(3.23)

va = (0.63252 -0.71647 0.29425)",

left and right singular vectors of A, respectively. Let « = 1. Then, from (3.10) and (3.11), the
matrix

1.1646 1.8135 0.076593

N . 6.4452 0.49571 3.2071 (3.24)
+au vy = .
e 0.25159 3.715 1.117

1.3339 4.6218 0.15532

has singular values 6, = 7.9477, 6, = 5.5358 and o3. By using Theorem 1.1 we have that
A +uv] + wpv; has singular values o1 + 1 = 8.8207, 02 + 1 = 6.6257, and 03 = 1.09.

Different from perturbations of the form A + auiViT, the perturbation of Theorem 3.1
affects not only the singular values ox and oj, but also the corresponding left and right
singular vectors ux and v;. To make this modification clear, we consider again the previous
discussion to Theorem 3.1:

op a 0
vi
B 0 ()] 0
A+auvy = (u | up | uz | ug) 3 (3.25)
0 0 (o)} R
000 ’

Let

~ o a wni w2\ /61 0 U1 Un2 !
G- _ b , (3.26)
0 o Wy wy 0 02/ \va v
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the SVD of C with &;, &, obtained from (3.10) and (3.11), respectively. The left singular
vectors of

op a 0
0 (0} 0
C= (3.27)
0 0 03
0 0 O

(eigenvectors of CCT) are
&

U = (w1 wy 0 O)T,

t = (w2 wy 0 O)T,

(3.28)
i3=(0010) =es,
~ T
u4=(0 00 1) = €4,
and its corresponding right singular vectors (eigenvectors of CTC) are
~ T
Vi=(uon vn 0),
V2 = (V2 U O)T, (3.29)
=00 1) =es
Thus, A + au;v} can be written as A + au;v; = USV*, where
U = (| w | us | ug) (8 | G2 | G5 | Ga)
= (wnul +woup | wipug + wnuy | us | u4),
V= (vi | va|vs3) (V1| V2| ¥3) (3.30)

= (011V1 + V21V | U12Vy + UV | Vs),

i = diag(&l,?fz, 0'3).
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Now, we generalize this result. Without loss generality we assume that k < j. From (3.17) and
(3.18), by permuting rows and columns of the matrix ¥ + P.2Q);, we have

(o \

A O «
A+(xukv;f=ll1 Vi with A= ,
0 O'j
. (3.31)
\ on/
U= (g |- Jue fw |- [ uge [ wjen |- [ ug),
Vi= (il | vie | vi oo | Vit [ vjan | | V)

Ok &
The singular vectors of < /0\ ) are obtained from the singular vectors of the 2 x2 matrix ( Ok o >
7
Let

~ T
Ok a wir w2\ [0k 0\ /vnn vz
= N . (3.32)
0 Oj w1 W 0 Oj U21 U2
A
0

Then the unitary matrices of the singular value decomposition of < ) are

/I

w11 Wiz -~
u, = =(ep || ex1 | Uk | Upsr | €2 |-+ | €m),
w1 Wy
\ I
(3.33)
/I
U11 D12 —
V= =(er | - |era | Vi | Vikr | €k | -+ | €n),
U21 U2
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of order m x m and n x n, respectively. Then

~ /A\ ~ - -
A+vcukv;f =U<O>V* with U = U Uy, V = V1V,

(o \
(3.34)
~ Ok
A= _ ,
Oj
\ on/
where Gy and G; are not ordered. Since
U= (u |- | wnug + wnuj | wpug +wpuj |- | wy),
- (3.35)
V= (vi |- | onvk + V) | vipvk + vnvj |- | vy),

then the singular vectors corresponding to ok, c; have been modified. We have prove the
following result.

Corollary 3.3. Let A be an mxn matrix with singular values 61 > 0 > -+ > 0, > 0,7 = min{m, n}
and with singular value decomposition A = UXV*, where

Us=(u |- |ullam), V=(vil--]vjl--va), kj<r,

(3.36)
2 =diag{oy,0,...,0/}.

Let a € R. Then A + augv; has left singular vectors,

w=w, i=1,...,m, i#k, l7é],
Uy = WUk + w1y, (3.37)

U; = wipplg + wpu;

and right singular vectors

ViZVi, i=].,...,1’l, l‘f‘k, l‘f"],
Vi = U11Vk + V21V, (3.38)

‘7]' = U12Vk + U2V;j.
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Observe that if 2 x 2 orthogonal matrices in (3.32) are of the same type

c s c s
< ) or < ), (3.39)
-5 ¢ s —c

then a straight forward calculation shows that (3.37) and (3.38) become

ﬁizui/ i:]_,,..,m, l;ék’ 136]’
U = C1ux — S1u4;j, (340)

1~1]' = S1ug + cu;

and

‘7i=vi/ i=1,...,7’l, l#k/ l#]’
e = covi— 527, (3.41)

V]' = SV + C2V]',
respectively, while if they are of different type, then (3.38) becomes

Vi =V, i:1,...,m, l#k, 17’:],
Vi = CoVk + $2Vj, (3.42)

‘7] = SV — C2V]'.

From (3.10) and (3.11) it is clear that Gx > G; with k < j. The following result tells us how the
new singular values 0y, 0; relate with the previous singular values oy, o;.

Corollary 3.4. Let A be an mxn matrix with singular values 61 > 0 > -+ > 0, > 0, = min{m, n}
and with singular value decomposition A = UXV*, where

U= (|- |ue| - |um), V=(V1|-~|v]~|~~-vn), k,j<r,

(3.43)
X =diag{oy,0,...,0/}.

Let O, 6]-,k < j, be respectively, as in (3.10) and (3.11), the singular values of A + aukv}‘.‘. Then
5'k>0k20j>6'j‘



18 Mathematical Problems in Engineering

Proof. Since 40'20c > 0 we have

2 2
2, 2 4 2 2, 2 2, 2 4 2 2, 2
<0'k+a> +0'].+20'].<0'k+a> 4oka >(0'k+a> +o].—20].(ok+a>,

(0,% + 0].2 +a > - 40k0 > <<O',% + a2> - o].2>2, (3.44)

2
2. 2 2 2 2 2\ 422 2
O +a” +0; \/<0k+0].+(x> 40'kcr].<2cr].

Thus

T\ 1/2
1 2
o > <§ [GI% +a+ 0].2 - \/(oﬁ + 0'].2 + a2> - 40,30'].2J> ) (3.45)

In the same way,

2 2
2, 2 4 2(52 . 2, 2 4 2f 2, 2
<0'].+1x> +0'k+20'k<7 ) 40'k0' >(O'7-+D£> +ok—20'k(0'].+a>,

(a,f +07 a ) 4007 > < o} <o]2 + a2>>2, (3.46)

2
2 2 2 2 2 2 _ 2 2 2
O +0j +a +\/<ok+a].+(x> 40,07 > 20;.

Then

1\ 172
1 2
ok < <§ I:o,% +a’+ ojz + \/(oﬁ + 0].2 + a2> - 40130].2J> ) (3.47)

Therefore,
Ok > Of > oj > 5']'. (3.48)

Observe that o; € (6j,0x),1 = k, k +1,...,j. In particular for k = 1 and j = n, all singular
values of A are in the interval (G, G1). O

Now we extend the mixed perturbation result given by Theorem 3.1 to rank-2
perturbations, that is, perturbations of the form B = A+ajug, vj, +aug,vj,, with a1, a nonzero
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real numbers and uy,, vj,, i = 1,2, k; < ji, k1 < j1 < kz < jp, being left and right singular vectors
of A, respectively. Then as in (3.12)

k
(Vi
*
V]-2

*

Vi

*
Vi1

(iuklriusz' o W, Wkt 1,e e Why=1, U2, Wky 41, - - /um)Z s (349)

*
Vi
.
v

*
Vj2+1

\ v; /
with 3 = diag(|ai], |a2],0,...,0). It is clear that the matrix in (3.49) can be written as
UP P,EQ1 V™, (3.50)

where P;, P, Q1, Q> are permutation matrices of the form

1
Wi,
Pl = 7 PZ = sz s
In”Z*lﬁ
L (k1)
(3.51)
1
Wi,
Q1= L) Q= W,
" Li—(jp+1)
From (3.50), the matrix in (3.49) is
("fl)kl,j1
’ (3.52)

(“Z)kz,jz
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where if a1, a, are negative, we multiply uy,, ux, by minus one. Thus,
0

A
B=A+ ocluklv’;1 + (xzukzv;fz = LI< >V*, (3.53)

where

(@ )

Oky * 0 Ok,

A= . (3.54)

Ok, "*° Qkyjp

\ )

By permuting rows and columns of A it follows that singular values of (2) are

O1,+++,0ki-1,O0ky+1s - - -y Ojyi=1, Oji+1, - -+ Oky=1, Okyt1s - - - Ojp=1, Ojp+1, - - - , On (3.55)

together with the singular values of

Cr = Oky  @ky,ji C, = Ok, Qky,j, (3 56)
1= 7 2= . .
0 Oj, 0 Oj,
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Is immediate that the singular values of these matrices are

1/2
2
2, 2 2 L) 2\ _ 42 2
~ @ + 0y +0; + \/(“1 +0p + 0]’1) 40k1c:].1
le = 2 7
5 1/2
2, 2 2 _ 2, 2 2\ _ 42 2
~ a +0p +0; \/(“1 +op + Gh) 40,(1 oh
Gil = > ’
(3.57)
5 1/2
2, 2 2 2., 2 2\ _ 42 2
~ a + 0oy, + o+ \/(az +0p, + a].2> 40},0,
Ok, = 2 s
5 1/2
2., 2 2 _ L) 2\ _ 42 2
~ a + 0y, +0;) \/(“2"'% +o].2> 4ok2cr].2
0, =
]2 2
The matrix B = A + ayuy, v;l + ozzukzv]".‘2 can be written as
~ (AN =, o~ ~
B=U 1% with U = LllLIz, V= V1V2,
0
(o \
Ok,
Gj, (3.58)

>
Il
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where the 6’s are not ordered,

U, = (u1,u2 st Uy, Wy W41, W st Uy, Wy =0 s Uy 41, Wptl "um),
Vi = (V1,V2 Vi Vi Vg1, Vil " " Vg, Vi = Vig+1, Vi1 * - 'Vn)/

(3.59)
Uz = (€1 e,—1, Uk, Uky+1, €y +2 * * " €ky—1, Uky, Uky+1, €hps2 " " €1m),

V2 = (el e ek]-llvk1vk1+1l ek1+2 e ekz—llvkzlvk2+1/ ek2+2 e en)'

We have proved the following result.

Theorem 3.5. Let A be an m xn matrix with singular values o1 > 02 > -+ > 0, > 0, r = min{m, n}
and SVD A = UXV*, where

u:(ul’uz...ukl...ukz...um)’ V:(vllvz...v].l...v].z...vn), (360)

ki, ji < 1, ki # ji, are m x m and n x n unitary matrices, respectively, and % = diag{oi, 02, ...,0,}.

Let aq, oty be real numbers. Then B = A + ajuy, v}fl + azukZV;fz has singular values

r

U {0} v {6k, 5,6k, 51}, (3.61)
gq=1
q#kiji
5 1/2
252 4 52 2, 52 4 52 2 2
~ a; + 0 + 05+ \/(“z’ +0 + 0]}~> — 40,0}
Ok, = , (3.62)
2
5 1/2
2,2, 2 2,52 4 2\ 452 52
o a; +0j, +0; \/(al. +0op + 0]}-) 4okia].i (3.63)
0j; > :
i = 1,2. The singular vectors are given by
i,=u,, q=1,...,m, q#ki, q#ji, i=1,2,
~ 1 1
Ug, = (,()il)llk1 + wél)ujl,
~ 1 1
u;, = wiz)uk1 + wéz)uﬁ, (3.64)

= @) @)
Ug, = Wy Uk, + Wy W),

= — 2 @)
uj, = W, Ug, + wyy'uj,,
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where the coefficients w’s are obtained as before, and

Vo=vy, q=1,...,n, q#ki, q#ji, i=1,2,

oDy 4 oM
Vi, = Uy Vig + Uy Vi,

v 1 1
¥, = 0wy, +0l)v, (3.65)

Vi, = 0Pv, + 0Py,
Vi, 11 Vk2 21 Vjar

¥ = 0%vp + 09v,
Vi, = Uy Vk, 22 Vjar

Now, as in Lemma 2.1 in Section 2, we look for a condition to preserve nonnegativity
when we deal with mixed perturbations. Let A be an m x n positive matrix with singular
values 01 > 0, > -+ > 0, > 0, = min{m, n}, and with singular value decomposition A =
Uxv*, where

U=(w |- |wl-lum), V=(@il-|vgl--lva), pqs<r,
(3.66)
2 =diag{oy,09,...,0.}.

Then A + aur,chl is nonnegative for a > 0 if a; + a(upvg)ik >0,i=1,....m k=1,...,n1If

(upvy), <0, then

aik + a(u,,v?)ik >0 iff0<ac< mm (3.67)

| (“P"q )ik |
Then we have the following result.

Lemma 3.6. Let A be an m x n positive matrix with singular values o1 > 0, > -+ > 0, > 0, 7 =
min{m, n}. Let a be in the interval

Ommmina—”; . (3.68)
P (V)|

Then A + zxupvqT, 1<p<m,1<q<n, p#q,is nonnegative with singular values
Oly---, op—l/ 6-p/ Op+1/ ceey O-q—lr 6{1/ O'q+1, <o, 07, (369)

where G, and G, are defined as in (3.62) and (3.63), respectively.
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Example 3.7. Let A = <3 4> be with singular values oy = 9.5255, 0» = 0.5143. A = usvr,

56
where

0.22985 -0.88346 0.40825
U=\ 052474 -0.24078 -0.81650 [, |
0.81964 0.40190 0.40825

0.61963 0.78489
. (3.70)
0.78489 —0.61963

Then, from (3.68) we have forp =1,2,3;, g=1,2,

aik

min mikn . =1.8268 (3.71)
e |(uPV‘1)ik|
and a € (0,1.8268]. For a = 1.8268, we have
/1 2 /0.18041 -0.14242
A+awvi =| 3 4 | +1.8268| 041186 -0.32514
\5 6 \0.64333 -0.50787
(3.72)

/13296 17398\
= | 37524 3.406
\6.1752 5.0722/

is nonnegative with singular values 61 = 9.6996 and &, = 0.5050.

To show that mixed perturbations preserve doubly stochastic structure, observe from
Lemma 2.8 that upvge = 0for g = 2,...,n Then, if A is an n x n positive doubly stochastic

matrix, we have that A + aupvg is doubly stochastic.
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