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1. Introduction

The Brusselator reaction model plays an important role both in biology and in chemistry.
Since the model was put forward by Prigogine and Lefever in 1968, much attention had been
paid to the model and many properties of it had been researched by marly people via using
different methods [1–5]. In this paper, we mainly consider the model improved by Lefever
et al. in 1977 [1] . The model is described as follows:

Kψxx − ψt + ψ2ϕ − Bψ = 0,

Kϕxx − ϕt − ψ2ϕ + Bψ = 0,
(1.1)

where B is a constant, and K is the diffusion coefficient; the functions ψ(x, t) and ϕ(x, t)
denote the concentrations. System (1.1) describes a biochemical model. Recently, many
approaches have been suggested to solve the nonlinear equations, such as the variational
iteration method [6–8], the homotopy perturbation method [9–11], the tanh-method [12], the
extended tanh-method [13], the sinh-method [14], the homogeneous balancemethod [15, 16],
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the F-expansion method [17], and the extended Fan’s subequation method [18]. Recently, He
and Wu [19] have proposed a straightforward method called Exp-function method to obtain
the exact solutions of nonlinear evolution equations (NLEEs). It should be pointed out that
the method is also valid for difference-different equations [20, 21]. The solution’s procedure
of this method is of utter simplicity, and this method has been successfully applied to many
kinds of NLEEs [22–33]. The Exp-function method not only provides generalized solitonary
solutions but also provides periodic solutions. Taking advantage of the generalized solitonary
solutions, we can recover some known solutions obtained by the most existing methods such
as decomposition method, tanh-function method, algebraic method, extended Jacobi elliptic
function expansionmethod, F-expansionmethod, auxiliary equationmethod, and others [22–
33].

2. Exp-Function Method and Exact Solutions

In this section we intend to find a solitary wave solution of (1.1). Therefore by using the
following transformations:

ψ = v, ϕ = −v, x = ±y, t = t, (2.1)

the system (1.1) is reduced to a nonlinear reaction diffusion equation with respect to v(y, t):

Kvyy − vt − Bv − v3 = 0. (2.2)

After that we use the transformation

v = φ(ξ), ξ = λ
(
y −wt + γ), (2.3)

where λ and w are constants to be determined later, and γ is arbitrary constant. Therefore
(2.2) converts to

Kλ2
d2φ

dξ2
+ λw

dφ

dξ
− Bφ − φ3 = 0. (2.4)

By virtue of the Exp-function method [19], we assume that the solution of (2.4) is of the form

φ(ξ) =
ac exp(cξ) + · · · + a−d exp(−dξ)
bf exp

(
fξ
)
+ · · · + b−g exp

(−gξ) , (2.5)

where c, d, f, and g are unknown positive integers and to be determined later; an and bm are
constants.

By balancing the highest order of linear term φ′′ with the highest order of nonlinear
term φ3, the values of c and f can be determined easily.
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Since

φ′′ =
c1 exp

[(
c + 3f

)
ξ
]
+ · · ·

c2 exp
[
4fξ
]
+ · · · ,

φ3 =
c3 exp

[(
3c + f

)
ξ
]
+ · · ·

c4 exp
[
4fξ
]
+ · · · ,

(2.6)

setting

c + 3f = 3c + f (2.7)

leads easily to c = f.
Similarly, to determine d and g, we balance the lowest-order linear term of Exp-

function in (2.4):

φ′′ =
· · · + d1 exp

[−(d + 3g
)
ξ
]

· · · + d2 exp
[−3gξ] ,

φ3 =
· · · + d3 exp

[−(3d + g
)
ξ
]

· · · + d4 exp
[−3gξ] .

(2.8)

This requires

−(d + 3g
)
= −(3d + g

)
, (2.9)

which leads to g = d.
We can freely choose the values of c and d, but we will illustrate that the final solution

does not strongly depend on the choice of the values of c and d [19, 28]. Choosing f = c = 1
and d = g = 1 for simplicity causes the trial function (2.5) to become

φ(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)
b1 exp(ξ) + b0 + b−1 exp(−ξ) . (2.10)

By substituting (2.10) into (2.4), we get

1
Q

(
k3 exp(3ξ) + k2 exp(2ξ) + k1 exp(ξ) + k0 + k−1 exp(−ξ) + k−2 exp(−2ξ) + k−3 exp(−3ξ)

)
= 0,

(2.11)
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where Q = (b1 exp(ξ) + b0 + b−1 exp(−ξ))3; ki (i = −3,−2, . . . , 2, 3) are constants. If the
coefficients of exp(nξ) are set to zero, we have

k3 = 0, k2 = 0, k1 = 0,

k0 = 0,

k−3 = 0, k−2 = 0, k−1 = 0.

(2.12)

By solving this system of algebraic equations, we obtain the following sets of solutions.

Case A.

a1 = 0, a0 = a0, a−1 = 0, λ2 =
B

K
,

b1 = b1, b0 = b0, b−1 = − a20
8Bb1

, w = 0.

(2.13)

Case B.

a1 = 0, a0 = a0, a−1 =
Bb−1√−B

, λ2 =
−2B
K

,

b1 = 0, b0 =
a0√−B

, b−1 = b−1, w = 0.
(2.14)

Case C.

a1 = a1, a0 = a0, a−1 =
Bb20 + a

2
0

4a1
, λ2 =

−2B
K

,

b1 =
a1√−B

, b0 = b0, b−1 =
1
4

Ba0b
2
0 + a

3
0 + b

3
0

(
B2/

√−B
)
+ b0
(
Ba20/

√−B
)

a1B
(
a0/

√−B − b0
) , w = 0.

(2.15)

Case D.

a0 = a0, a−1 = 0, a1 = 0 λ2 =
−B
2K

,

b0 =
a0√−B

, b−1 = b−1, b1 = 0, w =
3B

√
−2B/K

.

(2.16)
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Case E.

a0 = a0, a−1 = 0, a1 = a1, λ2 =
−B
2K

,

b0 =
−a20 + Ba1b−1/

√−B
Ba0/

√−B
, b−1 = b−1, b1 =

a1√−B
, w =

3B
√
−2B/K

.

(2.17)

Substituting (2.13)–(2.17) into (2.10) gives the generalized solitonary solution

φ(ξ) =
a0

b1 exp(ξ) −
(
a20/8Bb1

)
exp(−ξ) , (2.18)

where ξ =
√
B/K(±x + γ) and the solutions

φ(ξ) =
a0 +

(
Bb−1/

√−B
)
exp(−ξ)

a0/
√−B + b−1 exp(−ξ)

, (2.19)

where ξ =
√
−2B/K(±x + γ), and

φ(ξ) =
a1 exp(ξ) + a0 +

(
Bb20 + a

2
0/4a1

)
exp(−ξ)

(
a1/

√−B
)
exp(ξ) + b0 + S exp(−ξ)

, (2.20)

where S denotes 1/4((Ba0b20 + a
3
0 + b

3
0B

2/
√−B + b0Ba20/

√−B)/(a1B(a0/
√−B − b0))), and ξ =√

−2B/K(±x + γ), and

φ(ξ) =
a0

a0/
√−B + b−1 exp(−ξ)

, (2.21)

where ξ =
√
−B/2K(±x − (3B/

√
−2B/K)t + γ), and

φ(ξ) =
a0 + a1 exp(ξ)

(
a1/

√−B
)
exp(ξ) +

(
−a20 + Ba1b−1/

√−B
)
/
(
Ba0/

√−B
)
+ b−1 exp(−ξ)

, (2.22)
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where ξ =
√
−B/2K(±x − (3B/

√
−2B/K)t + γ), respectively. The choice of a0 = 2

√−2B and
b1 = 1 in our solution (2.18) gives the same bell solitary wave solution presented in [34]
which was obtained on using the sine-cosine method

v(x, t) =
√
−2B sech

√
B

K

(±x + γ
)
. (2.23)

Also if we set

b1 = ±1, a0 = 2
√
2B,

b1 = −1, a0 = 4
√−B,

(2.24)

in (2.18), we obtain the new solutions

v(x, t) = ±
√
2B csch

√
B

K

(±x + γ
)
,

v(x, t) =
4
√
B

cosh
√
B/K

(±x + γ
) − 3 sinh

√
B/K

(±x + γ
) .

(2.25)

Also, setting a0 =
√−B and b−1 = ±1 causes (2.19) to lead to the new kink solitary wave

solution

v(x, t) =
√
−B coth

√
−B
2K
(±x + γ

)
,

v(x, t) =
√
−B tanh

√
−B
2K
(±x + γ

)
.

(2.26)

This solution is similar to the solution obtained in [34].
By setting

b0 = 0, a1 =
√
−B, a0 = ± 2 i

√
−B, (2.27)

in (2.20), we will have the solitary wave solution

v(x, t) =
√
−B
⎛

⎝tanh

√
−2B
K

(±x + γ
) ± i sech

√
−2B
K

(±x + γ
)
⎞

⎠, (2.28)
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where i =
√−1. Now if we set a0 =

√−B and b−1 = 1 in (2.21), we will have another kink
solitary wave solution

v(x, t) =
√−B
2

+
√−B
2

tanh

√
−B
8K

(

±x − 3B
√
−2B/K

t + γ

)

, (2.29)

which is similar to the solution obtained in [34].
If we also set b−1 = 1 and a0 = −√−B in (2.21), we obtain the new kink solitary wave

solution

v(x, t) =
√−B
2

+
√−B
2

coth

√
−B
8K

(

±x − 3B
√
−2B/K

t + γ

)

. (2.30)

Also, setting b−1 = a0 causes (2.21) to lead to the new soliton solution

v(x, t) =
1

−
(√−B/B

)
+ cosh

√
−B/2K

(
±x −

(
3B/
√
−2B/K

)
t + γ

)
− H

, (2.31)

where H denotes sinh
√
−B/2K(±x − (3B/

√
−2B/K)t + γ).

By choosing a1 =
√−B, a−1 = 1, and a0 = i

√−B in (2.22), we can find solitary wave
solution

v(x, t) =
√−B
2

⎛

⎝1 + tanh

√
−B
2K

(

±x − 3B
√
−2B/K

t + γ

)

+ i sech

√
−B
2K

(

±x − 3B
√
−2B/K

t + γ

)⎞

⎠,

(2.32)

where i =
√−1.

3. Conclusion

An investigation on the Brusselator reaction diffusion model was established by using the
Exp-function method. During this procedure some new exact solitary wave solutions, mostly
solitons and kinks solutions, were obtained as well as some special cases. In particular, Yan’s
solution [34] can be considered as a special case of our result, and our result can turn into
kink, soliton, and bell solutions with a suitable choice of the parameters. The study reveals
the power of the method.
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