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1. Introduction

This paper is the next step of a series of previous works dealing with modelling of discrete
mechanical systems with finite number of degrees of freedom involving assemblies of
classical smooth constitutive elements (in the mechanical point of view they correspond
to linear or non linear springs, dashpots) and nonsmooth ones mainly based on St-
Venant Elements. Let us cite basic rheological models [1], with different applications
and developpements [2–7]. Delay or stochastic frame have also been investigated in [8–
10].

In this paper we examine a new model: it can be associated with motion of a discretized
beam “sliding” on soil. We do not give more details on this discretization.

This paper is organized as follows in Section 2, the model is described. In Section 3,
the general model is adapted to different dynamical, semi-dynamical or quasistatic cases. In
Section 4, existence and uniqueness is addressed. In Section 5, numerical scheme is described
and its convergence obtained.
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Figure 1: Two useful multivalued maximal monotone graphs.
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Figure 2: The studied model with mechanical components.

2. Description of the Model

We refer to previous works for description of some rheological models (see for example [1,
6]).

We consider the model of Figure 2. (mi)1≤i≤n (with mi ≥ 0) correspond to masses,
(ki)0≤i≤n to stiffness, and (αi)1≤i≤n to St-Venant elements thresholds.

The reader is referred to Appendix A.
Let σ be the multivalued graph sign defined by (see Figure 1(a)).

σ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if x < 0,

1 if x > 0,

[−1, 1] if x = 0.

(2.1)

According to [11], this graph is maximal monotone. Therefore:

∀x ∈ R, σ(x) = ∂|x|. (2.2)

Let us assume (see Figure 3) the following

(i) This mechanical system is submitted to external forces (Fi)0≤i≤n+1: F0 is exerted on
the spring with stiffness k0; For 1 ≤ i ≤ n, Fi is exerted on material point of mass mi;
Fn+1 is exerted on the spring with stiffness kn+1.
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Figure 3: The studied model with external forces (Fi)0≤i≤n, friction forces (gi)1≤i≤n, linear forces (fi)0≤i≤n,
and with displacements (ui)0≤i≤n, (vi)1≤i≤n, x and ξ.

(ii) For 1 ≤ i ≤ n, gi is the friction force exerted by the support of the ith St-Venant.

(iii) For 0 ≤ i ≤ n, fi is elastic linear force exerted by the ith spring.

(iv) For 0 ≤ i ≤ n, ui is the displacement of the ith spring.

(v) For 1 ≤ i ≤ n, vi is the displacement of the ith St-Venant element.

(vi) ξ is the displacement of the spring with stiffness k0.

(vii) x is the displacement of the material point of mass mn.

These two last notations are justified by the study of particular cases in the next sections.
The different equations of the model are successively given by the fundamental

Newton law:

∀i ∈ {1, . . . , n}, miv̈i = Fi + fi−1 − fi + gi, (2.3a)

by the constitutive laws of linear springs:

∀i ∈ {0, . . . , n}, fi = −kiui, (2.3b)

by the constitutive of laws St-Venant elements:

∀i ∈ {1, . . . , n}, gi ∈ −αiσ(v̇i), (2.3c)

by the geometrical connexions:

∀i ∈ {0, . . . , n − 1}, ξ + u0 + u1 + · · · + ui = vi+1, (2.3d)

ξ + u0 + u1 + · · · + un = x, (2.3e)

and finally by the boundary conditions:

F0 = f0, (2.3f)

Fn+1 = fn. (2.3g)
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We can observe that (2.3d)–(2.3e) are equivalent to

ξ + u0 = v1, (2.4a)

∀i ∈ {1, . . . , n − 1}, vi+1 − vi = ui, (2.4b)

x − vn = un. (2.4c)

Now, we study systems (2.3a), (2.3b), (2.3c), (2.3f), (2.3g), and (2.4a)–(2.4c).

3. Transformations of Equations

Now, as in [1, 6], we transform system (2.3a)-(2.3b)-(2.3c)-(2.3f)-(2.3g)-(2.4b)-(2.4c) to
rewrite it under the usual form (A.7) according to different kinds of problem and of boundary
conditions.

Let us assume that the external forcing F1, . . . , Fn are known.

3.1. Dynamical Case

We assume in this section that

∀i ∈ {1, . . . , n}, mi > 0. (3.1)

Equations (2.3a)-(2.3b)-(2.3c)-(2.4a)–(2.4c) imply

m1v̈1 + α1σ(v̇1) − k0ξ + (k0 + k1)v1 − k1v2 � F1, (3.2a)

∀i ∈ {2, . . . , n − 1}, miv̈i + αiσ(v̇i) − ki−1vi−1 + (ki−1 + ki)vi − kivi+1 � Fi, (3.2b)

mnv̈n + αnσ(v̇n) − kn−1vn−1 + (kn−1 + kn)vn − knx � Fn. (3.2c)

3.1.1. Clamped Mechanical System

We assume that our mechanical system is clamped at its two extremities so that we can write
the boundary conditions:

ξ = 0, x = 0, (3.3a)

and the reactions F0 and Fn+1 are unknown. (3.3b)
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We set, for all q ∈ N
∗,

K
(
q
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k0 + k1 −k1 0 0 · · · 0 0 0

−k1 k1 + k2 −k2 0 · · · · · · 0 0

0 −k2 k2 + k3 −k3 0 · · · · · · 0

...
... · · · · · ·

...
...

...

0 0 · · · 0 0 −kq−2 kq−2 + kq−1 −kq−1

0 0 · · · · · · · · · 0 −kq−1 kq−1 + kq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Mq(R).

(3.4)

Thus, by setting

V = t (v1, . . . , vn) ∈ R
n, (3.5a)

F = t (F1, . . . , Fn) ∈ R
n, (3.5b)

K = K(n), (3.5c)

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1 0 · · · 0

0 m2 · · · 0

0 · · · . . . 0

0 · · · · · · mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.5d)

and defining the maximal monotone operator A by

A(v1, . . . , vn) = α1σ(v1) × · · · × αnσ(vn), (3.5e)

equations (3.2a)–(3.2c) imply the system of equations

MV̈ +AV̇ +KV � F. (3.6)

Reactions F0 and Fn+1 can be determined thanks to (2.3f)-(2.3g) which give

F0 = −k0v1, (3.7a)

Fn+1 = knvn. (3.7b)



6 Mathematical Problems in Engineering

Set

p = 2n, (3.8a)

M =

(
In 0

0 M−1

)

∈ M2n(R), (3.8b)

where In is the identity of ∈ Mn(R) and for t ∈ R, X = (V1, V2) ∈ R
2n, with V2 = (V2,1, . . . , V2,n),

G(t, (V1, V2)) =

(
V2

M−1F −M−1KV1

)

, (3.8c)

φ(V1, V2) =
n∑

i=1

αi|V2,i|. (3.8d)

Then, the system (3.6) is equivalent to (A.7) (see Appendix A).
Reciprocally, if (3.6) and (3.7a)-(3.7b) hold, we define x, ξ, (ui)0≤i≤n, (fi)0≤i≤n, and

(gi)1≤i≤n successivelly by

(2.3b),

(2.4a)–(2.4c),

(3.3a)-(3.3b),

∀i ∈ {1, . . . , n}, gi = miv̈i − Fi − fi−1 + fi.

(3.9)

Then, we can deduce (2.3a), (2.3b), (2.3c), (2.3f), (2.3g), (2.4b), and (2.4c).

3.1.2. Clamped-Free Mechanical System

We assume that our mechanical system is clamped at its left extremity and free at its right
extremity so that we can write the boundary condition:

ξ = 0, (3.10a)

reaction F0 is unknown, (3.10b)

displacement x is unknown, (3.10c)

and external forcing Fn+1 is known. (3.10d)



Mathematical Problems in Engineering 7

As in Section 3.1.1, by setting

V = t (v1, . . . , vn) ∈ R
n, (3.11a)

F = t (F1, . . . , Fn−1, Fn − Fn+1) ∈ R
n, (3.11b)

K̃ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k0 + k1 −k1 0 0 · · · 0 0 0

−k1 k1 + k2 −k2 0 · · · · · · 0 0

0 −k2 k2 + k3 −k3 0 · · · · · · 0

...
... · · · · · ·

...
...

...

0 0 · · · 0 0 −kn−2 kn−2 + kn−1 −kn−1

0 0 · · · · · · · · · 0 −kn−1 kn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Mn(R), (3.11c)

M and A as in (3.5d)-(3.5e), (3.11d)

we can prove that equations (3.2a)–(3.2c) imply the system of equations

MV̈ +AV̇ + K̃V � F. (3.12)

Reactions F0 and displacement x can be determined thanks to

F0 = −k0v1, (3.13a)

x = −Fn+1

kn
+ vn. (3.13b)

As in Section 3.1.1, let us set

p = 2n, (3.14a)

M and φ defined by (3.8b)–(3.8d), (3.14b)

and for t ∈ R, X = (V1, V2) ∈ R
2n, with V2 = (V2,1, . . . , V2,n),

G(t, (V1, V2)) =

(
V2

M−1F −M−1K̃V1

)

. (3.14c)

Then, system (3.12) is equivalent to (A.7).
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As in Section 3.1.1, reciprocally, if (3.12) and (3.13a)-(3.13b) hold, we define x, ξ,
(ui)0≤i≤n, (fi)0≤i≤n, and (gi)1≤i≤n successivelly by

(2.3b),

(2.4a)–(2.4c),

(3.3a)-(3.3b),

Last equation of (3.9).

(3.15)

Then, we can deduce (2.3a), (2.3b), (2.3c), (2.3f), (2.3g), (2.4b), and (2.4c).

3.2. Semi-Dynamical Case

In this section, we assume that

∀i ∈ {1, . . . , n − 1}, mi = 0, (3.16a)

mn = m > 0. (3.16b)

Equation (3.2b) implies

∀i ∈ {2, . . . , n − 1}, αiσ(v̇i) + gi � 0, (3.17a)

with

∀i ∈ {2, . . . , n − 1}, gi = −Fi − ki−1vi−1 + (ki−1 + ki)vi − kivi+1. (3.17b)

As in [6, 7], we introduce β, the inverse graph of σ (in the sens of [11], see Figure 1(b)):

β(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∅ if x ∈ ]−∞,−1[
⋃

]1,+∞[,

{0} if x ∈ ]−1, 1[,

R − if x = −1,

R + if x = 1.

(3.18)

We have

∀x ∈ R, β(x) = ∂ψ[−1,1](x), (3.19)

where ∂ψ[−1,1] is the convex indicatrix function of the convex domain [−1, 1]. Thus, (3.17a) is
equivalent to

∀i ∈ {2, . . . , n − 1}, v̇i + ∂ψ[−αi,αi]
(
gi
)
� 0. (3.20)
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Similarly, (3.2a) gives

v̇1 + ∂ψ[−α1,α1]
(
g1
)
� 0, (3.21a)

with

g1 = −F1 − k0ξ + (k0 + k1)v1 − k1v2. (3.21b)

and (3.2c) gives

mv̈n + αnσ(v̇n) − kn−1vn−1 + (kn−1 + kn)vn − knx � Fn. (3.22)

3.2.1. Clamped Mechanical System

We assume that our mechanical system is clamped at its two extremities so that we can write
the boundary conditions (3.3a)-(3.3b). As in [6, 7], let us set

V = t (v1, . . . , vn−1) ∈ R
n−1, (3.23a)

G = t (
g1, . . . , gn−1

)
∈ R

n−1, (3.23b)

F = t (F1, . . . , Fn−1) ∈ R
n−1, (3.23c)

Z = t (F1, . . . , Fn−2, Fn−1 + kn−1vn) ∈ R
n−1, (3.23d)

C = [α1, α1] × · · · × [−αn−1, αn−1] ⊂ R
n−1, (3.23e)

K̂ = K(n − 1) ∈ Mn−1(R), (3.23f)

where K(q) is defined by (3.4). Thus, according to (3.17b)–(3.21b), we have

G = K̂V − Z, (3.24)

and from (3.17a)–(3.21a) we can write

V̇ + ∂ψC(G) � 0, (3.25)

Under the assumption

kn−1 ≥ 0 ∀i ∈ {1, . . . , n − 1}, ki > 0, (3.26)

the matrix K̂ is symmetric definite positive (see proof in Lemma B.1 of Appendix B), so that

V = K̂−1(G + Z), (3.27)
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and (3.25) gives

K̂−1(Ġ + Ż
)
+ ∂ψC(G) � 0, (3.28)

which is equivalent to

Ġ + K̂∂ψC(G) � −Ż. (3.29)

For q integer and u vector of R
m, we denote by

[u]q (3.30)

the qth component of u. Equation (3.22) gives

mv̈n + αnσ(v̇n) − kn−1vn−1 + (kn−1 + kn)vn � Fn, (3.31)

which can be rewritten under the following form:

v̈n +
αn
m
σ(v̇n) −

kn−1

m

[
K̂−1(G + Z)

]

n−1
+
kn−1 + kn

m
vn � Fn

m
. (3.32)

Let u be the vector of R
n−1 defined by

u = t (0, . . . , 0, 1) . (3.33)

Note that

Z = F + kn−1vnu. (3.34)

We set

p = n + 1, (3.35a)

M =

(
K̂ 0

0 I2

)

∈ Mn+1(R), (3.35b)

and for all t ∈ R, G ∈ R
n−1, a, b ∈ R, X = t (G, a, b)

G(t, X) =

⎛

⎜
⎜
⎜
⎝

−Ḟ − kn−1bu

b

Fn
m

+
kn−1

m

[
K̂−1(G + F + kn−1au)

]

n−1
− kn−1 + kn

m
a

⎞

⎟
⎟
⎟
⎠

(3.35c)

φ(X) = ψ[α1,α1]×···×[−αn−1,αn−1]×{0}×{0}(X) +
αn
m

|b|. (3.35d)

Then, system (3.29)–(3.32) is equivalent to (A.7).



Mathematical Problems in Engineering 11

Reactions F0 and Fn+1 can be determined thanks to

F0 = −k0

[
K̂−1(G + F + kn−1au)

]

1
, (3.36a)

Fn+1 = kna. (3.36b)

Reciprocally, as in Section 3.1.1, if (3.29)–(3.32) hold, we can determineG andZ thanks
to

G = t ([X]1, . . . , [X]n−1),

Z = kn−1[X]nu + F.
(3.37)

then we can calculate V thanks to (3.27). Successively, x, ξ, (ui)0≤i≤n, and (fi)0≤i≤n are defined
by

(2.3b),

(2.4a)–(2.4c),

(3.3a)-(3.3b).

(3.38)

Then, we can deduce (2.3a), (2.3b), (2.3c), (2.3f), (2.3g), (2.4b), and (2.4c).

3.2.2. Clamped-Free Mechanical System

We assume that our mechanical system is clamped at its left extremity and free at its right
extremity so that we can write boundary condition (3.10a)–(3.10d).

The calculus are similar to those of Section 3.2.1; Equation (3.29) holds and (3.31) is
replaced by

mv̈n + αnσ(v̇n) − kn−1vn−1 + kn−1vn + Fn+1 � Fn. (3.39)

Using notations (3.23a)–(3.23f), we obtain the system (A.7), where we set

p = n + 1, (3.40a)

M and φ are defined by (3.35b) and (3.35d), (3.40b)

and for all t ∈ R, G ∈ R
n−1, a, b ∈ R, X = t (G, a, b),

G(t, X) =

⎛

⎜
⎜
⎜
⎝

−Ḟ − kn−1bu

b

Fn − Fn+1

m
+
kn−1

m

[
K̂−1(G + F + kn−1au)

]

n−1
− kn−1

m
a

⎞

⎟
⎟
⎟
⎠

∈ Mn+1(R). (3.40c)
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The reaction F0 and the displacement x can be determined thanks to (3.36a) and

x = −Fn+1

kn
+ a. (3.41)

3.3. Quasistatic Case

In this section, we assume that

∀i ∈ {1, . . . , n}, mi = 0. (3.42)

As it has been previously noticed, (3.17a)-(3.17b) and (3.21a)-(3.21b) are not modified,
and (3.22) gives

v̇n + ∂ψ[−αn,αn]
(
gn
)
� 0, (3.43a)

with

gn = Fn − kn−1vn−1 + (kn−1 + kn)vn − knx. (3.43b)

3.3.1. Clamped Mechanical System

We assume that our mechanical system is clamped at its two extremities so that we can write
the boundary conditions (3.3a)-(3.3b).

As in Section 3.2.1, following [6, 7], we set

V = t (v1, . . . , vn) ∈ R
n, (3.44a)

G = t (
g1, . . . , gn

)
∈ R

n, (3.44b)

F = t (F1, . . . , Fn) ∈ R
n, (3.44c)

C = [α1, α1] × · · · × [−αn, αn] ⊂ R
n, (3.44d)

K = K(n) ∈ Mn(R), (3.44e)

where K(q) is defined by (3.4).
Thus, we have

G = KV − F,

V̇ + ∂ψC(G) � 0
(3.45)

Under assumption

kn ≥ 0, ∀i ∈ {1, . . . , n − 1}, ki > 0, (3.46)
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the matrix K is symmetric definite positive (see proof in Lemma B.1), so that

V = K−1(G + F), (3.47)

Ġ +K∂ψC(G) � −Ḟ. (3.48)

We set

p = n, (3.49a)

M = K ∈ Mn(R), (3.49b)

and, for all t ∈ R, for all X ∈ R
n

G(t, X) = −Ḟ, (3.49c)

φ(X) = ψC(X). (3.49d)

Then, the system (3.48) is equivalent to (A.7).
Reactions F0 and Fn+1 can be determined thanks to

F0 = −k0

[
K−1(G + F)

]

1
, (3.50a)

Fn+1 = kn
[
K−1(G + F)

]

n
. (3.50b)

3.3.2. Clamped-Free Mechanical System

We assume that our mechanical system is clamped at its left extremity so that we can write
the boundary condition (3.10a) and (3.10b). Boundary conditions for its right extremity is
given later.

The calculus is similar to those of [6, 7].

(i) First Case: Displacement-Force Model

We assume that the displacement x is known and that the force Fn+1 is unknown.
We introduce V , G, C and matrix K defined by (3.44a), (3.44b), (3.44d), and (3.44e)

and F defined by

F = t (F1, . . . , Fn−1, Fn + knx) ∈ R
n, (3.51)

and we obtain, as in Section 3.3.1,

G = KV − F, (3.52)

Ġ +K∂ψC(G) � −Ḟ. (3.53)
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By setting

p = n, (3.54a)

M and φ are defined by (3.49b) and (3.49d), (3.54b)

and, for all t ∈ R, for all X ∈ R
n,

G(t, X) = −Ḟ, (3.54c)

we remark that system (3.53) is equivalent to (A.7).
Reactions F0 and Fn+1 can be determined thanks to

Fn0 = −k0

[
K−1(G + F)

]

1
, (3.55a)

Fn+1 = −knx + kn
[
K−1(G + F)

]

n
. (3.55b)

(ii) Second Case: Force-Displacement Model

We assume that external forcing Fn+1 are known and displacement x is unknown.
The calculus are similar to the previous case.
Equation (3.43b) is replaced by

gn = Fn+1 − Fn − kn−1vn−1 + kn−1vn. (3.56)

Following the same method, we introduce V , G, and C defined by (3.44a)-(3.44b)-(3.44d),
and matrix K̃ defined by (3.11c). Vector F is defined by

F = t (F1, . . . , Fn−1, Fn − Fn+1) . (3.57)

So, (3.52) is replaced by

G = K̃V − F, (3.58)

and (3.48) is replaced by

Ġ + K̃∂ψC(G) � −Ḟ. (3.59)

Remark 3.1. As in [6], let us notice that matrix K̃ defined by (3.11c) for force-displacement
model corresponds to matrix K(n) for displacement-force model defined by (3.4) with

kn = 0. (3.60)
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According to previous remark, assumption

∀i ∈ {1, . . . , n − 1}, ki > 0 (3.61)

and Lemma B.1 ensure that matrix K̃ is symmetric definite positive. Thus, like previously, the
system is equivalent to

Ġ + K̃∂ψC(G) � −Ḟ. (3.62)

By giving p, φ defined by (3.49a)–(3.49d), G defined by for all t ∈ R, for all X ∈ R
n,

G(t, X) = −Ḟ, (3.63a)

and M defined by

M = K̃ ∈ Mn(R), (3.63b)

we remark that system (3.62) is equivalent to (A.7). Reactions F0 and displacement x can be
determined thanks to

F0 = −k0

[
K̃−1(G + F)

]

1
, (3.64a)

x = −Fn+1

kn
+
[
K̃−1(G + F)

]

n
. (3.64b)

4. Existence of Uniqueness Results

Thus, as proved in [1], all the systems of Section 3 can be written under the form (A.7)
and, according to Proposition A.1 (see Appendix A), have a unique solution. For all systems,
Table 1 provides the corresponding integer p, function φ, and matrix M. It is easy to prove
that φ is convex proper and lower semi-continuous function on R

p and that M is symmetric
positive definite.

5. Convergence of Numerical Scheme

All the models examined here can be written under the form (A.7). Based on [1, 12], general
writing of the implicit Euler scheme corresponds to

∀n ∈ {0, . . . ,N − 1}, Xn+1 −Xn

h
+M∂φ(Xn) � G(tn, Xn),

X0 = ξ.
(5.1)

with time step h, discretized time tn = hn, and approximations X0, . . . , XN of the exact
solution provided by the numerical scheme. Previous studies [12] ensure that this numerical
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Table 1: The dimension of the system, the convex function and the symmetric positive definite matrix used
for the above described mechanical models.

System p function φ matrix M

(3.6) 2n φ(V1, V2) =
∑n

i=1 αi|V2,i|
(

In 0

0 M−1

)

(3.12) 2n φ(V1, V2) =
∑n

i=1 αi|V2,i|
(

In 0

0 M−1

)

(3.29)–(3.32) n + 1 φ(t, (G, a, b)) = ψ[−α1 ,α1]×···×[−αn−1 ,αn−1]×{0}×{0}(G, a, b) +
αn
m

|b|
(

K̂ 0

0 I2

)

(3.29)–(3.39) n + 1 φ(t, (G, a, b)) = ψ[−α1 ,α1]×···×[−αn−1 ,αn−1]×{0}×{0}(G, a, b) +
αn
m

|b|
(

K̂ 0

0 I2

)

(3.48) n φ(X) = ψ[−α1 ,α1]×···×[−αn,αn](X) K

(3.53) n φ(X) = ψ[−α1 ,α1]×···×[−αn,αn](X) K

(3.62) n φ(X) = ψ[−α1 ,α1]×···×[−αn,αn](X) K̃

scheme is convergent with order 1/2 (systems (3.6), (3.12), (3.29)–(3.32), and (3.29)–(3.39))
or 1 (systems (3.48), (3.53), and (3.62)).

In practice for computation of solutions, three cases can be distinguished, based on
further expression of Xn+1:

Xn+1 =
[
I + hM∂φ

]−1(Xn + hG(tn, Xn)), (5.2)

where I is the identity and [I + hM∂φ]−1 is the inverse of the graph I + hM∂φ (see [11]).
According to [11], [I + hM∂φ]−1 is a monovalued operator, providing a unique solution
Xn+1 ∈ R

p. In the first case, effective computations of Xn+1 associated with diagonal matrix
M is explicit: this situation corresponds to systems (3.6) and (3.12). In the second case, φ is
defined as the indicatrix function of a closed convex set: this situation corresponds to systems
(3.48), (3.53), and (3.62). Effective computation of Xn1 is given by the projection of a given
vector on a closed convex set (see [6]). In the third case (for systems (3.29)–(3.32) and (3.29)–
(3.39)), φ is involving indicatrix function of a closed convex set and a norm function. In
such case, computation of Xn+1 leads to the following problem: according to [11], Xn+1 is the
solution of minimization problem: considering ‖ · ‖M the norm define by the inner product
given by (A.4)

‖x‖M =
√

t xM−1x, (5.3a)

Zn = Xn + hG(tn, Xn) (5.3b)

solve

min
x∈D(∂φ)

φ(x) +
1

2h
‖x − Zn‖2

M (5.3c)

and such problem can be solved in practice following efficient algorithms [13].
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6. Conclusion

In this paper, a mechanical system involving finite degrees of freedom and nonsmooth terms
have been investigated from the mechanical point of view. Dynamical, semi-dynamical, and
quasistatic modeling have been established. The main results are theoretical ones:

(i) all the problems are well posed;

(ii) it has been explained how a numerical approximation of solutions can be effectively
computed.

All the mechanical systems have been considered in a deterministic frame. Theoretical results
and corresponding effective computations could be extended to the stochastic frame.

Appendices

A. A Few Theoretical Reminders about the Class of Maximal Monotone
Differential Equations Used

The reader is referred to [11]. Let 〈, 〉 be scalar product on R
p. If φ is a convex proper and

lower semi-continuous function from R
p to ] − ∞,+∞], we can define its subdifferential ∂φ

by

y ∈ ∂φ(x) ⇐⇒ ∀h ∈ R
p, φ(x + h) − φ(x) ≥

〈
y, h
〉
,

D
(
∂φ
)
=
{
x : ∂φ(x)/= ∅

}
.

(A.1)

Moreover, ∂φ is a maximal monotone graph in R
p × R

p.
If C is a closed convex nonempty subset of R

p, we denote by ψC the indicatrix of C
defined by

∀x ∈ C, ψC(x) =

⎧
⎨

⎩

0, if x ∈ C,

+∞, if x /∈C.
(A.2)

In this particular case, ∂ψC, which is the subdifferential of ψC, is given by

∀
(
x, y
)
∈ C × R

p, y ∈ ∂ψC(x) ⇐⇒ ∀z ∈ C,
〈
y, x − z

〉
≥ 0, (A.3a)

∀x /∈C, ∂ψC(x) = ∅. (A.3b)

The domain of the maximal monotone operator ∂ψC is equal to C.
We observe that if R

p is equipped with its canonical scalar product 〈, 〉, and with
another scalar product,

〈
x, y
〉

M = t xM−1y, (A.4)
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where M is symmetric positive definite, then we can relate the subdifferential ∂φ of φ
relatively to the canonical scalar product 〈, 〉 and the subdifferential ∂Mφ relatively to 〈, 〉M
by

∂Mφ(x) =M∂φ(x). (A.5)

We give now the general mathematical formulation of our problem. We assume that T
is strictly positive and that G is a function from [0, T]×R

p to R
p which is Lipschitz continuous

with respect to its second argument, that is, there exists ω ≥ 0 such that

∀t ∈ [0, T], ∀X1, X2 ∈ R
p, ‖G(t, X1) − G(t, X2)‖ ≤ ω‖X1 −X2‖. (A.6a)

Moreover, we assume that

∀Y ∈ R
p, G(·, Y ) ∈ L∞(0, T ; Rp). (A.6b)

Proposition A.1. If the matrix M is symmetric positive definite and φ is convex proper and lower
semicontinuous on R

p, under assumptions (A.6a)-(A.6b), for all ξ ∈ D(∂φ), there exists a unique
function X inW1,1(0, T ; Rp) such that

Ẋ(t) +M∂φ(X(t)) � G(t, X(t)) a.e. on ]0, T[,

X(0) = ξ,
(A.7)

where the differential inclusion can be written as an inequality: for almost every t in ]0, T[,

∀h ∈ R
p, φ(X(t) + h) − φ(X(t)) ≥

〈
G(t, X(t)) − Ẋ(t), h

〉

M. (A.8)

Proof of this result can be found in [1, Proposition 3.1], based on [11, Proposition 3.13,
page 107] and (A.5).

B. K(q) Defined by (3.4) Is Symmetric Definite Positive

Lemma B.1. Under assumption

kq ≥ 0, ∀i ∈
{

1, . . . , q − 1
}
, ki > 0, (B.1)

matrix K(q) defined by (3.4) is symmetric definite positive.
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Proof. We have, for all X = (x1, . . . , xq) ∈ R
q,

t
XK
(
q
)
X =

q∑

i=1

(ki−1 + ki)x2
i − 2

q∑

i=1

kixixi+1,

= k0x
2
1 +

q∑

i=2

ki−1x
2
i +

q−1∑

i=1

kix
2
i + kq−1x

2
q−1 − 2

q−1∑

i=1

(kiki+1)xi+1,

= k0x
2
1 +

q−1∑

i=1

ki(xi+1 − xi)2 + kqx2
q.

(B.2)

Under assumption (B.1), t XK(q)X = 0 then implies X = 0.
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