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1. Introduction

The present work resumes other authors’ studies dedicated to the numerical integration of the
movement equation with the use of Hermitian operators defined in [1], aiming application
on dynamic structural analysis.

The methods developed as well as the properties used for the solution of free
vibrations without damping were described in [2]. Their implementation in a free software
for structural analysis with discrete models through the Finite Element Method has been
presented in [3]; the damping term inclusion and its effects on properties have been studied
and presented in [4, 5].

So far, results confirmed the presence of unconditional stability properties, local error
with pre-established order, and asymptotic annihilation; this last property is, by definition,
a numerical damping that acts in large steps and eliminates the effects of higher modes of
vibration, in multidegree of freedom cases. These modes are artificial ones, introduced by
the semidiscrete model employed, so that their contribution is frequently undesirable in the
analysis performed. In direct time integration, once a step is chosen for the movement history
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representation, the higher the mode is the larger is the step related to its period, and more
intense on it are the asymptotic annihilation effects.

The fact that these are single-step methods indicates that they are possibly suitable for
use in non-linear problems and this is the main motivation for the present text. The study of
such theme has a considerable history, but it is still a current matter, once it allows different
material behaviors and the influence of displacements in the account of internal forces, as it is
shown in [6]. However, what happens is that when nonlinearity is considered, a broad field
is opened. Therefore, it is important to limit the problem to guarantee good performance to
the model analysis, sufficient quality of response, and usage viability of the method to be
employed.

In this context, this is a contribution that begins describing the equations of the non-
linear problem, followed by a bibliographical review that allows to formulate a numerical
solution, ending with an example of the application method specially developed for single
degree of freedom cases, which is applied to the classic pendulum problem.

The conclusion reached is that the method provides indications of its viability and
demonstrates the possibility of usage in other cases, which we intend to research in future
studies.

2. Objective

The movement equation, employed in dynamic structure analysis, has the following formula:

m
••
x +c

•
x +kx = f(t), (2.1)

where m is mass, c is damping, and k is stiffness, while f(t) is the external force applied as a
function of time, which is represented by t. Each dot above the variable represents, as usual, a
derivation in t. A comparison with the definition presented in [7] for the linear second-order
differential equation demands that coefficients m, c, and k are independent from x or

•
x to

attend to this classification. For semidiscrete structures, with multiple degrees of freedom,
the equation system represented in matrix terms is analogous to (2.1). For a representation of
a non-linear equation, the following expression is used:

m
••
x +r

(
x,
•
x
)
= f(t). (2.2)

in which the term r(x,
•
x) represents the forces that restore movement. The objective of the

present study is to propose a procedure for using the algorithms of the HdHr group in
integrating (2.2), which considers, among the phenomena mentioned above, those that allow
it to be represented in the following formula:

m
••
x +k(x)x = f(t), (2.3)

that is, in which damping is not present and stiffness depends on the displacement.
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3. Literature Review

In a work from 1977, Zienkiewicz [8] shows that the condition for equilibrium could
be understood in terms of weighted residuals; since then, Galerkin’s approach, already
traditional in finite elements, has been used to develop methods for structural dynamics.

The properties for ideal algorithms listed in [9] and in other studies are unconditional
stability, second-order precision, small errors generation in frequency and damping, to
have elevated, or controllable numerical damping for higher frequency response, to be
computationally efficient and self-starting, that is, single-step.

In 1994, Piché [10] presents a stable method with second-order precision, using single-
step, in which each step is necessary to formulate a matrix of tangential rigidity, to perform
the LU decomposition, and to solve two linear systems, but without the need of interactions.
Also in 1994, a procedure is proposed by Tarnow and Simo [11] to transform algorithms
originally of the second order into fourth order, maintaining their stability and energy
conservation properties.

Nawrotzki and Eller [12] developed a new concept of unified stability, based on
Lyapunov’s exponents, and an interesting point is to verify how HdHr methods face it, that
is, an interesting matter for following works.

A single-step algorithms class was proposed in 2001 by Armero and Romero in [13],
for non-linear elasto-dynamics, which contains numerical dissipation controllable at higher
frequencies similarly to the asymptotic annihilation of the HdHr group (object of the present
study). This property is required for the solution of systems involving conditional stability.
These authors also propose [14] another class of second-order algorithms for application in
this class of problems, also with numerical dissipation controllable at higher frequencies, with
unconditional energy dissipation and momentum conservation, with dissipation properties
controlled by some parameters introduced.

Galerkin’s explicit predictive-multicorrective methods, developed for linear analysis,
are reviewed in [15] for arbitrary non-linear analysis. The formulation inherits precision
properties from the implicit methods from which they are derived and have third-order
precision, large limits of stability, and numerical dissipation controlled by a parameter.

Also in 2002, Modak and Sotelino [16] present what they call the generalized
method for use in structural dynamics, a single-step one and whose principle is to adopt
approximations in Taylor series, truncated for displacement, velocity, and acceleration along
each step. In problems involving elasto-plasticity, it may be necessary to adapt the step. There
are no limitations in applying the process to geometric nonlinearity.

Recently, the concepts discussed in [15] were reviewed by Mancuso and Ubertini in
[17], to present an iterative algorithm of low computational cost, originated from another
one for linear problems and inheriting stability and dissipation properties from it; therefore,
the iterations are used only to gain precision in the result. The method tends to filter the
higher-frequency contributions (in the same way that the HdHr group does).

A conservation analysis of the integration scheme presented in Hilber and Hughes [18]
has been used as a starting point to Hauret and Le Tallec [19] present a way of introducing
controllable dissipation of energy maintaining momentum conservation in existing methods.

4. Methodology

The following approach is the same employed in several related works, notably Modak
and Sotelino [16], which was also based on the use of Taylor series centered on the ti
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instant, truncated for the representation of displacement and derived in the ti+1 instant and
in the usage, with adaptations, of the algorithm in linear form. A previous estimative of
the displacement is used in the final step only for calculating internal and external forces.
The integration method is applied to obtain an approximation for the displacement in this
instant and the remainder is calculated in the movement equation. If this is unacceptable, the
estimative is refined and the procedure is repeated until the remainder is below a limit. The
estimated values of displacement, velocity, and acceleration are then accepted as representing
the real values, and the procedure is applied to the next step.

4.1. HdHr Algorithms in Linear Form

This group of aforementioned algorithms uses a pair of Hermitian expressions:

Hm,n =
n∑
j=0

(Δt)jajxi(j) +
m∑
k=0

(Δt)kbkxi+1
(k) + R

(
Δtr+2

)
= 0, (4.1)

dHm,n

dt
= Hm+1,n+1 =

n+1∑
j=1

(Δt)jcjx
(j)
i +

m+1∑
k=1

(Δt)kdkx
(k)
i+1 + R

(
Δtr+3

)
, (4.2)

where Δt = ti+1 − ti is the step, ti is the last instant of known movement, ti+1 is the
next unknown instant, R is the remainder resulting from the truncation of the Hermitian
expression, and r is the order of the local error resulting from efforts (and accelerations). One
remarks also that cj = aj−1 and dk = bk−1. The values for m and n may lead to guarantee the
desired properties, and for the expressions chosen in setting up the HdHr group, resulted for
the local error order: r = m + n − 1. The coefficients aj and bk are obtained by applying Taylor
series centered on the i instant to represent the displacement and its derivatives in the i + 1
instant (4.2), as shown in [2]. Specifically, for m = n = 1, (4.1) writes

H1,1 = a0xi + b0xi+1 + Δta1
•
xi + Δtb1

•
xi+1 + R

(
Δt3

)
= 0 (4.3)

or, performing the mentioned expansion in Taylor series,

xi+1 = xi + Δt
•
xi +

Δt2

2
••
xi +

Δt3

6
(3)
x i + · · · ,

•
xi+1 =

•
xi + Δt

••
xi +

Δt2

2
x
(3)
i +

Δt3

6
x
(4)
i + · · · ,

(4.4)

leading to

H1,1 = a0xi + b0

(
xi + Δt

•
xi +

Δt2

2
••
xi +

Δt3

6
x
(3)
i + · · ·

)
+ Δta1

•
xi

+ Δtb1

(
•
xi + Δt

••
xi +

Δt2

2
x
(3)
i +

Δt3

6
x
(4)
i + · · ·

)
+ R

(
Δt3

)
= 0,

(4.5)
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and placing a0 = 1, canceling terms or orders 1 and 2 in Δt requires

a0 + b0 = 0,

b0 + a1 + b1 = 0,

b0

2
+ b1 = 0,

(4.6)

and therefore this Hermitian operator in the form of (4.1) has the coefficients a0 = 1, b0 =
−1, a1 = b1 = 1/2.

Equilibrium equation (2.1), as well as its derivatives in time, provides additional
relationship between displacement, velocity, and acceleration, that is; one may also write

••
xi = −ω2xi, x

(3)
i = −ω2 •xi, . . . ,

••
xi+1 = −ω2xi+1, x

(3)
i+1 = −ω2 •xi+1, . . .

(4.7)

for the free vibration and nondamped mode, takingω2 = k/m. Adequate substitution of (4.7)
in (4.1) and (4.2), after determining the necessary aj and bk, leads to a pair of relations in the
form:

Hm,n

(
Δt, xi,

•
xi, xi+1,

•
xi+1

)
≈ 0,

dHm+1,n+1

dt

(
Δt, xi,

•
xi, xi+1,

•
xi+1

)
≈ 0,

(4.8)

and the solution of this 2 × 2 linear system provides the values of displacement and its first
derivative in the instant i + 1. Another form of (4.8) can be used, that is

n11xi + n12
•
xi = m11xi+1 +m12

•
xi+1,

n21xi + n22
•
xi = m21xi+1 +m22

•
xi+1,

(4.9)

or yet, in the traditional form or single-step algorithms:

{xi+1} = [M]−1[N]{xi} = [A]{xi}, (4.10)

where [A] is the so-called amplification matrix of the method. Several properties of the
method may be studied by means of a spectral analysis of [A], what has been done in [2]
for various combinations of m and n in the Hermitian operators. The goal of unconditional
stability and asymptotic annihilation has been achieved when using the operators defined by
the coefficients represented in the columns of Table 1, where the error order in accelerations
and internal forces is given by r-2.

The authors performed also a spectral analysis when viscous damping terms are
present, for methods in the range from 1 to 4 for the internal forces local error order, and
the mentioned desired properties are still present, what is shown in [4, 5].
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Table 1: Coefficients of Hm,n type operators versus internal forces error order.

Order 1 2 3 4 5 6 7 8
a0 1 −6 24 60 360 840 6720 15120
b0 −1 6 −24 −60 −360 −840 −6720 −15120
a1 — −2 6 24 120 360 2520 6720
b1 1 −4 18 36 240 480 4200 8400
a2 — — — 3 12 60 360 1260
b2 −1/2 1 −6 −9 −72 −120 −1200 −2100
a3 — — — — — 4 20 120
b3 — — 1 1 12 16 200 300
a4 — — — — — — — 5
b4 — — — — −1 −1 −20 −25
a5 — — — — — — — —
b5 — — — — — — 1 1

The forced case requires the inclusion of additional terms in (4.9) brought by the
relations provided by the movement equation in the form (2.1), similar to those, present in
(4.7), now with the aspect shown below, since we state that γ = c/2mω:

••
xi = fi −ω2xi − 2γω

•
xi, x

(3)
i =

•
fi −ω2 •xi − 2γω

••
xi, . . . ,

••
xi+1 = fi+1 −ω2xi+1 − 2γω

•
xi+1, x

(3)
i+1 =

•
fi+1 −ω2 •xi+1 − 2γω

••
xi+1, . . . .

(4.11)

The resulting expressions carry now the influence of external forces and take the form:

−n11xi − n12
•
xi +m11xi+1 +m12

•
xi+1 = l11fi+1 + l12

•
fi+1 + li11fi + li12

•
fi,

−n21xi − n22
•
xi +m21xi+1 +m22

•
xi+1 = l21fi+1 + l22

•
fi+1 + li21fi + li22

•
fi,

(4.12)

where the f and its derivative terms are representing the external forces present, so that the
shape of the function describing the variation of f in time influences the performance of
the method. This is not an unusual fact and explains why free vibration problems, like in
the present work, are the first choice to study new integration methods, once characteristics
present are purely theirs. Once the reliability is verified, further studies, for various f
functions, may lead to more detailed conclusions in each situation:

{xi+1} = [M]−1([N]{xi} + [L]
{
fi+1

}
+ [Li]

{
fi
})
. (4.13)

The solution of (4.13) allows advances in understanding the movement history. The
aforementioned studies include details from methods, coefficients involved, and resulting
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properties. Noting θ = ω ·Δt, for the second-order algorithm (HdH2) the coefficient in (4.12)
is written as

m11 = 6 − θ2,

m12 = −2
(
γθ + 2

)
,

m21 = −θ2m12,

m22 =
[
6 + 8γθ − θ2 + 4

(
γθ

)2
]
,

n11 = 6,

n12 = 2,

n21 = −θ2n12,

n22 = 6 − 4γθ,

l11 = −1,

l12 = 0,

l21 = 4 + 2γθ,

l22 = −1,

li11 = li12 = li22 = 0,

li21 = 2,

(4.14)

and their determination is sufficient for applying the method. Other order HdHr group
defining terms may be found in [5].

4.2. The Nonlinear Case

The previously presented expression (2.3) is used for non-linear case, with known initial
conditions x(0) = x0,

•
x (0) =

•
x0. However, it remains the need of determining

k(xi+1), fext
(
x,
•
x, t

)∣∣∣
i+1

(4.15)

in order to attend to equilibrium in the ti+1 instant, and the solution to the problem consists
of finding displacement and derivatives for ti+1, which result in values given in (4.15) that
attend to equilibrium to advance in the movement.

The direct use of the equilibrium equation and its derivatives to follow the path
shown for the linear case is not possible, regarding (4.15). One may, however, estimate a
displacement value in order to evaluate stiffness and external force terms, leading to

kest = k(xi+1,est), fext
(
x,
•
x, t

)∣∣∣
i+1,est

. (4.16)
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The integration algorithm applied in these conditions leads to an approximation of the
displacement and its derivatives, which generally do not attend to equilibrium. A remainder
may be then evaluated, using the following expression:

fext
(
xi+1,ap,

•
xi+1,ap, ti+1

)
−
(
m
••
xi+1,ap + kestxi+1,ap

)
= ε

(
xi+1,ap,

•
xi+1,ap

)
. (4.17)

This deviation from equilibrium condition may be understood as a residual external
force, whose value may be acceptable or not, depending on a previous conveniently
established limit. If it exceeds it, a closer displacement estimative must be used to perform the
described procedure. If the estimates are successively and consistently better, the remainder
will be below the previously established limit after a certain number of trials, and an
approximation good enough for the displacement and its derivatives in the ti+1 instant will
be obtained.

Different methods are basically defined by different ways of estimating displacements
in (4.16) and integration schemes used.

4.3. The Proposed Procedure

In order to estimate displacement in the ti+1 instant, constant acceleration was considered
throughout the step, that is,

xi+1,est = xi + Δt
•
xi +

Δt2

2
••
xi,

•
xi+1,est =

•
xi + Δt

••
xi,

••
xi+1,est =

••
xi = cte. no intervalo

(4.18)

in (4.16) and a set of expressions analogous to those in (4.7), also needed to the Hermitian
algorithms already presented for the linear case. The difference is that now estimates were
used to represent the forces involved in equilibrium equation. The integration scheme looks
now as follows:

{
xi+1,ap

}
= [Mest]−1([N]{xi} + [L]

{
fi+1,est

}
+ [Li]

{
fi
})

(4.19)

and for the first-order Hermitian algorithm (HdH1), the expressions for the matrix
coefficients [Mest], analogous to those already presented in [3] for the linear case, for free
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vibration and unitary mass, that is,

m11 = −1 +
Δt2

2
k(xi+1,est),

m12 = Δt,

m21 = −k(xi+1,est)
Δt2

2
,

m22 =

[
k(xi+1,est)

Δt2

2
− 1

]
Δt,

(4.20)

while the [N] ones continue the same, already presented, taking the values shown below:

n11 = −1,

n12 = 0,

n21 = 0,

n22 = −Δt.

(4.21)

The coefficients of these matrixes for the other methods in this Hermitian group,
with local error precision of second, third, and fourth orders (HdH2, HdH3, and HdH4),
are obtained from those for the linear case, found in the already mentioned work. Once the
solution of (4.19) is at hand, the remainder can be calculated through (4.17). If it is lesser than
a previously established limit, the approximate value for displacement and its derivatives is
accepted, and one advances in the movement history representation. If not, a new estimate
of the matrixes in (4.16) is done to perform the integration scheme. The approximate values
given by the solution of (4.19) are now used as new estimates and the procedure repeated.
In other words, the system is solved again using the new estimates. This generates a new
approximation for displacement and velocity, a new remainder is calculated, its value is
verified, and this procedure is continued until its limit is satisfied. The iterations for the
considered step are then finalized, and one advances, initializing the procedure for the next
step until the time interval of interest is completely covered. Algorithm 1 summarizes the
steps constituting the proposed procedure.

5. Example

The example shown is that of the simple pendulum, such as the addressed in [20]. Figure 1
illustrates its scheme and notation used. It is a punctual mass m at the end of a rigid,
weightless bar of length L, under gravity action, free to rotate around its other end. The angle
of the bar in a given time is that measured positive to the right from a vertical line is θ.

The equilibrium conditions generate the movement differential equation, given by

••
θ +K2 sin θ = 0, K =

√
g

L
, (5.1)
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1. Start

Read x0,
•
x0,Δt, tf , ξlim

Calculate ••
x0 = [fext(x0,

•
x0, t0) − kx0](1/m)

2. Advance in movement

n =
tf

Δt
,

i = 0, n

2.1. Estimate of the (restorative) and external forces:

2.1.1. Estimate of displacement in the i + 1 instant

xi+1,est = xi + Δt
•
xi +

Δt2

2
••
xi,

•
xi+1,est =

•
xi + Δt

••
xi.

2.1.2. Estimate of the matrixes for the internal forces
kest = k(xi+1,est)

2.1.3. Estimate of the external forces
Calculate fext(xi+1,ext,

•
xi+1,est, ti+1)

2.2. Evaluation of approximate displacements and velocities
{xi+1,ap} = [Mest]

−1([N]{xi} + [L]{fi+1,est} + [Li]{fi})
2.3. Evaluation of approximate acceleration
{••xi+1,ap} = [fext(xi+1,ap,

•
xi+1,ap, ti+1) − kestxi+1,ap] ∗ (1/m)

2.4. Updating of the internal force vector
kest = k(xi+1,ap)

2.5. Evaluation of the remainder
fext(xi+1,ap,

•
xi+1,ap, ti+1) − kestxi+1,ap −m

••
xi+1,ap = ε(xi+1,ap,

•
xi+1,ap)

2.6. Remainder test
if ε(xi+1,ap,

•
xi+1,ap) > εlim:

returns to 2.2.
if ε(xi+1,ap,

•
xi+1,ap) ≤ εlim:

xi+1 ←− xi+1,ap

•
xi+1 ←−

•
xi+1,ap

••
xi+1 ←−

••
xi+1,ap

if i < n
returns to 2.1.

if i = n
End

Algorithm 1: Steps for the HdHr algorithm in non-linear problems.

L

θ
m

Figure 1: Simple Pendulum.
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and the exact solution for the period τ for a given initial condition θ0 is written as

τ = 2

√
L

g

∫θ0

0

dθ√
sin2(θ0/2) − sin2(θ/2)

. (5.2)

Its value can be put in the form:

τ =
2
π
·K1 · Tap, Tap = 2π

√
L

g
, (5.3)

with Tap being a good approximation for small values of θ0, that is, when θ0 ≈ sin θ0. Values
for 2K1/π , resulting from the solution of (5.2) for a given initial condition θ0, may be found
in literature, like in Beer and Johnston [21], where there is a table for some values of θ0. These
values were used as the correct ones in the present work.

The problem has been solved for K2 = g/L = 1, for the four methods of the HdHr
group, using a truncated Taylor series 0-centered to represent sin(θ), that is:

sin(θ) = θ − θ
3

6
+
θ5

120
− θ7

5040
+ · · · . (5.4)

Regarding (5.1), one may then note, since we truncate the Taylor series, that

k(θ) =

(
1 − θ

2

6
+
θ4

120
− θ6

5040
+

θ8

362880

)
,

••
θ +k(θ)θ = 0.

(5.5)

The first change in the signal for θ was controlled to estimate one fourth of the period.
This corresponds to the lowest point in the pendulum trajectory. The method gives a discrete
solution, that is, at one observed instant the angle is positive (the pendulum is still to the
right of the vertical projection of the point of support) and in the next step its sign has
changed (the pendulum has moved to the left of the projection); time has been interpolated
proportionally to the observed θ values. Two situations are given as examples: θ0 = π/6
and θ0 = 5π/6. Computational codes were created in Fortran Force 2.0—Fortran Compiler
and Editor—language, whose software is available at the site http://force.lepsch.com/, to
perform calculations corresponding to the procedure described in Algorithm 1 for several
step and remainder limit values found in the pre-established movement (εlim) equations.
Expressions for the first four members of the HdHr group were developed, that is, members
HdH1, HdH2, HdH3, and HdH4. The answers of the resulting approximation for the period
can be found in Tables 2 to 5 as well as the total number of iterations performed and their
relative error, for a value of εlim = 1 × 10−8, chosen as small as necessary to not interfere in
the approximation for the period taken with six significant figures. When dealing with forced
case problems, the authors’ first approach to be considered will be the usual one of taking
the remainder as an external additional force and imposing a limitation to its relative size
compared to the actual one. Therefore, the content of these tables serves as the starting point
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Table 2: Approximate range (Tap) and total number of iterations (N. Iter.) θ0 = π/6 (Texact = 6.392568s)—
HdH1 and HdH2 methods.

Δt(s) HdH1 εr% N. Iter. HdH2 εr% N. Iter.
1,00000 5.837342 8.69 7 6.367695 0,39 6
0,10000 6.377251 0.24 28 6.390932 2.6e–2 29
0,01000 6.391958 9.5e–3 160 6.392413 2.4e–3 160
0,00100 6.392478 1.4e–3 1599 6.392553 2.3e–4 1599
0,00010 6.392521 7.4e–4 15982 6.392566 3.1e–5 15982
0,00001 6.392525 5.7e–4 159815 6.392568 1e–5 159815

Table 3: Approximate range (Tap) and total number of iterations (N. Iter.) θ0 = π/6 (Texact = 6.392568s)—
HdH3 and HdH4 methods.

Δt(s) HdH3 εr% N. Iter. HdH4 εr% N. Iter.
1,00000 6,317839 1.2 7 6.345348 0.74 6
0,10000 6.390137 3.8e–2 31 6.391563 1.6e–2 31
0,01000 6.392336 3.6e–3 302 6.392475 1.5e–3 260
0,00100 6.392545 3.6e–4 1599 6.392559 1.4e–4 1599
0,00010 6.392566 3.1e–5 15982 6.392567 1.5e–5 15982
0,00001 6.392568 1.e–5 159815 6.392568 1.e–5 159815

Table 4: Approximate range (Tap) and total number of iterations (N. Iter.) θ0 = 5π/6 (Texact = 11.07226s)—
HdH1 and HdH2 methods.

Δt(s) HdH1 εr% N. Iter. HdH2 εr% N. Iter.
1.50000 5.69404 48.6 6 8.80756 20.4 30
1,00000 7.250241 34.5 48 10.04931 9.2 26
0,10000 10.88812 1.6 75 11.01278 0.54 72
0,01000 11.05525 0.15 459 11.06660 5.1e–2 373
0,00100 11.07056 1.5e–2 2768 11.07169 5.1e–3 2768
0,00010 11.07208 1.6e–3 27681 11.07219 6.3e–4 27681
0,00001 11.07223 2.7e–4 276806 11.07224 1.8e–4 276807

for future discussion and comments as well as for the creation of two figures, also presented
and commented on below.

Figures 2 and 3 are graphical representations of the values in the tables data and
allow to visualize result tendencies. Logarithmic scales were used for the abscissas, where
the relationship between the size of the step and the exact period is represented as well as in
the ordinates, where the corresponding relative error is represented. Figure 2 relates to the
initial angle θ0 = π/6 and Figure 3 to θ0 = 5π/6.

6. Discussion and Conclusions

First of all, we can see that error grows more intensely for larger steps in the first-order
algorithm, confirming what other authors have observed about the convenience of using
higher order methods. This is clearer in Figure 2; as it occurs in small steps, along a weak
non-linear path, it is reasonable to conclude that it is the effect of numerical dissipation
(asymptotic annihilation) of the algorithm itself, present more intensely than in the higher
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Figure 2: Logarithm for the relative error within range X step estimate (θ0 = π/6).
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Figure 3: Logarithm for the relative error within the range X step estimate (θ0 = 5π/6).

order methods. In Figure 3, this was not observed as clearly, maybe because of the stronger
nonlinearity, and the movement representation error begins to add to the numerical error of
the algorithms.

Another noticeable point is that higher-order terms in fact lead to increasing precision,
for same time steps. However, larger steps lead to greater effects of the annihilation in all
methods.

The apparent convergence of the results for smaller steps must be influenced by
truncation errors committed in the representation of values involved; however, we cannot
conclude that they will all perform similarly at the limit.

The changing of the adopted remainder limit (for reasonable values) has little effect
on results; therefore, if exaggeratedly rigorous values are adopted in comparison to the step,
the number of iterations performed increases significantly.

Again, as in linear case, we observe that the HdH2 method presents results whose
quality approximates those of higher-order ones. Since it has simpler algebraic expressions
and demands fewer operations, studies should focus on its use. The following researches
on the matter must definitely contemplate performance evaluation in the application of
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Table 5: Approximate range (Tap) and total number of iterations (N. Iter.) θ0 = 5π/6 (Texact = 11.07226s)—
HdH3 and HdH4 methods.

Δt(s) HdH3 εr% N. Iter. HdH4 εr% N. Iter.
1.5000 8.06038 27.2 37 9.59701 13.3 23
1,00000 9.73503 12.1 32 10.39086 6.1 22
0,10000 10.98454 0.79 88 11.03597 3.3e–1 77
0,01000 11.06379 7.6e–2 547 11.06885 3.1e–2 535
0,00100 11.07140 7.7e–3 4877 11.07191 3.2e–3 3871
0,00010 11.07216 9.0e–4 27681 11.07221 4.5e–4 27681
0,00001 11.07224 1.8e–4 276806 11.07224 1.8e–4 276807

problems with stronger nonlinearity as well as other iteration control procedures. A stability
analysis of these methods and the relative amount of numerical work involved in the
application of MDOF problems are also steps that will be taken by the authors in the future.

Following works must also focus on comparing HdHr methods performance with
those from traditional ones; for the linear case, this has been done for several examples
extracted from literature in works treating on such matter for single-step as well as
multistep semidiscrete models analysis via MEF; the results may be seen in the already
mentioned references. Advantages of combining unconditional stability, high-order error,
and asymptotic annihilation are clear, so far.
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