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1. Introduction

A flow of a viscous incompressible fluid through a given domain is rather interesting for its
numerous engineering applications. Typically, these include tube and channel flows with a
variety of geometries. The difficulties in mathematical modeling and numerical simulation
of such flows arise in the flow-through boundaries (inflow and outflow). If the domain of
interest is completely bounded by impermeable walls, there is no ambiguity in the boundary
conditions for the incompressible Navier-Stokes equations. However, when flow-through
(inflow and outflow) boundaries are present, there is no general agreement on which kind
of boundary conditions is both mathematically correct and physically appropriate on these
flow-through boundaries. Traditionally, such problems are treated with specified velocity
on the domain boundaries. However, in many applications the boundary velocities are not
known; instead the pressure variation is given at the boundaries, and the flow within the
domain has to be determined. For example, in the central air-conditioning or air-heating
system of a building, a main supply channel branches into many subchannels that finally
open into the different rooms, which can be at a different constant pressure. The distribution
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of the flow into various branches depends on the flow resistances of these branches, and in
general, it is even impossible to predict the direction of flow.

The problem of solvability and uniqueness of an initial boundary value problem for
the incompressible Navier-Stokes equations is one of the various problems considered, for
example, in [1–6] and many others. Major part of research deals with proper formulation of
boundary conditions for pressure which are needed in numerical simulation but absence in
the mathematical statement of problem (see, e.g., more recent [7, 8] and therein references).
The object of our study is a boundary value problem in which the pressure is known on
boundary as a part of boundary conditions in the mathematical statement of problem.

Antontsev et al. [1], Ragulin [4], and Ragulin and Smagulov [5] have studied initial
boundary value problems in which the values of pressure or total pressure are specified
on flow-through boundaries. Ragulin [4] and Ragulin and Smagulov [5] have considered
problems for the homogeneous Navier-Stokes equations. Antontsev et al. [1] have studied
well-posedness of the nonhomogeneous Navier-Stokes equations. As these results are not
well known, we will shortly represent the well-posed statement of initial boundary value
problems with specified pressure boundaries.

To the best of the authors’ knowledge, the research on numerically treated pressure
boundary conditions for the incompressible Navier-Stokes equations is limited. Some of the
research conducted is discussed below. Kuznetsov et al. [9] and Moshkin [10–12] developed
finite difference algorithms to treat incompressible viscous flow in a domain with given
pressure on flow-through parts of the boundary. Finite-difference numerical algorithms were
developed for primitive variables and for stream function vorticity formulation of 2D Navier-
Stokes equations.

In the finite-element study by Hayes et al. [13], a brief discussion of the specified
pressure on the outflow region of the boundary is presented. Kobayashi et al. [14] have
discussed the role of pressure specified on open boundaries in the context of the SIMPLE
algorithm.

The prescription of a pressure drop between the inlet and the outlet of the flow was
also considered by Heywood et al. [15], where a variational approach with given mean values
of the pressure across the inflow and outflow boundaries was used.

The construction of the discretized equations for unknown velocities on specified
pressure boundaries and the solution of the discretized equations using the SIMPLE
algorithm are discussed in [16]. The computational treatment of specified pressure
boundaries in complex geometries is presented within the framework of a nonstaggered
technique based on curvilinear boundary-fitted grids. The proposed method is applied for
predicting incompressible forced flows in branched ducts and in buoyancy-driven flows.

A finite-difference method for solving the incompressible time-dependent three-
dimensional Navier–Stokes equations in open flows where Dirichlet boundary conditions for
the pressure are given on part of the boundary is presented in [17]. The equations in primitive
variables (velocity and pressure) are solved using a projection method on a nonstaggered
grid with second-order accuracy in space and time. On the inflow and outflow boundaries
the pressure is obtained from its given value at the contour of these surfaces using a two-
dimensional form of the pressure Poisson equation, which enforces the incompressibility
constraint ∇ · v = 0. The pressure obtained on these surfaces is used as Dirichlet boundary
conditions for the three-dimensional Poisson equation inside the domain. The solenoidal
requirement imposes some restrictions on the choice of the open surfaces.

Barth and Carey [18] discussed the choice of appropriate inflow and outflow
boundary conditions for Newtonian and generalized Newtonian channel flows. They came
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Figure 1: Sketch of the flowing-through domain.

to conclusion that “. . .For real-world problems that are fundamentally pressure driven and
involve complex geometries, it is desirable to impose a pressure drop by means of specified
pressures at the inflow and outflow boundaries. . .” At the inflow and outflow boundaries one
of the conditions specifies the normal component of the surface traction force, and the other
two imply that there is no tangential flow at these boundaries; that is, flow is normal to the
inflow and outflow boundaries. But no mathematical justification was given.

Let us call problems where fluid can enter or leave a domain through parts of the
boundary, a “flowing-through problem” for viscous incompressible fluid flow. In [17] these
problems are called problems with “open” boundaries. We think that the term flowing-
through problem is more suitable. The purpose of our research is not to add new insight
into the mathematical statement of the problem but to develop a finite volume method for
solving a flowing-through problem for the incompressible Navier-Stokes equations for which
questions of existence and uniqueness have been considered in [1, 4, 5].

In the following sections of this paper, a brief overview of various kinds of well-posed
flowing-through problems for the incompressible Navier-Stokes equations is presented.
This is followed by a description of the finite volume numerical method with strength on
implementation of boundary conditions on the flow-through parts. The numerical method is
then validated by a comparison of analytical and numerical solutions for the laminar flow
driven by pressure drop in the 2D plane channel, in the 2D gap between two cylinders, in
U-bend channel, and in a planar T-junction channel.

2. Mathematical Formulation of Flowing-Through Problems

We present here the various kinds of well-posed flowing-through boundary value problems
for the incompressible Navier-Stokes equation. In our explanation, we follow Antontsev et
al. [1], Ragulin [4], and Ragulin and Smagulov [5]. Let us consider the flow of viscous liquid
through bounded domain Ω of Rd (d = 2 or 3), t ∈ [0, T], where T > 0 is a fixed time.
Let Γ1

k
, k = 1, . . . , K denote parts of the boundary Γ = ∂Ω where the fluid enter or leave

the domain. Let Γ0
l , l = 1, . . . , L be an impermeable parts of the boundary, D = Ω × (0, T),

S = Γ × (0, T), Sαi = Γαi × (0, T), α = 0, 1. Scheme of the domain is depicted in Figure 1.
The flowing-through problem is to find a solution of the Navier-Stokes equations

∂−→u
∂t

+
(−→u · ∇

)−→u = −1
ρ
∇p + νΔ−→u,

∇ · −→u = 0,

(2.1)
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in the domainD = Ω×(0, T) with appropriate initial and boundary conditions, where −→u is the
velocity vector, p is the pressure, ρ is the density, and ν is the kinematic viscosity. The initial
data are

−→u |t=0 = −→u0(−→x
)
, ∇ · −→u0 = 0, −→x ∈ Ω. (2.2)

On the solid walls Γ0
l , the no-slip condition holds

−→u = 0,
(−→x, t

)
∈ S0

l , l = 1, . . . , L. (2.3)

On the flow-through parts Γ1
k, k = 1, . . . , K three types of boundary conditions can be set up

to make problem wellposed. As shown in [1, 4], the conditions are the followings.

(i) On the flow-through parts Γ1
j , j = j1, . . . , jn, the tangent components of the velocity

vector and the total pressure are prescribed as

−→u · −→τ m = Gm
j

(−→x, t
)
, m = 1, 2,

p +
1
2
ρ
∣∣−→u · −→u

∣∣ = Hj

(−→x, t
)
,
(−→x, t

)
∈ S1

j , j = j1, . . . , jn.
(2.4)

Here −→τ 1,
−→τ 2 are the linearly independent vectors tangent to Γ1

j . Functions Gm
j (
−→x, t),

and Hj(
−→x, t) are given on S1

j = Γ1
j × (0, T).

(ii) On the flow-through parts Γ1
l , l = l1, . . . , ln, the tangent components of the velocity

vector and pressure are known as

−→u · −→τ m = Gm
l

(−→x, t
)
, m = 1, 2, p = Hl

(−→x, t
)
,
(−→x, t

)
∈ S1

l , l = l1, . . . , ln. (2.5)

Here Gm
l
(−→x, t) and Hl(

−→x, t) are given on S1
l
= Γ1

l
× (0, T).

(iii) On the flow-through parts Γ1
s, s = s1, . . . , sn, the velocity vector (all three

components) has to be prescribed as

−→u = −→u1
s

(−→x, t
)
,
(−→x, t

)
∈ S1

s, s = s1, . . . , sn. (2.6)

Here −→u1
s(
−→x, t) is given on S1

s = Γ1
s × (0, T).

It should be mentioned that various combinations of boundary conditions on S1
k
, k =

1, . . . , K give well-posed problems. For example, on the portion of the flow-through parts
S1
j , j = j1, . . . , jn one kind of boundary condition may hold, and other portions another kinds

may hold.

3. Finite Volume Approximation of Flowing-Through Problems

Let us present the numerical algorithm for the flowing-through problem. Numerous variation
of projection methods have been developed and have been successfully utilized in computing
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incompressible flow problems. To emphasize on pressure boundary conditions, we used here
simple explicit projection method. Although some of the main aspects are well known in
literature, for the sake of completeness details are given.

3.1. Time Discretization

The time discretization used here is based upon the simplest projection scheme originally
proposed by Chorin and Temam (see, e.g., [19, 20]). This scheme has an irreducible splitting
error of order O(Δt). Hence, using a higher-order time stepping scheme for the operator
∂/∂t − νΔ does not improve overall accuracy. Using the explicit Euler time stepping, the
marching steps in time are the following.

Set −→u |t=0 = −→u0, then for n ≥ 0 compute −→u∗,−→un+1, and pn+1 by solving first substep:

−→u∗ − −→un

Δt
+
(−→un · ∇

)−→un = ν � −→un, (3.1)

and second substep:

−→un+1 − −→u∗

Δt
= −∇pn+1, (3.2)

∇ · −→un+1 = 0,
(−→un+1

)

Γ0
= 0, (3.3)

where Δt = T/N is the time step, N is the integer, −→un ≈ −→u(−→x, nΔt), and pn+1 ≈ p(−→x, (n +
1)Δt). Without loss of generality, density is equal to one, ρ = 1. The explicit approximation of
convective and viscous terms in (3.1) introduces restriction on the time step for stability. This
is analyzed by many (see, e.g., [20, 21] and therein references).

3.2. Space Discretization

For the sake of simplicity and without loosing generality, the formulation of the numerical
algorithm is illustrated for a two-dimensional domain. Let −→u = (ux, uy) be the velocity vector,
where ux and uy are the Cartesian components in x and y direction, respectively. The finite
volume discretization is represented for nonorthogonal quadrilaterals grid. The collocated
variable arrangement is utilized. Each discrete unknown is associated with the center of
control volume Ω. First, we discretize the convection and diffusion parts of the Navier-Stokes
equation. One can recast (3.1) in the form

φ∗ − φn

Δt
+∇ ·

(
φn−→un

)
= νΔφn, (3.4)

where the variable φ can be either ux or uy, and −→un is such that ∇ · −→un = 0.
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Figure 2: A typical 2D control volume and the notation used. A way of calculating cell face values and
gradients.

The discrete form of (3.4) is obtained by integrating on each control volume Ω,
followed by the application of the Gauss theorem:

∫

Ω

φ∗ − φn

Δt
dΩ +

∮

S

φn
(−→un · −→n

)
dS = ν

∮

S

∇φn · −→n dS, (3.5)

where S is the boundary of control volume Ω (e.g., in the case shown in Figure 2, S is the
union of the control volume faces s, e, n, and w), and −→n is the unit outward normal vector to
S. Using the midpoint rule to approximation, the surface and volume integrals yield

∫

Ω

φ∗ − φn

Δt
dΩ ≈

(
φ∗ − φn

Δt

)

P

ΔΩ, (3.6)

∮

S

φn
(−→un · −→n

)
dS ≈

∑

c=e,s,n,w
φnc

(−→un · −→n
)

c
Sc, (3.7)

∮

S

∇φn · −→n dS =
∮

S

Dnφ
ndS ≈

∑

c=e,s,n,w

(
Dnφ

n)
c Sc, (3.8)

where ΔΩ is the volume of control volume Ω, Sc is the area of the “c” control volume face,
and (Dnφ)c is the derivative of Cartesian velocity components in the normal direction at
the center of the “c” control volume face. To estimate the right-hand side in (3.7) and (3.8),
we need to know the value of Cartesian velocity components and its normal derivative on
the faces of each control volume. The implementation of Cartesian velocity components on
nonorthogonal grids requires special attention because the boundary of the control volume
is usually not aligned with the Cartesian velocity components. The 2D interpolation of
irregularly-spaced data (see, e.g., [22]) is used to interpolate Cartesian velocity components
on the boundary of each control volume in (3.7). Only the east side of a 2D control volume
shown in Figure 2(a) will be considered. The same approach applies to other faces, only the
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indices need to be changed. For example, let φk be the value of Cartesian velocity components
at point k where k =N,P, S, SE, E,NE, and let L(e,k) be the Cartesian distance between e and
k. Using 2D interpolation yields

φe =

( ∑
kL
−2
(e,k)φk

)

(∑
kL
−2
(e,k)

) , k =N,P, S, SE, E,NE, (3.9)

where L−2
(e,k) = 1/[(xe − xk)2 + (ye − yk)2]. The derivative of Cartesian velocity components

in the normal direction at the center of the control volume face in (3.8) can be calculated by
using the central difference approximation (see Figure 2(a)):

(
Dnφ

)
e ≈

φE′ − φP ′
L(P ′,E′)

. (3.10)

The auxiliary nodes P ′ and E′ lie at the intersection of the line passing through the point “e”
in the direction of normal vector −→n and the straight lines which connect nodes P and N or E
and NE, respectively, and L(P ′,E′) stands for the distance between P ′ and E′. The values of φE′
and φP ′ can be calculated by using the gradient at control volume center:

φE′ = φE +∇φE ·
(−→xE′ − −→xE

)
, φP ′ = φP +∇φP ·

(−→xP ′ − −→xP
)
, (3.11)

where −→xP , −→xE, −→xP ′ , and −→xE′ are the radius vectors of P , E, P ′, and E′, respectively. The kth
Cartesian components of ∇φP are approximated using Gauss’s theorem:

∇φP ·
−→
i k =

(
∂φ

∂xk

)

P

=
1

ΔΩ

∑

c=e,s,n,w
φn+1
c Skc , Skc = Sc

(−→n · −→ik
)
, (3.12)

where Sc is the area of “c” control volume face, −→n is the unit outward normal vector to Sc, and−→
i k is the unit basis vector of Cartesian coordinate system (x1, x2) = (x, y). Using (3.6)–(3.12)
to approximate (3.5), one can determine velocity field −→u∗ (which is not solenoidal) at each
grid node, even on the boundary.

In the first substep the continuity (3.3) is not used so that the intermediate velocity
field is, in general, nondivergence free. The details of the setting and discretization of the
second substep developed on nonuniform, collocated grid are discussed below. Equation
(3.2) applies both in continuous and discrete sense. Taking the divergence of both sides of
(3.2) and integrating over a control volume Ω, after applying the Gauss theorem and setting
the update velocity filed, −→un+1, to be divergence free, one gets the equation

0 =
1

ΔΩ

∮

S

−→un+1 · −→n dS =
1

ΔΩ

∮

S

−→u∗ · −→n dS −Δt 1
ΔΩ

∮

S

∇pn+1 · −→n dS, (3.13)

that has to be discretized while collocating the variables in the control volume centers. Here
−→n is outward normal to the boundary S of control volume Ω. At this stage of the projection
procedure, the discrete values of u∗x and u∗y are already known and represent the source term
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in (3.13). A second-order discretization of the surface integrals can be obtained by utilizing
the mean value formula. This means that the surface integrals in (3.13) can be approximated
as

1
ΔΩ

∮

S

−→un+1 · −→n dS ∼=
1

ΔΩ

∑

c=e,s,w,n

(−→un+1 · −→n
)

c
Sc,

1
ΔΩ

∮

S

∇pn+1 · −→n dS ∼=
1

ΔΩ

∑

c=e,s,w,n

(
∇pn+1 · −→n

)

c
Sc.

(3.14)

It follows that by substituting (3.14) into (3.13), one gets the discrete pressure equation

1
ΔΩ

∑

c=e,s,w,n

(−→u∗ · −→n
)

c
Sc −

Δt
ΔΩ

∑

c=e,s,w,n

(
Dnp

n+1
)

c
Sc = 0. (3.15)

The iterative method is utilized to approximate (Dnp
n+1)c and solve (3.15). The normal-to-

face intermediate velocities (−→u∗ · −→n)c, c = e, s,w, n are not directly available. They are found
using interpolation. The derivative of pressure with respect to the direction of the outward
normal −→n through the cell face “c”, (Dnp)

n+1
c is approximated by on iterative technique (see,

e.g., [23]) to reach a higher order of approximation and preserved compact stencil in the
discrete equation (3.15). Only the east face of a 2D control volume shown in Figure 2(a) will
be considered. The same approach applies to other faces. Using second upper index “s” to
denote the number of iteration, one writes

(
Dnp

)n+1,s+1
e =

(
Dξp

)n+1,s+1
e +

[(
Dnp

)
e −
(
Dξp

)
e

]n+1,s
, s = 0, . . . , Ŝ,

(
Dnp

)n+1,0 =
(
Dnp

)n
,

(3.16)

where ξ is the direction along the line connecting nodes P and E (see Figure 2(a)). The
terms in the square brackets are approximated with high order and are evaluated by using
values known from the previous iteration. Once the iterations converge, the low-order
approximation term (Dξp)

n+1,s+1
e drops out, and the solution obtained corresponds to the

higher order of approximation. The derivatives of pressure in the square brackets are written
as

(
Dnp

)n+1,s
e =

(
∇p · −→n

)n+1,s
e ,

(
Dξp

)n+1,s
e =

(
∇p ·

−→
ξ
)n+1,s

e
, (3.17)

where −→n is the unit outward normal vector to cell face “e”, and
−→
ξ is the unit vector in ξ

direction from point P to E. The term (∇p)n+1,s
e is approximated similar to (3.9) as

(
∇p
)n+1,s
e =

(∑
lL
−2
(e,l)∇p

n+1,s
l

)

(∑
lL
−2
(e,l)

) , l =N,P, S, SE, E,NE, (3.18)
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where∇pn+1,s
l is the gradient of the pressure at grid node l and L−2

(e,l) = 1/[(xe−xl)2+(ye−yl)2].

The kth components of ∇pn+1,s
l are discretized by using Gauss theorem (e.g., at grid node P):

∇pn+1,s
P · −→i k =

(
∂pn+1,s

∂xk

)

P

∼=
1

ΔΩ

∑

c=e,s,n,w
pn+1,s
c Skc , Skc = Sc

(−→n · −→ik
)
. (3.19)

The first term in the right-hand side of (3.16) is treated implicitly, and a simple approximation
is used (that gives a compact stencil):

(
Dξp

)n+1,s+1
e ≈

pn+1,s+1
E − pn+1,s+1

P

L(P,E)
, (3.20)

where L(P,E) is the distance between nodes P and E. The final expression for the
approximation of the derivative of pressure with respect to −→n through the cell face “e” can
now be written as

(
Dnp

)n+1,s+1
e =

pn+1,s+1
E − pn+1,s+1

P

L(P,E)
+∇pn+1,s ·

(−→n −
−→
ξ
)

e
. (3.21)

The terms labeled “n + 1, s” become zero when
−→
ξ = −→n is required. Repeating steps similar to

(3.16)–(3.21) for other faces of control volume and substitute result into (3.15), one generates
the equation for finding the pressure at next iteration (n + 1, s + 1) as

1
ΔΩ

∑

c=e,s,w,n

(−→u∗ · −→n
)

c
Sc −

Δt
ΔΩ

∑

c=e,s,w,n

(
∇pn+1,s

)

c

(−→n −
−→
ξ
)

c

=
Δt
ΔΩ

{(
pE − pP
L(P,E)

)n+1,s+1

−
(
pP − pW
L(P,W)

)n+1,s+1

+

(
pn+1,s
N − pn+1,s+1

P

L(P,N)

)

−
(
pP − pS
L(P,S)

)n+1,s+1
}

.

(3.22)

We use pn+1,s
N instead of pn+1,s+1

N to make matrix of algebraic system to be tridiagonal.

3.3. Implementation of Boundary Conditions

The Finite Volume Method requires the boundary fluxes for each control volume to be either
known or expressed through known quantities and interior nodal values. If the variables
values are known at some boundary point, then there is no need to solve problem for it. A
difficulty arises when approximations of normal derivatives are needed. Usually (see, e.g.,
[23]) these derivatives are approximated with lower order than the approximations used for
interior point and may be one-sided differences. The accuracy of the results depended not
only on the approximation near boundary but also on the accuracy of approximations at
interior points. If higher accuracy is required, one has to use higher-order one-sided finite
differences of derivatives at boundary and higher-order approximations at interior point. We
used first-order one-sided finite differences near boundary.
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Impermeable Wall

The following condition is prescribed on the impermeable wall:

−→u = −→uwall. (3.23)

This condition follows from the fact that a viscous fluid sticks to a solid wall. Since there is no
flow through the wall, mass fluxes and convective fluxes of all quantities are zero. Diffusive
fluxes in the momentum equation are approximated using known boundary values of the
unknown and one-sided finite difference approximation for the gradients.

Flow-Through Part

The implementations of three kinds of boundary conditions on the flow-through parts are
addressed here. Only the case where the east face of the control volume aligns with flow-
through boundary Γ1 will be considered. A sketch of the grid and the notations used are
shown in Figure 2(b). Other faces are treated similar.

(a) The velocity is set up (see (2.6)) as

−→uΓ1 = −→u1
s

(−→x, t
)
. (3.24)

Since the velocity vector is given, the mass flow rate and the convective fluxes
can be calculated directly. The diffusive fluxes are not known, but they are
approximated using known boundary values of the unknowns and one-sided finite
difference approximation for the gradient. It is important to note how boundary
condition (3.24) is involved in the derivation of the discrete pressure equation.
Because (−→un+1)e is given by (3.24), the approximation of (3.13) becomes

1
ΔΩ

[(−→un+1 · −→n
)

e
+
∑

c=s,w,n

(−→u∗ · −→n
)

c
Sc

]

− Δt
ΔΩ

∑

c=s,w,n

(
Dnp

n+1
)

c
Sc = 0. (3.25)

One does not need to approximate (Dnp
n+1)e at face “e”. However, if pressure at

the boundary Γ1 is needed at some stage, it can be obtained by extrapolation within
the domain.

(b) The tangential velocity and pressure are prescribed (see, (2.5)) as

(−→u · −→τ
)
Γ1 = G

(
x, y, t

)
, pΓ1 = H

(
x, y, t

)
. (3.26)

When the tangential velocity and pressure are specified on the flow-through part
of boundary, the mass and convective fluxes are not known. One has to find
them during the solution process. The solenoidal constraint ∇ · −→u = 0 has to be
applied at the boundary where the pressure is specified. Because the flow-through
boundaries may not be aligned with the Cartesian coordinates, we will refer to
the local coordinate system (n, τ) which is a rotated Cartesian frame with n in the
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direction of normal vector to the flow-through boundary and τ in the direction of
the tangential vector to the flow-through boundary. The velocity vector −→u = (ux, uy)
can be expressed in terms of velocity components in local orthogonal coordinates
−→u = (Un,Uτ), where Un = −→u · −→n is the normal velocity component to the flow-
through boundary, and Uτ = −→u · −→τ is the tangential velocity component to the
flow-through boundary which is known at Γ1 from boundary condition (3.26). The
continuity equation in terms of local orthogonal coordinates (n, τ) reads

∂Un

∂n
+
∂Uτ

∂τ
= 0. (3.27)

Using (3.26) and (3.27) yields

(
∂Un

∂n

)

Γ1
= −∂G

∂τ
. (3.28)

To find the flux on the flow-through part, one needs to calculate the normal velocity
(Un)e at the east cell face “e” (See Figure 2(b)). The normal derivative of Un at the
east cell face is approximated by one-side difference:

(
∂Un

∂n

)

e′
=

(Un)e′ − (Un)P
L(e′,P)

, (3.29)

where e′ is the point of intersection of the line passing through node P parallel
to normal vector to Γ1 at point “e” and the line coincide with boundary Γ1 (see
Figure 2(b)). Following (3.28) and (3.29), the normal velocity component at point
e′ is approximated as

(−→un+1 · −→n
)

e′
=
(
Un+1
n

)

e′
=
(
Un+1
n

)

P
− L(e′,P)

(
∂G

∂τ

)

e′
. (3.30)

The discrete pressure equation for control volume Ω near flow-through boundary
has the following form:

1
ΔΩ

[(−→un+1 · −→n
)

e′
Se +

∑

c=s,w,n

(−→u∗ · −→n
)

c
Sc

]

− Δt
ΔΩ

∑

c=s,w,n

(
Dnp

n+1
)

c
Sc = 0. (3.31)

Here, the point “e′” is used instead of “e” to approximate the flux through the east
face. In this case the order of approximation is reduced to first order. Moreover, in
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many cases, the grid is arranged such that “e′” coincides with the center of the east
face. Substituting (3.30) into (3.31) and utilizing (3.13) at node P yields

1
ΔΩ

[(−→u∗ · −→n
)

P
−Δt

(
∇pn+1,s+1 · −→n

)

P
− L(e′,P)

∂G

∂τ e′

]
Se

+
1

ΔΩ

[
∑

c=s,w,n

(−→u∗ · −→n
)

c
Sc

]

− Δt
ΔΩ

∑

c=s,w,n

(
Dnp

n+1,s+1
)

c
Sc = 0.

(3.32)

The derivative of pressure with respect to outward normal direction n at node P
approximated by one-side difference is

(
Dnp

)n+1,s+1
P =

pn+1
e′ − p

n+1,s+1
P

L(P,e′)
, (3.33)

where L(P,e′) is the distance between nodes P and e′ on the boundary Γ1.

(c) The tangential velocity and total pressure are prescribed (see, (2.4)) by

(−→u · −→τ
)
Γ1 = G

(
x, y, t

)
, p +

1
2
∣∣−→u · −→u

∣∣ = H
(
x, y, t

)
,
(
x, y

)
∈ Γ1. (3.34)

When the tangential velocity and total pressure are specified on the flow-through
part, the situation arises where mass flux, convective flux, and pressure are not
known. Let us use a local coordinates system (n, τ) as in the previous case. The flux
(Un)e′ = (−→u · −→n)e′ is approximated by (3.30). Since the pressure term on the flow-
through boundary Γ1 (see Figure 2(b)) is unknown, one needs to approximate the
pressure on the flow-through part by using the total pressure boundary condition,
and one needs to calculate the pressure at point e′. The total pressure on flow-
through part can be expressed in terms of local orthogonal coordinates (n, τ) in
2D at point e′ as

pn+1,s+1
e′ +

1
2

∣∣∣∣
−→
U
n+1

e′

∣∣∣∣

2

= pn+1,s+1
e′ +

1
2

((
Un+1
n

)2

e′
+ (Uτ)2

e′

)
= H. (3.35)

Using boundary condition (3.34) the last equation recasts as

pn+1,s+1
e′ +

1
2

(
Un+1
n

)2

e′
= H − 1

2
G2
e′ . (3.36)

Substituting (Un+1
n )e′ given by (3.30) yields

pn+1,s+1
e′ +

1
2

((
Un+1
n

)

P
−
L(e′,P)

2
∂G

∂τ

)2

= H − 1
2
G2
e′ . (3.37)
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Using (Un+1
n )P = (−→un+1 · −→n)P = (−→u∗ · −→n)P −Δt(∇pn+1,s+1 · −→n)P yields

pn+1,s+1
e′ +

1
2

[(−→u∗ · −→n
)

P
−Δt

(
∇pn+1,s+1 · −→n

)

P
− L(e′,P)

∂G

∂τ

]2

= H − 1
2
Ge′ . (3.38)

Dropping terms of order O(Δt), one gets

pn+1,s+1
e′ = H − 1

2
Ge′ −

1
2

(−→u∗ · −→n
)2

P
− 1

2
L2
(e′,P)

(
∂G

∂τ

)2

e′

+
(−→u∗ · −→n

)

P
L(e′,P)

(
∂G

∂τ

)

e′
.

(3.39)

We have the previous case where pressure is given on the flow-through parts. When
on the flow-through boundary −→n =

−→
ξ and G = 0, the expression for pe (3.38) reads

pn+1,s+1
e = H −

(−→u∗ · −→n
)2

P
. (3.40)

4. Results and Discussion

The proposed method is applied to test problems. The details of each of the problems and
computed results are discussed in the following sections.

4.1. Flow between Two Parallel Plates

The purpose of this test is to estimate the potential and quality of the developed method
in the case of unsteady flow. Considering the 2D channel flow between two parallel plates,
the Cartesian coordinate system (x, y, z) is chosen so that the x-axis is taken as the direction
of flow, y is the coordinate normal to the plate, and z is the coordinate normal to x and y,
respectively. The velocity field is assumed to be of the form −→u = u(y, t)

−→
i , where u is the

velocity in the x-coordinate direction, and
−→
i is the unit vector in the x-coordinate direction.

The Navier-Stokes equation implies that the pressure gradient is a function of time only,
∂p/∂x = f(t).

Initial data at t = 0 is the fluid at the rest, u(y, 0) = 0. The flow is driven by pressure
difference p2(L, t) − p1(0, t) = Δp cos(ωt) where L is the distance between the flow-through
parts, ω is the frequency, and Δp is the characteristic pressure difference between two flow-
through parts. The problem is dimensionalized with the height of the channel h as the length
scale, Δp · h/L as the pressure scale,

√
Δp · h/

√
ρL as the velocity scale, and

√
ρhL/

√
Δp as

the time scale. Nondimensional frequency is η = ω
√
Δp/

√
ρLh. Since the flow is driven by

pressure difference and there is no velocity scale in the problem, we use ρU2 = Δp · h/L in
the traditional definition of the Reynolds number and call it the “Pressure Reynolds Number.”

ReΔp =
Uh

ν
=
h

ν

√
Δph
ρL

, (4.1)
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where ν is the kinematic viscosity. The analytical solution of the dimensionless problem
obtained by separation of variables is

u
(
y, t
)
=
∞∑

n=1

⎡

⎣2(1 − cos(nπ))
nπ

sin
(
nπy

)
t∫

0

e−λ
2
n(t−τ) · cos

(
ητ
)
dτ

⎤

⎦, λn =
nπ

Re1/2
Δp

, 0 ≤ y ≤ 1.

(4.2)

Computations are carried out with 1000 cells distributed in a uniform manner in the channel.
A uniform grid having 20 lines across the channel and 50 lines in the direction of x was found



Mathematical Problems in Engineering 15

to reproduce the flow parameters with good accuracy. In order to reduce computing cost,
the distance between the flow-through parts was chosen to be one, L = 1. The dependence
between ReQ and ReΔp is plotted in Figure 3, for constant pressure drop p2(L, t) − p1(0, t) =
Δp. The solid line represents the exact relation ReQ = Re2

Δp/24, where ReQ = Q/2ν is the

Reynolds number based on the flow rate, Q =
∫1

0u(y)dy. Circle signs represent the results of
our numerical simulations. The Reynolds number ReQ is not known a priori; it was computed
at the end of the numerical simulation from the steady state flow rate obtained with the given
ReΔp. As expected, the results are very close, and the velocity profile for all cases was the
parabolic Poiseuille flow.

From the analytical solution given by (4.2), it is obvious that the mass flow rate
oscillation is a function of the oscillating frequency η and the pressure Reynolds number,
ReΔp. In Figure 4, the variation of Q(t) =

∫1
0u(y, t)dy with time is shown for given η = 1

and 3, and ReΔp = 150. Solid and dashed lines represent exact solutions for η = 1 and 3,
respectively. Circle and triangle signs correspond to the result of our numerical simulations
for η = 1 and 3, respectively. The numerical solution starts at t = 0, and the time step is
Δt = 10−4. The above result corroborates that the proposed numerical method successfully
predicts the volume rate for the constant and oscillated pressure drop.

4.2. Flow with Circular Streamline

Another simple type of fluid motion through a bounded domain is one in which all the
streamlines are circles centered on a common axis of symmetry. Steady motion can be
generated by a circumferential pressure gradient in the domain between two concentric
cylinders of radii r1 and r2. If the motion is to remain purely rotatory with the axial component
of velocity to be zero, the axial pressure gradient must be zero, and the Navier-Stokes
equations show that motion must be 2D. Using the equation of motion in polar coordinates
(r, θ) and assuming that the velocity component in direction of the θ-coordinate line v = v(r)
is a function of r only, and the radial velocity component is zero, one finds

v2

r
=
∂p

∂r
,

∂2v

∂r2
+

1
r

∂v

∂r
− v

r2
=

1
r

∂p

∂θ
.

(4.3)

The variables in (4.3) are made nondimensional with h = r2−r1 as length scale, ν/h as velocity
scale, and ρν2/h2 as pressure scale. Let d0 = (r1 + r2)/(2h) = R0/h be the nondimensional
radius of centerline. Figure 5 represents a sketch of the problem geometry and main notations.
It is easy to see from (4.3) that pressure has to be a linear function of θ:

p(r, θ) = f(r) +K · θ, K =
∂p

∂θ
− const, f(r) =

∫ r

d0−1/2

v2(ξ)
ξ

dξ. (4.4)

With the boundary condition

v

(
d0 ±

1
2

)
= 0, (4.5)
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Figure 5: The sketch of problem domain, flow with circular streamlines.

one obtains solution of (4.3)–(4.5) in the following form:

v(r) =
K

8

{
C1r +

C2

r
+ 4r ln r

}
, d0 −

1
2
≤ r ≤ d0 +

1
2
, (4.6)

p(r, θ) =
∫ r

d0−1/2

v2(ξ)
ξ

dξ +K · θ, 0 ≤ θ ≤ θ̂, d0 −
1
2
≤ r ≤ d0 +

1
2
, (4.7)

C1 =
(2d0 − 1)2ln(d0 − 1/2) − (2d0 + 1)2ln(d0 + 1/2)

2d0
, C2 =

(
4d2

0 − 1
)2

8d0
ln
(
d0 + 1/2
d0 − 1/2

)
.

(4.8)

The nondimensional volume rate of flow becomes

Q =
∫d0+1/2

d0−1/2
vdr =

K

8
E,

E = 2C1d0 + C2ln
(
(d0 + 1/2)
(d0 − 1/2)

)
− 4d0 + 2

[(
d0 +

1
2

)2

ln
(
d0 +

1
2

)
−
(
d0 −

1
2

)2

ln
(
d0 −

1
2

)]

.

(4.9)

Problem (4.3)–(4.5) can be considered as an example of the flowing-through problem where
pressure and the tangential component of the velocity vector are given on flow-through
parts AB and DC. It is worth to note here that the distribution of pressure is not constant
at the flow-through parts and that the numerical solution uses the Navier-Stokes equation
in terms of Cartesian coordinates and Cartesian velocity components −→u = (ux, uy) where
ux = −v(r)sin(θ), uy = v(r) cos(θ), r2 = x2 + y2, and θ = tan−1(y/x). Using exact
solution (4.6)–(4.9), one can formulate the flowing-through problem where total pressure
p + (1/2)[u2

x(r, θ) + u2
y(r, θ)] and tangent velocity are known on flow-through parts. It is

also possible to consider problems where, in flow-through parts, different kinds of boundary
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Figure 6: Velocity profiles at the verticle line θ = π/2(component ux), for Case 1 and different values of K.

Table 1: Test cases 0 ≤ θ ≤ π , �u = (ux, uy), and H(r) = p + v(r)2/2.

Case Flow-through boundary Solid wall
AB(θ = 0) CD(θ = π) AD,CB(0 ≤ θ ≤ π)

1 ux = 0, p = f(r) ux = 0, p = f(r) +Kπ ux = uy = 0
2 ux = 0, uy = v(r) ux = 0, p = f(r) +Kπ ux = uy = 0
3 ux = 0, uy = v(r) ux = 0, p + u2

y/2 = H(r) ux = uy = 0
4 ux = 0, p = f(r) ux = 0, p + u2

y/2 = H(r) ux = uy = 0

conditions apply. The test cases of flowing-through problems computed in this section are
summarized in Table 1. In all cases, we use 0 ≤ θ ≤ π . Nonorthogonal logically rectangular
boundary-fitted grids were constructed as follows. The impermeable boundaries AD and
CB are partitioned equally into M subintervals. The flowing-though parts AB and CD are
divided into an equal number of N subintervals. To reach steady flow, we used marching in
time until the solution no longer changes. The grid independence study has been carried out
for several values of circumferential pressure gradient, K, and for four cases of the flowing-
through problems. The influence of the grid size on the difference between the exact velocity
(4.6) and the approximate velocity in the maximum norm is shown in Table 2, for K = 500.
The convergence rates for the two finest grids are compared to the next coarser grid (see
values in the brackets). Upper indices “ext” and “app” reference the exact and approximate
solutions, respectively. It can be clearly seen from these results that the rate of convergence is
near two. For Case 1, Figure 6 shows the variation of the dimensionless x-component of the
velocity vector along the line θ = π/2 with circumferential pressure gradient ∂p/∂θ = K. The
value of the circumferential pressure gradient varies from K = 250 to K = 1000.

Figure 7 shows pressure distribution for Case 1 along the line θ = π/2 and K = 500.
In both figures the solid lines represent the exact solutions (4.6) and (4.7), and the circle signs
represent the numerical results. The calculated velocity profile and pressure along the line
θ = const for Cases 2–4 are also in excellent agreement with the exact solution.
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Table 2: Rate of convergence of uy for test cases.

Grid M ×N ‖uapp − uext‖
Case 1 Case 2 Case 3 Case 4

20 × 10 1.508E-1 1.220E-1 1.218E-1 1.425E-1
40 × 20 3.979E-2(1.92) 3.026E-2(2.01) 3.018E-2(2.01) 3.753E-2(1.93)
80 × 40 9.955E-3(1.99) 8.291E-3(1.87) 7.590E-3(1.99) 9.739E-3(1.95)

4.3. Flowing-Through Problem for U-Bend Channel

For further validation, two-dimensional U-bend channel flow simulations are conducted. The
flow configuration and main notations are shown in Figure 8. The channel has a curvature
ratio δ = R/d, whereR is the radius of curvature, and d is the width of channel. The lengths of
the channel before and after the bend L are taken sufficiently large to assume that pressure at
sections A1A

′
1 and A2A

′
2 can be considered as constant, and fluid enters or leaves the channel

legs with laminar, fully developed velocity profiles. The developed finite volume method
has been utilized to simulate steady flow. For obtaining steady-state solution, the time is
considered as pseudotime, and equations are iterated until the solution converges to steady
state. Three kinds of the flowing-through problem have been considered. In all cases, no-slip
boundary condition holds at the impermeable parts Γ0

1 and Γ0
2.

The three flowing-through problems are formulated as follows.
(P1) On flow-through parts Γ1

1 and Γ1
2, the tangent components of velocity vector and

pressure are specified (see (2.5)) by

−→u · −→τ = ux = 0, p = p1,
(−→x
)
∈ Γ1

1,

−→u · −→τ = ux = 0, p = p2,
(−→x
)
∈ Γ1

2,
(4.10)

where −→τ is tangent unit vector to Γ1
1 and Γ1

2.
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Figure 8: Schematic diagram of U-bend channel.

(P2) On flow-through part Γ1
1, the tangent and normal components of velocity vector are

given (see (2.6)) by

−→u =
(
ux, uy

)
=
(

0, u1
s(x)

)
, −→x ∈ Γ1

1, (4.11)

where u1
s(x) is the parabolic Poiseuille velocity profile.

On flow-through part Γ1
2, the tangent component of velocity and pressure are specified

(see (2.5)) by

−→u · −→τ = ux = 0, p = p2,
(−→x
)
∈ Γ1

1. (4.12)

(P3) On flow-through part Γ1
1, the tangent component of velocity vector and total

pressure are prescribed (see (2.4)) by

−→u · −→τ = ux = 0, p +
1
2
ρ
∣∣−→u · −→u

∣∣ = H1
(−→x
)
,
(−→x
)
∈ Γ1

1, (4.13)

where H1(
−→x) is a given function and is computed from the solution of P2. On the

flow-through parts Γ1
2, the tangent component of the velocity vector and pressure

are known (see (2.5)) by

−→u · −→τ = ux = 0, p = p2,
(−→x
)
∈ Γ1

2. (4.14)
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Figure 9: Friction factor as a function of the Reynolds number.

The main characteristic of flow in curve channels is pressure loss. The pressure losses are
presented in the form of friction factor versus Reynolds number:

fw =
2Δp

ρU2(L/d)
= f(Re), (4.15)

whereU is the mean velocity, ρ is the density of the fluid, Re = Ud/ν is the Reynolds number,
ν is the kinematic viscosity of fluid, and Δp is the pressure losses, Δp = p2 − p1. Before
the main computations were started, a test was executed with a straight channel. A very
good agreement of the computed pressure losses with the theoretical solution based on the
Poiseuille law fw ≈ 36/Re was observed. Based on the preliminary experiments, the length
of the channel legs l = L/d = 5 was used in the main computations represented below. The
impermeable boundaries A1A2 and A′1A

′
2 were equally partitioned into M subintervals. The

flowing-through partsA1A
′
1 andA2A

′
2 were divided into an equal number ofN subintervals.

Three grid sequences of 100×10, 200×20, and 400×40 nodes were tested. Computations using
these grid sequences are shown in Table 3. In the case of the flowing-through problem P1, the
pressure losses are known a priori, and the Reynolds number was computed from the steady
state flow rate. In problem P2 the Reynolds number is known a priori, and Δp was estimated
from the steady state flow regime. In the problem P3 neither Δp nor Re is known a priori, and
both of them were computed at the end of the numerical simulation from steady state.

Total pressure losses of a U-bend channel flow are presented in the form of the friction
factor versus Reynolds number fw = f(Re) in Figure 9, where the effect of the dimensionless
curvature ratio, δ = R/d, is shown. All three flowing-through problems P1, P2, and P3 give
very close results. From Figure 9 it is seen that the effect of the channel curvature ratio on the
friction factor is small for δ > 3 for all tested flowing-through problems. The friction factor fw
increases with decreasing δ. In Figure 10, streamline patterns are presented. Figure 10(a) is
drawn for δ = 1 and Re = 200, Figure 10(b) shows the case of δ = 1 and Re = 300, Figure 10(c)
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Table 3: Friction factor for three kinds of the flowing-through problem. Re = 100, δ = 3.

Grid M ×N Friction factor,fw
P1 P2 P3

100 × 10 0.43128 0.433153 0.431782
200 × 20 0.429673 0.431639 0.429832
400 × 40 0.429647 0.431549 0.429587
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Figure 10: Streamline patterns of flow in the U-bend channel for various δ and Re.

depicts δ = 0.6 and Re = 200, and Figure 10(d) is drawn for δ = 0.6 and Re = 300. The
sharp bend δ = 0.6 and increasing Reynolds number cause separation which occurs on the
right side of the bend. The size of the separation zone increases with increasing flow rate and
decreasing δ.

The velocity profile in the cross section y = 1 of the right-hand side leg of U-bend is
depicted in Figure 11 for Re = 200 and 300 and δ = 0.6.

4.4. Flow in Planar T-Junction Channel

The T-junction flow geometry is schematically represented in Figure 12. The origin of the
coordinate system is located in the lower horizontal boundary opposite the left corner of
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Figure 12: Schematic geometry of T-junction bifurcation and coordinate system.

branch as demonstrated. The left-hand side branch, the upper branch, the right-hand side
branch, and the junction area are denoted by Γ1, Γ2, Γ3, and Γ4, respectively. All branches
have the same width w.

The flow rate ratio is defined as β ≡ Q3/Q1 where Q1 and Q3 are the inlet duct
and branch duct flow rates per unit span, respectively. The following problem has been
considered.

(i) On flow-through part Γ1
1a laminar, fully developed, parabolic velocity profile is

prescribed by

−→u =
(
ux
(
y
)
, 0
)
,
(
x, y

)
∈ Γ1

1. (4.16)
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(ii) On flow-through parts Γ1
2 and Γ1

3 the tangent component of the velocity vector and
the pressure are specified by

−→u · −→τ 2 = uy = 0, p = p2,
(
x, y

)
∈ Γ1

2,

−→u · −→τ 3 = ux = 0, p = p3,
(
x, y

)
∈ Γ1

3,
(4.17)

where −→τ i is the unit tangent vector to Γ1
i , i = 2, 3.

The calculations are compared with those of Hayes et al. [13], Kelkar and Choudhury [16],
and Fluent [24]. A flowing-through problem with ux = 4y − 4y2 and equal static pressure
p2 = p3 = 0 is considered. The Navier-Stokes equation dimensionalized with the width, w,
as characteristic length, the inlet centerline velocity Uc as the characteristic velocity, and ρU2

c

as the scale of pressure. A range of Reynolds number Re = wUc/ν, where ν is the kinematic
viscosity, is studied with Re ∈ [10, 400]. The computational domain is set to have lengths of
L1/w = 2 and L2/w = L3/w = 3 according to the results represented in Fluent Inc. [24]. The
square meshes containing 20, 30, and 40 cells from wall to wall are used. The studied cases
start from a motionless state. A steady flow is achieved if the following condition is held:
‖−→un+1 − −→un‖ ≤ ε = 10−8. The maximum norm of grid function is used. Figure 13 shows the
effect of increasing the Reynolds number on the flow split between the main and the side exit
branches. The value of β increases from 0.5 for a small Reynolds number, Re < 10, to about 0.9
at Re = 400. Figure 14 shows the predicted streamline pattern and pressure contour plots for
two Reynolds Numbers Re = 100, 400. Flow separation from the left wall of the upper branch
occurs at all considered Reynolds numbers. These are very similar to those reported in Fluent
Inc. (1998). The size and extent of flow separation zone are in a good agreement with results
of Hayes et al. [13], Kelkar and Choudhury [16], and Fluent [24].
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Figure 14: Streamline patterns and pressure contour of flow in the T-junction for various Re and equal
static pressure at the exists Γ1

2 and Γ1
3.

5. Conclusion

A mathematical formulation of well-posed initial boundary value problems for viscous
incompressible fluid flow-through-bounded domain is described for the case where the
values of static or total pressure and tangential components of the velocity vector on flow-
through parts of the domain boundary are prescribed. A computational method for the
approximate solution of these well-posed problems is developed within the framework of
the finite volume approach. The robustness of the method is validated by its application
for channel flows driven by pressure drop for which analytical solutions are available (2D
Poiseuille flow, purely rotatory flow in the annular domain between cylinders). The effect of
curvature ratio of planar U-bend channel is analyzed for various flowing-through problem
formulations. The flow through planar T-junction channel is utilized as a benchmark test in
the case of several flow-through parts of boundary. Results of all tests confirm the reliability
and accuracy of developed method. The method is robust and accurate in simulating
incompressible flows in domains with known boundary pressure (or total pressure) and with
known velocity profiles in flow-through parts of boundary.
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