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We introduce fractional order into an HIV model. We consider the effect of viral diversity on the
human immune system with frequency dependent rate of proliferation of cytotoxic T-lymphocytes
(CTLs) and rate of elimination of infected cells by CTLs, based on a fractional-order differential
equation model. For the one-virus model, our analysis shows that the interior equilibrium which
is unstable in the classical integer-order model can become asymptotically stable in our fractional-
order model and numerical simulations confirm this. We also present simulation results of the
chaotic behaviors produced from the fractional-order HIV model with viral diversity by using an
Adams-type predictor-corrector method.
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1. Introduction

An important part of the human immune response against viral infections is cytotoxic T
lymphocytes (CTLs) [1]. They recognize and kill cells which are infected by virus. There
are many immune models describing the virus dynamics with CTL immune response.
Nowak and Bangham [2, 3] proposed an ODE model which explores the relation among
CTL immune responses, virus load, and virus diversity. In [2], a rate of specific CTL (Zj)
proliferation in response to the corresponding specific infected cells (Ij) depends on the mass
action law cIjZj . This model has been important in the field of mathematical modelling of
HIV infection. In their model, there is no interaction among different types of CTL (Zj).
Iwami et al. [4] assumed that the correlation is incorporated as a function of the frequency
that the specific CTLs (Zj) encounter in the specific infected cells (Ij). In a similar manner,
they considered the rate of elimination of specific infected cells (Ij) by the specific CTLs
(Zj) to be proportional to this frequency. However, these models do not take into account
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the fractional order derivatives that have been extensively applied in many fields (e.g., [5–
17] and the reference cited therein). Recently many mathematicians and applied researchers
have tried to model real processes using the fractional order differential equations (FODE)
[16]. In biology, it has been deduced that the membranes of cells of biological organism
have fractional order electrical conductance [13] and then, they are classified into group of
noninteger order models. Also, it has been shown that modelling the behavior of brainstem
vestibule-oculumotor neurons by FODE has more advantages than classical integer order
modelling [8].

Particular emphasis is that a major difference between fractional order models and
integer order models is that fractional order models possess memory [5, 12], while the
main features of immune response involve memory [18]. Hence, we attempt to model HIV
infection with immune response using a fractional order system. Our presentation is based on
the immune model of HIV infection which is developed by Iwami et al. [4]. For the one-virus
model, we carry out a detailed analysis on stability of equilibrium. Our analysis shows that
the interior equilibrium which is unstable in the classical integer order model can become
asymptotically stable in our fractional order model. We also find that chaos does exist in the
fractional order HIV model with viral diversity.

2. Model Derivation

We first give the definition of fractional order integration and fractional order differentiation
[14, 16]. For the concept of fractional derivative we will adopt Caputo’s definition which is a
modification of the Riemann-Liouville definition and has the advantage of dealing properly
with initial value problems.

Definition 2.1. The fractional integral of order α > 0 of a function f : R+ → R is given by

Iαf(x) =
1

Γ(α)

∫x
0
(x − t)α−1f(t)dt (2.1)

provided the right side is pointwise defined on R+.

Definition 2.2. The Caputo fractional derivative of order α ∈ (n−1, n) of a continuous function
f : R+ → R is given by

Dαf(x) = In−αDnf(x), D =
d

dt
. (2.2)

Now we introduce fractional order into the ODE model by Iwami et al. [4]. The new
system is described by the following set of FODE:

Dq1T = λ − dT −
n∑
l=1

β′lTVl,

Dq2j Ij = β′jTVj − aIj − bZj

Ij

T +
∑n

l=1Il
,
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Dq3jZj = cZj

Ij

T +
∑n

l=1Il
− δZj,

Dq4j Vj = kaIj − uVj
(
j = 1, 2, . . . , n

)
, (2.3)

where T(t) represents the concentration of uninfected cells at time t, Ij(t) represents the
concentration of infected cells with a virus particle of type j, Vj(t) the concentration of free
virus particle of type j, and Zj(t) denotes the magnitude of the specific CTL response against
variant j. Here, 0.95 ≤ q1, q2j , q3j , q4j ≤ 1 (j = 1, 2, . . . , n) are restricted such that fractional
derivative can be approximately described the rate of change in number.

Following [4], uninfected cells are assumed to be generated at a constant rate λ.
Uninfected cells, infected cells, free viruses, and CTLs decline at rates d, a, u, and δ,
respectively. The total number of virus particles produced from one cell is k. The rate of CTL
proliferation in response to antigen is given by cZjIj/(T+

∑n
l=1Il) and the specific infected cells

are killed by specific CTLs at rate bZjIj/(T +
∑n

l=1Il), while infected cells are produced from
uninfected cells and free virus at rate β′lTVl. That is, a rate of specific CTL(Zj) proliferation in
response to the corresponding specific infected cells (Ij) depends on the frequency, instead of
the mass action law.

To simplify the model, it is reasonable to assume that the decay rate of free virus, u,
is much larger than that of the infected cells, a, and this system describes the qualitative
dynamics of the asymptomatic phase of HIV infection. Thus, we may introduce as a good
approximation that the virus is in steady state (i.e., Dq4j Vj = 0) and hence Vj = kaIj/u (see
[4, 19]). This leads to the following simplified system of FODE:

Dq1T = λ − dT −
n∑
l=1

βlTIl,

Dq2j Ij = βjTIj − aIj − bZj

Ij

T +
∑n

l=1Il
,

Dq3jZj = cZj

Ij

T +
∑n

l=1Il
− δZj

(
j = 1, 2, . . . , n

)
,

(2.4)

where βj = kaβ′j/u.

3. One-Virus Model

In this section, we discuss in detail an important special case of model (2.4) and perform
an equilibrium and stability analysis for this special case. We consider the one-virus model
(n = 1) and assume that q1 = q21 = q31 = α (0.95 ≤ α ≤ 1). This one-virus model is described
by the following system of FODE:

DαT = λ − dT − β1TI1,

DαI1 = β1TI1 − aI1 − bZ1I1

T + I1
,

DαZ1 =
cZ1I1

T + I1
− δZ1.

(3.1)
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To evaluate the equilibria, let

DαT = 0,

DαI1 = 0,

DαZ1 = 0.

(3.2)

Then system (3.1) has three equilibria: the uninfected equilibrium EH = (λ/d, 0, 0), the
boundary equilibrium EI = (T ∗, I∗1 , 0), where

T ∗ =
a

β1
, I∗1 =

λ

a
− d

β1
, (3.3)

and the interior equilibrium Ec = (T̂ , Î1, Ẑ1), where

T̂ =
−d +

√
d2 + 4λβ̂

2β̂
, Î1 =

δ

c − δ T̂ ,

Ẑ1 =
cT̂

b(c − δ)
(
β1T̂ − a

)
, β̂ =

δβ1

c − δ .

(3.4)

Following the analysis in [4], we introduce a basic reproduction number which is defined by

R0 =
λβ1

ad
. (3.5)

Denote R3
+ = {(T, I1, Z1) ∈ R3 | T ≥ 0, I1 ≥ 0, Z1 ≥ 0} and we always assume that c > δ.

Note that DαZ1 < 0 always holds true if c ≤ δ. By generalized mean value theorem [15], we
get Z1(t) is decreasing if c ≤ δ.

Next we will discuss the existence and stability of the equilibria of the model (3.1).

Theorem 3.1. (a) The uninfected equilibrium EH is locally asymptotically stable (LAS) if R0 ∈ (0, 1)
and unstable if R0 > 1.

(b) If R0 > 1, then the boundary equilibrium EI exists. This equilibrium is LAS if 1 < R0 <
(aδ/d(c − δ)) + 1 and unstable if R0 > (aδ/d(c − δ)) + 1.

(c) If R0 > (aδ/d(c − δ)) + 1, then Ec exists in IntR3
+, where IntR3

+ is the interior of R3
+.

Proof. (a) The Jacobian matrix J(EH) for system (3.1) evaluated at EH is given by

J(EH) =

⎛
⎜⎜⎜⎜⎝

−d −β1λ

d
0

0
β1λ

d
− a 0

0 0 −δ

⎞
⎟⎟⎟⎟⎠. (3.6)
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EH is locally asymptotically stable if all of the eigenvalues p of the Jacobian matrix J(EH)
satisfy the following condition [6, 17]:

∣∣arg
(
p
)∣∣ > απ

2
. (3.7)

The eigenvalues of J(EH) are −d, β1λ/d − a, −δ. It is clear that EH is LAS if R0 < 1 and is
unstable if R0 > 1.

(b) If R0 > 1, then the existence of EI is obvious.
The Jacobian matrix J(EI) for system (3.1) evaluated at EI is given by

J(EI) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−d − β1I
∗
1 −β1T

∗ 0

β1I
∗
1 0 − bI∗1

T ∗ + I∗1
0 0

cI∗1
T ∗ + I∗1

− δ

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.8)

For J(EI) given by (3.8), the characteristic equation becomes

[
p2 +

(
d + β1I

∗
1

)
p + β2

1I
∗
1T

∗
](

p − cI∗1
T ∗ + I∗1

+ δ

)
= 0. (3.9)

and hence all the eigenvalues are

p1,2 =
−(d + β1I

∗
1

) ±
√
(d + β1I

∗
1)

2 − 4β2
1I

∗
1T

∗

2
,

p3 =
cI∗1

T ∗ + I∗1
− d.

(3.10)

If R0 > 1, then T ∗ > 0, I∗1 > 0, and p1,2 have negative real parts. Furthermore, if 1 < R0 <
(aδ/d(c − δ)) + 1, then p3 < 0 and EI is LAS. If R0 > (aδ/d(c − δ)) + 1, then p3 > 0 and EI is
unstable.

(c) If R0 > (aδ/d(c−δ))+1, then we obtain Ẑ1 > 0. Thus, Ec exists in IntR3
+. Therefore,

the proof is complete.

To discuss the local stability of the interior equilibrium Ec, we consider the linearized
system of (3.1) at Ec. The Jacobian matrix at Ec is given by

J(Ec) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−d − β1Î1 −β1T̂ 0

β1Î1 +
bẐ1Î1

(T̂ + Î1)
2
β1T̂ − a − bẐ1T̂

(T̂ + Î1)
2

− bÎ1

T̂ + Î1

− cẐ1Î1

(T̂ + Î1)
2

cẐ1T̂

(T̂ + Î1)
2

cÎ1

T̂ + Î1

− δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.11)
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For convenience, we denote T̂ = T, Î1 = I, Ẑ1 = Z, and β1 = β. In view of the above
assumptions and using

βT − a − bZ

T + I
= 0, λ − dT − βTI = 0,

cI

T + I
= δ,

T

T + I
=
c − δ
c

, (3.12)

J(Ec) can now be written as follows:

J(Ec) =

⎛
⎜⎜⎜⎜⎝

−d − βI −βT 0

βI +
δ

c

(
βT − a) δ

c

(
βT − a) −bδ

c

−δ
b

(
βT − a) c − δ

b

(
βT − a) 0

⎞
⎟⎟⎟⎟⎠. (3.13)

Then the characteristic equation of the linearized system of (3.1) is

Φ
(
p
)
= p3 + a1p

2 + a2p + a3 = 0, (3.14)

where

a1 = d +
δa

c
+

δ2βT

c(c − δ) ,

a2 = βT
(
βI +

δ

c

(
βT − a)

)
+
δ

c
(c − δ)(βT − a) − δ

c

(
d + βI

)(
βT − a),

a3 =
δ

c
(c − δ)(βT − a)(d + βI

)
+
βδ2

c
T
(
βT − a).

(3.15)

Proposition 3.2. The interior equilibrium Ec is LAS if all of the eigenvalues p of J(Ec) satisfy
|arg(p)| > απ/2.

Denote

D(Φ) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 a3 0

0 1 a1 a2 a3

3 2a1 a2 0 0

0 3 2a1 a2 0

0 0 3 2a1 a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 18a1a2a3 + (a1a2)

2 − 4a3a
3
1 − 4a3

2 − 27a2
3.

(3.16)
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Figure 1: Numerical solutions of system (3.1). The plots show that trajectories of system (3.1) approach to
the interior equilibrium for α = 0.95.

Using the results of [5, 20], we have the following proposition.

Proposition 3.3. One assumes that Ec exists in IntR3
+.

(i) If the discriminant of Φ(p), D(Φ) is positive and Routh-Hurwitz conditions are satisfied,
that is,

D(Φ) > 0, a1 > 0, a3 > 0, a1a2 > a3, (3.17)

then the interior equilibrium Ec is LAS.

(ii) If D(Φ) < 0, a1 > 0, a2 > 0, a1a2 = a3, α ∈ [0, 1), then the interior equilibrium Ec is
LAS.

(iii) If D(Φ) < 0, a1 < 0, a2 < 0, α > 2/3, then the interior equilibrium Ec is unstable.

In our first example we set λ = 10, d = 0.02 which are chosen according to [21] and set
a = δ = 0.04, c = b = 0.8, β1 = 4 × 10−4 which come from [4]. With these parameter values,
R0 = 5 > (aδ/d(c−δ))+1, D(Φ) = −9.4073×10−7 < 0, a1a2 < a3. By Proposition 3.2., we obtain
the interior equilibrium Ec = (362.0335, 19.0544, 49.9289) is LAS when α < 0.9916. Numerical
simulations show that trajectories of system (3.1) approach to the interior equilibrium (see
Figures 1(a) and 1(b)). However, when α = 1 (that is the case of classical integer order), Ec is
unstable by the Routh-Hurwitz criterion(see Figures 2(a) and 2(b)).

4. Two-Virus Model

In this section, we consider viral diversity. We examine the two-virus model using numerical
simulations. By examining the behavior of this simpler model we hope to get an idea as to
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Figure 2: Numerical solutions of system (3.1). The plots show that the interior equilibrium is unstable for
α = 1.

how the more general models in system (2.4) may behave. The two-virus model is given by
the following system of FODE:

Dq1T = λ − dT − β1TI1 − β2TI2,

Dq21I1 = β1TI1 − aI1 − bZ1
I1

T + I1 + I2
,

Dq22I2 = β2TI2 − aI2 − bZ2
I2

T + I1 + I2
,

Dq31Z1 = cZ1
I1

T + I1 + I2
− δZ1,

Dq32Z2 = cZ2
I2

T + I1 + I2
− δZ2,

(4.1)

with initial value condition

T(0) = T0, Ii(0) = Ii0, Zi(0) = Zi0, i = 1, 2, (4.2)

where 0.95 ≤ q1, q2j , q3j (j = 1, 2) ≤ 1.
To find numerical solution to (4.1) and (4.2) in the interval [0, T], we reduce the

systems (4.1) and (4.2) to a set of fractional integral equations, by using an equivalence (see
[16, Theorem 3.24])

DαX = f(X) ⇐⇒ X(t) = X(0) + Iαf(X). (4.3)

Then we apply the generalized Adams-type predictor-corrector method or, more precisely,
Predict, Evaluate, Correct, Evaluate (PECE) methods (see [22, 23]).
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Figure 3: Numerical solutions of system (4.1) for α = [0.95, 0.95, 1, 1, 1]. (a) A strange attractor in the
Z1-Z2-I1 phase. (b) Infected cell 1. (c) CTL 2.
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Figure 4: Numerical solutions of system (4.1) for α = [0.95, 0.95, 0.95, 1, 1]. (a) Z1-Z2-I1 phase. (b) Infected
cell 1. (c) CTL 2.
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For notational convenience, we denote α = (q1, q21, q22, q31, q32).We carry out numerical
simulations for system, (4.1) and (4.2) with parameters λ = 10, b = c = 0.8, a = 0.031, δ =
0.03, d = 0.02, β1 = 4 × 10−4, and β2 = 2.8 × 10−4 for the step size 0.07. Numerical solutions
of systems (4.1) and (4.2) support that the system exhibits a chaotic behavior and systems
(4.1) and (4.2) have a strange attractor in IntR5

+ for α = [0.95, 0.95, 1, 1, 1] (see Figures 3(a)–
3(c)). It is clear that chaos does exist in our fractional order model with viral diversity as in
the case of integer order model. The effect of viral diversity and the frequency dependence
results in collapse of the immune system and make the behavior of the system dynamics
complex [4]. However, as the value of some component or more components of the order α
further decreases, for example, α = [0.95, 0.95, 0.95, 1, 1], the chaotic motion disappears and
the systems (4.1) and (4.2) stabilize to a fixed point (see Figures 4(a)–4(c)).

5. Conclusions

In this paper, we have proposed a fractional order HIV model, as a generalization of
an integer order model, developed by Iwami et al. [4]. The premise of the proposed
model is the fact that fractional order models possess memory while the main features of
immune response involve memory. It is an attempt to incorporate fractional order into the
mathematical model of HIV-immune system dynamics and it is still an interesting exercise
to determine, mathematically, how the order of a fractional differential system affects the
dynamics of system.

In the case of one-virus model, the fractional order system has an interior equilibrium
under some restriction. By using stability analysis on fractional order system, we obtain
sufficient condition on the parameters for the stability of the interior equilibrium. Our
analysis shows that the interior equilibrium which is unstable in the classical integer order
model can become asymptotically stable in our fractional order model. Note that the interior
equilibrium is globally asymptotically stable (GAS) (see [24]) if the terms associated with
immune reactions are given by cZ1I1 and bZ1I1 instead of cZ1I1/(T + I1) and bZ1I1/(T + I1)
in (3.1). That is, the interior equilibrium of the one-virus model can become unstable because
of the frequency dependence (see [4]). However, in our fractional order model with the
frequency dependence, the interior equilibrium can also become asymptotically stable if the
order α < 0.9916.

We then consider viral diversity. If the terms associated with immune reaction depend
on the mass action law instead of frequency, an interior equilibrium in [24] is GAS. Similar to
the integer order model in [4], we find that strange chaotic attractors can be obtained under
fractional order model with frequency dependence. That is, the effect of viral diversity and
the frequency dependence results in collapse of the immune system and make the behavior of
the system dynamics complex. However the chaotic motion may disappear and the fractional
order system stabilizes to a fixed point if the value of the order α decreases. The specific
biological meaning is deserved to further study.
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