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The higher period stochastic bifurcation of a nonlinear airfoil fluid-structure interaction system is
analyzed using an efficient and robust uncertainty quantification method for unsteady problems.
The computationally efficient numerical approach achieves a constant error with a constant
number of samples in time. The robustness of the method is assured by the extrema diminishing
concept in probability space. The numerical results demonstrate that the system is even more
sensitive to randomness at the higher period bifurcation than in the first bifurcation point. In
this isolated point in parameter space the clear hierarchy of increasing importance of the random
nonlinearity parameter, initial condition, and natural frequency ratio, respectively, even suddenly
reverses. Disregarding seemingly less important random parameters based on a preliminary
analysis can, therefore, be an unreliable approach for reducing the number of relevant random
input parameters.
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1. Introduction

It is widely know that the behavior of nonlinear dynamical systems is highly sensitive to
small variations. Examples of significant effects of varying initial conditions and model
parameters in time-dependent problems can be found in many branches of science and
engineering. In turbulence modeling and nonlinear stability theory of transition it is
recognized that uncertainty in the initial conditions has a substantial effect on the long-
term solution [1–3]. The inherent sensitivity of meteorological and atmospheric models for
weather prediction results in a rapid loss of simulation accuracy over time [4, 5]. Stochastic
parameters also affect the voltage oscillations in the electric circuit of a nonlinear transistor
amplifier [6]. In this paper, the aeronautical application of the effect of randomness on the
bifurcation of a nonlinear aeroelastic wing structure is analyzed. Physical uncertainties are
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encountered in this kind of fluid-structure systems due to varying atmospheric conditions,
wear and tear, and production tolerances affecting material properties and the geometry.
Compared to the deterministic case the stochastic bifurcation can lead to an earlier onset
of unstable flutter behavior, which can cause fatigue damage and structural failure.

Fluid-structure interaction systems can be modeled deterministically using detailed
finite-element method (FEM) structural discretizations and high-fidelity unsteady computa-
tional fluid dynamics (CFD) simulations. This computationally highly intensive approach is
usually too expensive for performing many deterministic simulations required in a flutter
analysis study. In flutter analysis the structure is, therefore, usually modeled by rigid
airfoil mass-spring systems for wing structures and by plate equations for plate-like designs
[7, 8]. Structural nonlinearity is then modeled by a cubic nonlinear spring, since structures
commenly behave as a cubic stiffness hardening spring [9]. In this framework the flow forces
are taken into account in the governing structural equations by source terms prescribed by
aerodynamic models. These simplifications are even more frequently used in the stochastic
analysis of aeroelastic systems, since each additional random input parameter contributes to
the dimensionality of the parameter domain under consideration.

The stochastic bifurcation behavior of aeroelastic systems has previously been studied
using perturbation techniques, Monte Carlo simulation, Polynomial Chaos formulations,
and a range of other numerical and analytical methods. The perturbation approach [10]
has been used by Poirion to obtain a first-order approximation of the flutter probability
of a bending-torsion structural model, see [11, 12]. A second moment perturbation-based
stochastic finite-element method has been applied by Liaw and Yang [13] to determine the
effect of uncertainties on panel flutter. The vibration of a hydrofoil in random flow has
been considered using a stochastic pertubation approach by Carcaterra et al. [14]. Monte
Carlo simulations [15] have, for example, been used by Lindsley et al. [16, 17] to study
the periodic response of nonlinear plates under supersonic flow subject to randomness.
Poirel and Price [18] have studied random bending-torsion flutter equations with turbulent
flow conditions and a linear structural model using also a Monte Carlo-type approach. The
stochastic postflutter behavior of limit cycle oscillations has been studied by Beran et al. [19]
using Monte Carlo sampling.

Other uncertainty quantification methodologies have, for example, been employed
in an investigation of nonlinear random oscillations of aeroservoelastic systems by Poirion
[20] using random delay modeling of control systems. Choi and Namachchivaya [21] have
used nonstandard reduction through stochastic averaging in nonlinear panel flutter under
supersonic flow subject to random fluctuations in the turbulent boundary layer to find
response density functions. De Rosa and Franco [22] have predicted the stochastic response
of a plate subject to a turbulent boundary layer using numerical and analytical approaches.
Frequency domain methods have been considered for solving linear stochastic operator
equations by Sarkar and Ghanem [23].

Polynomial Chaos methods [24–28] are, in general, computationally efficient alterna-
tives for the detailed and quantitative probabilistic modeling of physical uncertainties by
Monte Carlo simulation. However, in dynamic simulations the Polynomial Chaos method
usually requires a fast increasing expansion order to maintain a constant accuracy in time.
This leads to a fast increasing sample size in the more practical nonintrusive Polynomial
Chaos formulations [29–33], which are based on the polynomial interpolation of an in general
small number of samples. Resolving the asymptotic stochastic effect in a postflutter analysis
using nonintrusive Polynomial Chaos can, however, lead to a very high number of required
deterministic simulations. This effect is especially profound in problems with an oscillatory
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solution in which the frequency of the response is affected by the random parameters [3, 34].
Pettit and Beran [35] have demonstrated that the Polynomial Chaos expansion is subject
to energy loss in representing the periodic response of a bending-torsion flutter model for
long integration times. They have also found that the wavelet based Wiener-Haar expansion
of Le Maı̂tre et al. [36] loses its accuracy less rapidly. Also other multielement Polynomial
Chaos formulations have been shown to postpone the resolution problems [37]. Millman
et al. [38] have proposed a Fourier-Chaos expansion for oscillatory responses in application
to a bending-torsion flutter problem subjected to Gaussian distributions. The effectivity of
intrusive and nonintrusive Polynomial Chaos methods has been compared for a single-
degree-of-freedom pitching airfoil stall flutter system in [39, 40].

Another special Polynomial Chaos formulation for oscillatory problems was recently
also developed to maintain a constant accuracy in time with a constant polynomial order
[41, 42]. The nonintrusive approach is based on normalizing the oscillatory samples in terms
of their phase. The uncertainty quantification interpolation of the samples is then performed
at constant phase, which eliminates the effect of frequency differences on the increase of the
required sample size [43]. The method is proven to result in a bounded error as function of the
phase with a constant number of samples for periodic responses and under certain conditions
also in a bounded error in time [44]. The formulation was also extended to multifrequency
responses of continuous structures by using a wavelet decomposition preprocessing step
[45]. Application of the method to an elastically mounted airfoil showed that this fluid-
structure interaction system is sensitive to small variations at the bifurcation from a stable
solution to a period-1 limit cycle oscillation [43]. A period-1 motion refers to an oscillation
that repeats itself after a 2π-orbit around a fixed point in phase space.

In this paper the latter uncertainty quantification approach is employed to analyze
the stochastic higher period bifurcation of an aeroelastic airfoil with nonlinear structural
stiffness. It is demonstrated that the fluid-structure interaction system is even more sensitive
to randomness at the higher period bifurcation than in the previously considered first
bifurcation point. The resulting general mathematical formulation of the uncertainty quan-
tification problem is given in Section 2. The efficient and robust uncertainty quantification
method for unsteady problems based on extrema diminishing interpolation of oscillatory
samples at constant phase used to resolve the stochastic bifurcation behavior numerically is
introduced in Section 3. As is common in stochastic flutter analysis, the aeroelastic system
is modeled by a two-dimensional rigid airfoil with two degrees of freedom in pitch and
plunge, and cubic nonlinear spring stiffness. The aerodynamic loads are computed using an
aerodynamic model as described in Section 4. Randomness is introduced in terms of three
random parameters in the system and its initial conditions. The effect of uncertainty in the
ratio of natural pitch and plunge frequencies is resolved in Section 5. A random nonlinear
spring parameter is considered in Section 6. The effect of randomness in the initial condition
of the pitch angle is investigated in Section 7. The main findings are summarized in Section 8.

2. Mathematical Formulation of the Uncertainty
Quantification Problem

Consider a dynamical system subject to na uncorrelated second-order random input
parameters a(ω) = {a1(ω), . . . , ana(ω)} ∈ A with parameter space A ∈ R

na , which governs
an oscillatory response u(x, t, a)

L(x, t, a;u(x, t, a)) = S(x, t, a), (2.1)
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with operator L and source term S defined on domain D × T × A, and appropriate initial
and boundary conditions. The spatial and temporal dimensions are defined as x ∈ D and
t ∈ T , respectively, with D ⊂ R

d, d = {1, 2, 3}, and T = [0, tmax]. A realization of the set of
outcomes Ω of the probability space (Ω, F, P) is denoted by ω ∈ Ω = [0, 1]na , with F ⊂ 2Ω

the σ-algebra of events and P a probability measure.
Here we consider a nonintrusive uncertainty quantification method l which constructs

a weighted approximation w(x, t, a) of response surface u(x, t, a) based on ns deterministic
solutions vk(x, t) ≡ u(x, t, ak) of (2.1) for different parameter values ak ≡ a(ωk) for k =
1, . . . , ns. The samples vk(x, t) can be obtained by solving the deterministic problem

L(x, t, ak;vk(x, t)) = S(x, t, ak), (2.2)

for k = 1, . . . , ns, using standard spatial discretization methods and time marching schemes.
A nonintrusive uncertainty quantification method l is then a combination of a sampling
method g and an interpolation method h. Sampling method g defines the ns sampling points
{ak}ns

k=1 and returns the deterministic samples v(x, t) = {v1(x, t), . . . , vns(x, t)}. Interpolation
method h constructs an interpolation surface w(x, t, a) through the ns samples v(x, t) as
an approximation of u(x, t, a). We are eventually interested in an approximation of the
probability distribution and statistical moments μui(x, t) of the output u(x, t, a), which can
be obtained by sorting and weighted integration of w(x, t, a):

μui(x, t) ≈ μwi(x, t) =
∫
A

w(x, t, a)ifa(a)da. (2.3)

This information can be used for reducing design safety factors and robust design optimiza-
tion, in contrast to reliability analysis in which the probability of failure is determined [46].

3. An Efficient Uncertainty Quantification Method for
Unsteady Problems

The efficient uncertainty quantification formulation for oscillatory responses based on
interpolation of scaled samples at constant phase is developed in Section 3.2. The robust
extrema diminishing uncertainty quantification method based on Newton-Cotes quadrature
in simplex elements employed in the unsteady approach is first presented in the next section.

3.1. Robust Extrema Diminishing Uncertainty Quantification

A multielement uncertainty quantification method l evaluates integral (2.3) by dividing
parameter space A into ne non-overlapping simplex elements Aj ⊂ A:

μwi(x, t) =
ne∑
j=1

∫
Aj

w(x, t, a)ifa(a)da. (3.1)

Here we consider a multielement Polynomial Chaos method based on Newton-Cotes
quadrature points and simplex elements [47]. A piecewise polynomial approximation
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Figure 1: Discretization of two-dimensional parameter space A using 2-simplex elements and second-
degree Newton-Cotes quadrature points given by the dots.

w(x, t, a) is then constructed based on ns deterministic solutions vj,k(x, t) = u(x, t, aj,k) for
the values of the random parameters aj,k that correspond to the ñs Newton-Cotes quadrature
points of degree d in the elements Aj :

μwi(x, t) =
ne∑
j=1

ñs∑
k=1

cj,kvj,k(x, t)
i, (3.2)

where cj,k is the weighted integral of the Lagrange interpolation polynomial Lj,k(a) through
Newton-Cotes quadrature point k in element Aj :

cj,k =
∫
Aj

Lj,k(a)fa(a)da, (3.3)

for j = 1, . . . , ne and k = 1, . . . , ñs. Here, second-degree Newton-Cotes quadrature with
d = 2 is considered in combination with adaptive mesh refinement in probability space, since
low-order approximations are more effective for approximating response response surfaces
with singularities. The initial discretization of parameter space A for the adaptive scheme
consists of the minimum of neini = na! simplex elements and nsini = 3na samples, see Figure 1.
The example of Figure 1 for two random input parameters can geometrically be extended
to higher dimensional probability spaces. The elements Aj are adaptively refined using a
refinement measure ρj based on the largest absolute eigenvalue of the Hessian Hj , as a
measure of the curvature of the response surface approximation in the elements, weighted
by the probability fj contained by the elements

fj =
∫
Aj

fa(a)da, (3.4)

with
∑ne

j=1fj = 1. The stochastic grid refinement is terminated when convergence measure δne

is smaller than a threshold value δne < δ where

δne = max

(∥∥μw�ne/2�(x, t) − μwne
(x, t)

∥∥
∞∥∥μwne

(x, t)
∥∥
∞

,

∥∥σw�ne/2�(x, t) − σwne
(x, t)

∥∥
∞∥∥σwne

(x, t)
∥∥
∞

)
, (3.5)
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with μw(x, t) and σw(x, t) the mean and standard deviation of w(x, t, ω), or when a maximum
number of samples ns is reached. Convergence measure δne can be extended to include also
higher statistical moments of the output.

In elements where the quadratic second-degree interpolation results in an extremum
other than in a quadrature point, the element is subdivided into ñe = 2na subelements
with a linear first-degree Newton-Cotes approximation of the response without performing
additional deterministic solves. It is proven in [44] that the resulting approach satisfies the
extrema diminishing (ED) robustness concept in probability space

min
A

(w(a)) ≥ min
A

(u(a)) ∧max
A

(w(a)) ≤ max
A

(u(a)), ∀u(a), (3.6)

where the arguments x and t are omitted for simplicity of the notation. The ED property leads
to the advantage that no non-zero probabilities of unphysical realizations can be predicted
due to overshoots or undershoots at discontinuities in the response. Due to the location of
the Newton-Cotes quadrature points the deterministic samples are also reused in successive
refinements and the samples are used in approximating the response in multiple elements.

3.2. Efficient Uncertainty Quantification Interpolation at Constant Phase

Polynomial Chaos methods usually require a fast increasing number of samples with time
to maintain a constant accuracy. Performing the uncertainty quantification interpolation
of oscillatory samples at constant phase instead of at constant time results, however, in a
constant accuracy with a constant number of samples. Assume, therefore, that solving (2.2)
for realizations of the random parameters ak results in oscillatory samples vk(t) = u(ak), of
which the phase vφk(t) = φ(t, ak) is a well-defined monotonically increasing function of time
t for k = 1, . . . , ns.

In order to interpolate the samples v(t) = {v1(t), . . . , vna(t)} at constant phase, first,
their phase as function of time vφ(t) = {vφ1(t), . . . , vφna

(t)} is extracted from the deterministic
solves v(t). Second, the time series for the phase vφ(t) are used to transform the samples v(t)
into functions of their phase v̂(vφ(t)) according to

v̂k
(
vφk(t)

)
= vk(t), (3.7)

for k = 1, . . . , ns, see Figure 2. Third, the sampled phases vφ(t) are interpolated to the function
wφ(t, a):

wφ(t, a) = h
(
vφ(t)

)
, (3.8)

as approximation of φ(t, a). Finally, the transformed samples v̂(vφ(t)) are interpolated at a
constant phase ϕ ∈ wφ(t, a) to

ŵ
(
ϕ, a

)
= h

(
v̂
(
ϕ
))
. (3.9)
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Figure 2: Oscillatory samples as function of time and phase.

Repeating the latter interpolation for all phases ϕ ∈ wφ(t, a) results in the function
ŵ(wφ(t, a), a). The interpolation ŵ(wφ(t, a), a) is then transformed back to an approximation
in the time domain w(t, a) as follows:

w(t, a) = ŵ
(
wφ(t, a), a

)
. (3.10)

The resulting function w(t, a) is an approximation of the unknown response surface u(t, a) as
function of time t and the random parameters a(ω). The actual sampling g and interpolation
h is performed using the extrema diminishing uncertainty quantification method l based on
Newton-Cotes quadrature in simplex elements described in the previous section.

This uncertainty quantification formulation for oscillatory responses is proven to
achieve a bounded error ε̂(ϕ, a) = |ŵ(ϕ, a) − û(ϕ, a)| as function of phase ϕ for periodic
responses according to

ε̂
(
ϕ, a

)
< δ, ∀ϕ ∈ R, a ∈ A, (3.11)

where δ is defined by

ε̂
(
ϕ, a

)
< δ, ∀ϕ ∈ [0, 1], a ∈ A. (3.12)

The error ε(t, a) = |w(t, a) − u(t, a)| is also bounded in time under certain conditions, see [44].
The phases vφ(t) are extracted from the samples based on the local extrema of the

time series v(t). A trial and error procedure identifies a cycle of oscillation based on two
or more successive local maxima. The selected cycle is accepted if the maximal error of its
extrapolation in time with respect to the actual sample is smaller than a threshold value εk
for at least one additional cycle length. The functions for the phases vφ(t) in the whole time
domain T are constructed by identifying all successive cycles of v(t) and linear extrapolation
to t = 0 and t = tmax before and after the first and last complete cycle, respectively. The phase
is normalized to zero at the start of the first cycle and a user-defined parameter determines
whether the sample is assumed to attain a local extremum at t = 0. The interpolation at
constant phase is restricted to the time domain that corresponds to the range of phases that
is reached by all samples in each of the elements. If the phase vφk(t) cannot be extracted from
one of the samples vk(t) for k = 1, . . . , ns, then uncertainty quantification interpolation h is
directly applied to the time-dependent samples v(t).
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Figure 3: The two-degree-of-freedom airfoil flutter model.

4. A Nonlinear Airfoil Fluid-Structure Interaction System

The nonlinear airfoil flutter model used to simulate the airfoil fluid-structure interaction
system is given in Section 4.1. The deterministic bifurcation behavior is briefly considered
in Section 4.2.

4.1. A Two-Degree-of-Freedom Airfoil Flutter Model

The two-degree-of-freedom model for the pitch and plunge motion of an airfoil used here,
see Figure 3, has also been studied deterministically, for example, by Lee et al. [48] and
stochastically using Fourier Chaos by Millman et al. [38]. The aeroelastic equations of motion
with cubic restoring springs in both pitch and plunge are given in [48] by

ξ
′′
+ xαα

′′
+ 2ζξ

ω

U∗
ξ
′
+
(
ω

U∗

)2(
ξ + βξξ3

)
= − 1

πμ
CL(τ),

xα

r2
α

ξ
′′
+ α

′′
+ 2

ζα
U∗

α
′
+

1
U∗2

(
α + βαα3

)
=

2
πμr2

α

CM(τ),

(4.1)

where α(τ) is the pitch angle and ξ(τ) = h/b is the nondimensional version of the plunge
displacement h of the elastic axis, with b = c/2 the half-chord, and initial conditions α(0) = α0

and ξ(0) = ξ0. The nonlinear spring constants in plunge and pitch are, respectively, βξ and βα.
Equivalently, the viscous damping coefficients are ζξ and ζα. The ratio of natural frequencies is
given by ω = ωξ/ωα, where ωξ and ωα are the natural frequencies of the uncoupled plunging
and pitching modes, respectively. The mass ratio μ is defined as m/πρb2, with m the airfoil
mass, and ρ the air density. The radius of gyration about the elastic axis is rα, where elastic
axis is located at a distance ahb from the mid-chord point, and the mass center is located at a
distance xαb from the elastic axis. The bifurcation parameter is the ratio of time scales of the
structure and the flow defined as U∗ = U/(bωα), with U the free stream velocity. The primes
denote differentiation with respect to nondimensionalized time τ = Ut/b. The expressions
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for the aerodynamic force and moment coefficients, CL(τ) and CM(τ) are given by Fung [49]
as

CL(τ) = π
(
ξ
′′ − ahα

′′
+ α

′
)
+ 2π

{
α(0) + ξ

′
(0) +

[
1
2
− ah

]
α
′
(0)

}
φ(τ)

+ 2π
∫ τ

0
φ(τ − σ)

[
α
′
(σ) + ξ

′′
(σ) +

(
1
2
− ah

)
α
′′
(σ)

]
dσ,

CM(τ) = π
(

1
2
+ ah

){
α(0) + ξ

′
(0) +

(
1
2
− ah

)
α
′
(0)

}
φ(τ)

+ π
(

1
2
+ ah

)∫ τ

0
φ(τ − σ)

{
α
′
(σ) + ξ

′′
(σ) +

(
1
2
− ah

)
α
′′
(σ)

}
dσ

+
π

2
ah

(
ξ
′′ − ahα

′′
)
−
(

1
2
− ah

)
π

2
α
′ − π

16
α
′′
,

(4.2)

where φ(τ) is the Wagner function

φ(τ) = 1 − ψ1e−ε1τ − ψ2e−ε2τ , (4.3)

with the constants ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455, and ε2 = 0.3 given by Jones [50]. Based
on (4.1) to (4.3), the following set of first-order ordinary differential equations for the motion
of the airfoil is derived in [48]

x′1 = x2,

x
′

2 =
c0H − d0P

d0c1 − c0d1
,

x
′

3 = x4,

x
′

4 =
−c1H + d1P

d0c1 − c0d
,

x
′

5 = x1 − ε1x5,

x
′

6 = x1 − ε2x6,

x
′

7 = x3 − ε1x7,

x
′

8 = x3 − ε2x8,

(4.4)

with

P = c2x4 + c3x2 + c4x3 + c5x
3
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8 − f(τ),

H = d2x2 + d3x1 + d4x
3
1 + d5x4 + d6x3 + d7x5 + d8x6 + d9x7 + d10x8 − g(τ),

(4.5)
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Figure 4: Input probability density function for the ratio of natural frequencies ω.

where a vector {xi}8
i=1 of new variables is defined as

x1 = α, x2 = α
′
, x3 = ξ, x4 = ξ

′
,

x5 = w1, x6 = w2, x7 = w3, x8 = w4,

w1 =
∫ τ

0
e−ε1(τ−σ)α(σ)dσ,

w2 =
∫ τ

0
e−ε2(τ−σ)α(σ)dσ,

w3 =
∫ τ

0
e−ε1(τ−σ)ξ(σ)dσ,

w4 =
∫ τ

0
e−ε2(τ−σ)ξ(σ)dσ.

(4.6)

Following [48], the solution is determined numerically until τ = 2000 using the explicit fourth
order Runge-Kutta method with a time step of Δτ = 0.1, which is approximately 1/256 of the
smallest period. The other parameter values are chosen to be μ = 100, ah = −0.5, xα = 0.25,
rα = 0.5, ξ0 = 0, βξ = 0, and ζα = ζξ = 0 as in [48].

The system parameters that are assumed to be uncertain are ω, βα, and α0. The
randomness of these three parameters is described by a symmetric unimodal beta distribution
with β1 = β2 = 2 to limit their parameter range to a finite domain with vanishing probability
at the interval boundaries. The ratio of natural frequencies ω has a mean of μω = 0.2 and
an interval of μω ∈ [0.15; 0.25]. The input probability density function for ω is shown as an
example in Figure 4. For a hard spring model with βα > 0 the system exhibits a stable limit
cycle oscillation beyond the first bifurcation point [51]. The mean of the nonlinear stiffness
parameter βα(ω) is chosen to be μβα = 100 to limit the pitch angle α to the domain in which the
aerodynamic model is valid, and the interval is set to βα(ω) ∈ [90, 110]. The initial condition
α0 has an interval of α0 ∈ [9, 11] degrees around mean μα0 = 10◦. The resulting coefficients
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Figure 5: Deterministic bifurcation plot of the nonlinear airfoil flutter system.

of variation for the random parameters are cvω = 11.2%, cvβα = 4.48%, and cvα0 = 4.48%.
The effect of the random parameters ω, βα, and α0 is analyzed in Sections 5 to 7. First the
deterministic bifurcation behavior is explored in the next section.

4.2. Deterministic Bifurcation Behavior

The deterministic bifurcation plot for the aeroelastic system given by (4.1) to (4.3) is shown
in Figure 5 as function of bifurcation parameter U∗ ∈ [5, 15] in terms of the angles of attack
α for which α

′
= 0 in the asymptotic range. In what follows the first deterministic bifurcation

point of U∗ = 6.25 the system response is a decaying oscillation to α = 0. At U∗ = 6.25 the
system exhibits a supercritical Hopf bifurcation to a stable period-1 limit cycle oscillation with
an increasing amplitude for increasing U∗. At the second bifurcation point U∗ = 13.42 the
response shows an abrupt bifurcation to a higher period limit cycle oscillation. The oscillation
amplitude continues to increase beyond the second bifurcation point.

Three typical time histories of pitch α and plunge ξ in the three different regimes are
given in Figure 6 as function of nondimensional time τ for U∗ = {5, 10, 15}. At U∗ = 5 both α
and ξ are decaying oscillations to the stable fixed point (α, ξ) = (0, 0). A period-1 oscillation
can be identified for α and ξ at U∗ = 10. For U∗ = 15 the angle of attack α exhibits a higher
period oscillation with a higher amplitude, while the plunge deflection ξ maintains a period-1
oscillation. The mean, standard deviation, and probability distribution of the more interesting
pitch degree of freedom α is, therefore, considered in the following stochastic flutter analysis.
The plunge ξ is used to extract the phase of the oscillation.

5. Random Natural Frequency Ratio ω(ω)

First the effect of randomness in the ratio of natural frequencies ω is resolved. The results
are presented in terms of the time histories of the mean μα(τ) and standard deviation σα(τ)
of the pitch angle α in Figure 7. The bifurcation of the system is illustrated in Figure 8 by
the response surface of α as function of the random parameter ω at τ = 2000. In Figure 9
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Figure 6: Time histories of pitch α(τ) and plunge ξ(τ) in the three regimes of the deterministic airfoil flutter
system.

the P-bifurcation behavior of the probability density function (PDF) of α also at τ = 2000
is given. In all three figures the bifurcation parameter values U∗ = {6.25; 10; 13.42; 15} are
considered. This corresponds to the first (U∗ = 6.25) and second (U = 13.42) deterministic
bifurcation point, and the period-1 (U∗ = 10) and higher period (U∗ = 15) regime. The
case of U∗ = 5 also considered in the previous section is not shown here, since the system
response in the prebifurcation domain is equal to the trivial solution. The required number of
sampling points ns in the stochastic simulations for the different values of U∗ is established
after performing an convergence study which is summarized as an example in Tables 1–4.
The results are compared to converged Monte Carlo reference solutions based on ns = 103

samples.
For U∗ = 6.25 the mean μα of the pitch angle shows a decaying oscillation to zero

and the standard deviation approaches the steady asymptotic value of σα = 0.423 after an
initial increase from the deterministic initial condition in Figure 7(a). The decaying mean is
caused by a combination of decaying and periodic realizations as can be concluded from the
response surface of Figure 8(a). The non-zero asymptotic value of the standard deviation also
indicates that due to the randomness in ω the system is already stochastically bifurcated in
the deterministic bifurcation point U∗ = 6.25. The onset of the stochastic bifurcation occurs,
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Figure 7: Time histories of the mean μα(τ) and standard deviation σα(τ) of the pitch angle α due to the
random frequency ratio ω.

Table 1: Relation between convergence measure δne and L∞ error εL∞ for the mean μα and standard
deviation σα at U∗ = 6.25.

ne ns
Mean μα Standard deviation σα

conv. δne error εL∞ conv. δne error εL∞
1 3 — 1.515 · 10−1 — 1.533 · 100

2 5 1.151 · 10−1 4.115 · 10−2 7.117 · 10−1 4.293 · 10−1

4 9 3.334 · 10−2 8.088 · 10−3 3.190 · 10−1 1.097 · 10−1

8 17 6.332 · 10−3 1.768 · 10−3 6.915 · 10−2 5.138 · 10−2

therefore, at a lower value of the bifurcation parameter than in the deterministic case. As
a consequence a deterministic flutter analysis predicts a later start of unstable behavior
by neglecting the variability in system parameters, which can lead to disastrous effects by
defining the flight envelope based on a too optimistic deterministic flutter boundary.

In the period-1 regime at U∗ = 10 the mean μα exhibits a decaying oscillation due
the fully periodic response. The resulting frequency differences lead to increasing phase
differences in time and increasingly to realizations of opposite sign, which cancel each other
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Figure 8: Response surface of the pitch angle α at τ = 2000 as function of the random frequency ratio ω.

Table 2: Relation between convergence measure δne and L∞ error εL∞ for the mean μα and standard
deviation σα at U∗ = 10.

ne ns
Mean μα Standard deviation σα

conv. δne error εL∞ conv. δne error εL∞
1 3 — 1.677 · 10−3 — 1.743 · 10−3

2 5 1.814 · 10−3 2.141 · 10−4 1.791 · 10−3 4.635 · 10−4

4 9 2.533 · 10−4 1.092 · 10−4 4.536 · 10−4 2.335 · 10−4

8 17 1.318 · 10−4 1.237 · 10−4 2.291 · 10−4 1.983 · 10−4

resulting in a decaying mean pitch. The standard deviation reaches a significantly higher
steady asymptotic value of σα = 4.8 due to the increased amplitudes of the limit cycle
oscillation at higher values of U∗. The effect of ω on the frequency of the response can be
derived from the oscillatory response surface of Figure 8(b). The deterministic oscillation
period shape of α shown in Figure 6(b) can also be recognized in the shape of the response
surface.

At the second deterministic bifurcation point U∗ = 13.42 the mean μα and standard
deviation σα show an irregular behavior with only a slowly decaying mean and a large
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Figure 9: Bifurcation of the probability density function of the pitch angle α due to the random frequency
ratio ω.

Table 3: Relation between convergence measure δne and L∞ error εL∞ for the mean μα and standard
deviation σα at U∗ = 13.42.

ne ns
Mean μα Standard deviation σα

conv. δne error εL∞ conv. δne error εL∞
1 3 — 3.176 · 10−1 — 3.224 · 10−1

2 5 2.666 · 10−1 1.905 · 10−1 3.389 · 10−1 2.117 · 10−1

4 9 1.679 · 10−1 1.024 · 10−1 1.685 · 10−1 1.629 · 10−1

8 17 5.335 · 10−2 1.136 · 10−1 7.391 · 10−2 1.272 · 10−1

16 33 1.103 · 10−1 6.984 · 10−3 1.253 · 10−1 1.060 · 10−2

asymptotic standard deviation of approximately σα = 7. This is a result of the discontinuity
in the response of α in Figure 8(c) caused by the deterministic bifurcation present at μω = 0.2.
On the left and the right of the discontinuity at ω = 0.2 the higher period and period-1
shape function can be recognized in the response, respectively, which suggests a subcritical
Hopf bifurcation as function of ω. For U∗ = 15 in the higher period regime μα and σα give
again a decaying oscillation and a steady asymptotic value of σα = 8.8, respectively. The time
histories of μα and σα are initially more complex than in the period-1 regime of U∗ = 10 due
to the higher period behavior of the realizations. In the response surface of Figure 8(d) the
deterministic higher period shape of α shown Figure 6(c) can again be identified.
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Table 4: Relation between convergence measure δne and L∞ error εL∞ for the mean μα and standard
deviation σα at U∗ = 15.

ne ns
Mean μα Standard deviation σα

conv. δne error εL∞ conv. δne error εL∞
1 3 — 7.315 · 10−3 — 7.503 · 10−3

2 5 6.319 · 10−3 9.960 · 10−4 7.444 · 10−3 1.619 · 10−3

4 9 9.979 · 10−4 2.598 · 10−4 1.615 · 10−3 3.905 · 10−4

8 17 2.636 · 10−4 1.675 · 10−4 3.608 · 10−4 3.812 · 10−4

The required number of samples ns used in the stochastic simulations depends
significantly on the value of bifurcation parameter U∗. In Tables 1–4 the convergence δne

and the error εL∞ with respect to the Monte Carlo reference solutions μαMC(τ) and σαMC(τ)
are given. The convergence measure δne used for μα and σα separately is defined by (3.5) and
the L∞ errorεL∞ is defined for μα as

εL∞ =

∥∥μα(τ) − μαMC(τ)
∥∥
∞∥∥μαMC(τ)

∥∥
∞

(5.1)

and equivalently for σα. The method is highly efficient in the periodic regimes, in which ns = 3
samples is already sufficient to match the Monte Carlo results based on ns = 103 samples. This
holds even for the oscillatory response surface in the higher period case of U∗ = 15. At the
deterministic bifurcation points the adaptive method robustly captures the singularity in the
response surface by automatically refining near the bifurcation in probability space.

The resulting bifurcation behavior of the PDF of α at τ = 2000 is shown in Figure 9.
At U∗ = 6.25 the PDF is already bifurcated from a delta function in the stochastic pre-
bifurcation domain to a unimodal PDF with the highest probability at α = 0◦. The PDF
develops into a multimodal distribution with peaks at α = ±8 due to the oscillatory behavior
of the response at U∗ = 10. The multimodal PDF evolves further into a distribution with 6
peaks at approximately α = {±5,±11,±16} due to the higher period motion at U∗ = 15. At the
second deterministic bifurcation point U∗ = 13.42 the PDF is in an intermediate state between
the approximately symmetric multimodal distributions of U∗ = 10 and U∗ = 15.

The stochastic behavior of the system is also shown in Figure 10 for the three random
parameters in terms of the bifurcation of the maximum standard deviation σαmax in the
asymptotic range defined as

σαmax = max
τ∈[1500,2000]

(σα(τ)). (5.2)

It can be seen in Figure 10(a) that the first bifurcation of the maximum standard deviation
σαmax starts at an earlier location than the first deterministic bifurcation. In the period-1 regime
in between the two deterministic bifurcations σαmax gradually increases due to the increasing
limit cycle oscillation amplitude in combination with the random frequency. At the second
deterministic bifurcation point the standard deviation reaches a local maximum of σαmax = 8.0
and it continues to increase at a higher rate beyond U∗ = 13.42.
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Figure 10: Bifurcation of the maximum of the standard deviation σαmax for the three random parameters.

6. Random Nonlinearity Parameter βα(ω)

Next the effect of a random nonlinearity parameter for the pitch degree of freedom βα on
the stochastic behavior of the system is considered. The results for the mean and standard
deviation, the response surface, and the PDF are shown in Figures 11–13. The required
number of samples ns in the simulations for random βα is again determined based on
convergence studies.

For U∗ = 6.25, U∗ = 10, and U∗ = 15 the random parameter βα has a qualitatively
different effect on the system than ω. Both the mean μα and standard deviation σα decay
in this case to zero for U∗ = 6.25, which suggests that randomness in βα does not lead
to an earlier bifurcation. For both U∗ = 10 and U∗ = 15 the mean shows an oscillatory
behavior, which closely resembles the deterministic time histories of Figures 6(b) and 6(c).
The standard deviation has for these two cases a low constant value of approximately
σα = 0.7 and σα = 0.3, respectively. The response surfaces of Figures 12(b) and 12(d) are
also nonoscillatory, which indicates that βα has little effect on the oscillation frequency. It can
be concluded that randomness in βα has for these values of U∗ a small effect of the system
behavior. This can be understood from the fact that the nonlinearity parameter has only a
significant effect on the limit cycle oscillation amplitude. It can, therefore, be expected that a
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Figure 11: Time histories of the mean μα(τ) and standard deviation σα(τ) of the pitch angle α due to the
random nonlinearity parameter βα.

random βα has a small effect in the prebifurcation domain, and that the effect in the periodic
regimes is constant in time.

However, the effect of random βα is significant in the second deterministic bifurcation
pointU∗ = 13.42. The stochastic system shows atU∗ = 13.42 an irregular behavior with a non-
decaying mean μα and a large standard deviation oscillating around approximately σα = 7,
which is comparable to the results for random ω. The sudden large effect of βα is caused
by the discontinuity in the response at μβα = 100. So, even the randomness in parameter βα,
which has in general a small effect on the response, becomes important at the conditions of
the second deterministic bifurcation point U∗ = 13.42. The adaptive method resolves also this
discontinuous response accurately and the other response surface approximations require
again only ns = 3 deterministic simulations to match the Monte Carlo results.

The PDF in Figure 13 is also significantly distorted from the unimodal input
distribution at U∗ = 13.42 only. For U∗ = 6.25 the histogram shows a delta function PDF,
which indicates that the stochastic bifurcation for random βα has not yet started in the
first deterministic bifurcation point. This observation is confirmed by the bifurcation of
the maximum standard deviation σαmax in Figure 10(b). The stochastic bifurcation of σαmax
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Figure 12: Response surface of the pitch angle α at τ = 2000 as function of the random nonlinearity
parameter βα.

coincides with the location of the first deterministic bifurcation, which suggests that βα has
no effect on the value of U∗ at which the unstable behavior starts, since bifurcation is initially
a linear phenomenon. On the other hand, the nonlinearity parameter does have an effect on
the limit cycle oscillation amplitude in the period-1 regime betweenU∗ = 6.25 andU∗ = 13.42,
where the standard deviation is approximately constant at a value of σαmax = 1. In accordance
with the previous results the standard deviation reaches a maximum in the deterministic
bifurcation point of σαmax = 10.3. Beyond U∗ = 13.42 the standard deviation drops to the value
σαmax = 1 of the period-1 domain. Whether the response is period-1 or higher period does,
therefore, not affect the influence of βα on the oscillation amplitude.

7. Random Initial Condition α0(ω)

The results for randomness in the pitch initial condition α0 are given in Figures 14–16. The
mean μα shows a decaying oscillation to zero for U∗ = 6.25 and periodic oscillations for U∗ =
10 and U∗ = 15, which closely resemble the deterministic results of Figure 6. The standard
deviation σα also decays to zero forU∗ = 6.25, and oscillates around only σα = 1.4 and σα = 0.5
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Figure 13: Bifurcation of the probability density function of the pitch angle α due to the random nonlinear-
ity parameter βα.

at U∗ = 10 and U∗ = 15, respectively. For U∗ = 13.42 the mean and standard deviation shows
again a sudden irregular behavior with the standard deviation oscillating around σα = 7 due
to the discontinuity in the response surface of Figure 15(c). The PDF of α of Figure 16 shows
also a multimodal character for U∗ = 13.42 only.

The bifurcation of the maximum standard deviation in Figure 10(c) gives in the largest
part of the bifurcation parameter domain a two times higher value of σαmax than for random
βα with the identical input coefficient of variation of cvβα = 4.48%. The system is, therefore,
twice as sensitive to randomness in α0 than to random βα. The random initial condition results
actually in a variation of the initial phase of the realizations. Phase differences in the response
have a large effect on the stochastic behavior as we have observed for random ω. However,
the phase differences do not increase in time for random α0 in contrast to the case with
randomness in the ratio of natural frequencies. The gradually increasing σαmax due to random
ω is, therefore, in the majority of the bifurcation parameter range larger than the effect of
random α0. This effect is not only caused by the larger input coefficient of variation for ω but
also mainly by the increasing phase differences in time.

However, in the second deterministic bifurcation point U∗ = 13.42 the maximum
standard deviation peaks for random α0 at a higher value of σαmax = 10.0 compared to random
ω. At U∗ = 13.42 the effect of randomness in the parameters βα and α0 on σαmax is, therefore,
larger than that of randomω, while in the rest of the bifurcation domain the parameters βα, α0,
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Figure 14: Time histories of the mean μα(τ) and standard deviation σα(τ) of the pitch angle α due to the
random initial condition α0.

and ω, respectively, have a clear hierarchy of increasing importance. Even while ω has twice
the coefficient of variation compared to the other parameters, at the second deterministic
bifurcation point the singularity results in larger variation in the response surface for βα
and α0.

In deterministically already highly computationally intensive problems subject to
a large number of random input parameters, the actual uncertainty analysis is usually
performed for a subset of the most important random input parameters only, which is
selected based on preliminary results for a limited number of parameter settings. The current
results should warn the reader that this can be a dangerously unreliable approach, since the
importance of the random input parameters can highly depend on the chosen bifurcation
parameter value. In isolated points in parameter space a clear relative importance of the
random parameters can even suddenly reverse, such that none of the parameters can be
disregarded in advance. A multidimensional treatment of the combined effect of multiple
random parameters in stochastic aeroelastic applications will, therefore, be considered in
future work.
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Figure 15: Response surface of the pitch angle α at τ = 2000 as function of the random initial condition α0.

8. Conclusions

The higher period stochastic bifurcation of a nonlinear airfoil flutter model is studied
numerically. The fluid-structure interaction model consists of a two-degree-of-freedom rigid
airfoil with cubic nonlinear springs and an aerodynamic model to determine the fluid loads
in pitch and plunge. The employed uncertainty quantification method for unsteady problems
is robust and efficient due to the extrema diminishing interpolation of oscillatory samples at
constant phase.

The effect on the time history of the pitch angle α is considered for randomness in
the ratio of natural pitch and plunge frequencies ω, a nonlinear spring parameter βα, and
the initial condition of the pitch angle α0. The random natural frequency ratio ω affects the
frequency of the response, which results in a gradual increase of the maximum standard
deviation of the pitch angle in the asymptotic range to σαmax = 8.0◦ in the second deterministic
bifurcation point of U∗ = 13.42. The output variability also starts to increase from the trivial
solution at an earlier position compared to the first deterministic bifurcation point U∗ = 6.25.

The effect of uncertainty in the nonlinear stiffness parameter βα is approximately
constant beyondU∗ = 6.25 at σαmax = 1 due to its effect on the limit cycle oscillation amplitude.
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Figure 16: Bifurcation of the probability density function of the pitch angle α due to the random initial
condition α0.

At the second deterministic bifurcation point U∗ = 13.42 random βα results in a sudden peak
in the output standard deviation of σαmax = 10.3. The random initial condition α0 reaches
its maximum output standard deviation of σαmax = 10.0 also in the second bifurcation point.
In the rest of the bifurcation domain α0 results approximately in a two times higher output
randomness than βα due to its effect on the phase of the response.

Despite the largest effect of ω in the majority of the bifurcation domain, βα and α0 are
the most important sources of randomness at the second deterministic bifurcation point. This
is caused by the larger variance in the response surface for βα and α0 due to the singularity at
U∗ = 13.42. Reducing the number of random input parameters based on preliminary results
for a limited number of parameter settings can, therefore, give unreliable results, since the
order of relative parameter importance can reverse in isolated singular points in parameter
space.
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