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This paper introduces a calculation procedure for modeling and control simulation of a condensate
distillation column based on the energy balance (L-V ) structure. In this control, the reflux rate L
and the boilup rate V are used as the inputs to control the outputs of the purity of the distillate
overhead and the impurity of the bottom products. The modeling simulation is important for
process dynamic analysis and the plant initial design. In this paper, the modeling and simulation
are accomplished over three phases: the basic nonlinear model of the plant, the full-order linearised
model, and the reduced-order linear model. The reduced-order linear model is then used as the
reference model for a model-reference adaptive control (MRAC) system to verify the applicable
ability of a conventional adaptive controller for a distillation column dealing with the disturbance
and the model-plant mismatch as the influence of the plant feed disturbances.

Copyright q 2009 V. T. Minh and A. M. Abdul Rani. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Distillation is the most popular and important separation method in the petroleum industries
for purification of final products. Distillation columns are made up of several components,
each of which is used either to transfer heat energy or to enhance mass transfer. A typical
distillation column contains a vertical column where trays or plates are used to enhance the
component separations, a reboiler to provide heat for the necessary vaporization from the
bottom of the column, a condenser to cool and condense the vapor from the top of the column,
and a reflux drum to hold the condensed vapor so that liquid reflux can be recycled back from
the top of the column.

Calculation of the distillation column in this paper is based on a real petroleum project
to build a gas processing plant to raise the utility value of condensate. The nominal capacity of
the plant is 130 000 tons of raw condensate per year based on 24 operating hours per day and
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Figure 1: Distillation flowsheet.

350 working days per year. The quality of the output products is the purity of the distillate,
xD, higher than or equal to 98% and the impurity of the bottoms, xB, less/equal than 2%. The
basic feed stock data and its actual compositions are based on [1].

Most of distillation control systems, either conventional or advanced, assume that the
column operates at a constant pressure. Pressure fluctuations make the control more difficult
and reduce the performance. The L-V structure, which is called energy balance structure, can
be considered as the standard control structure for a dual composition control distillation. In
this control structure the liquid flow rate L and the vapor flow rate V are the control inputs.
The objective of the controller is to maintain the product outputs concentrations xB and xD
despite the disturbance in the feed flow F and the feed concentration cF (Figure 1).

The goals of this paper are twofold: first, to present a theoretical calculation procedure
of a condensate column for simulation and analysis as an initial step of a project feasibility
study, and second, for the controller design: a reduced-order linear model is derived such
that it best reflects the dynamics of the distillation process and used as the reference model
for a model-reference adaptive control (MRAC) system to verify the ability of a conventional
adaptive controller for a distillation process dealing with the disturbance and the plant-model
mismatch as the influence of the feed disturbances.

In this study, the system identification is not employed since experiments requiring
a real distillation column are still not implemented yet. So that a process model based
on experimentation on a real process cannot be done. A mathematical modeling based on
physical laws is performed instead. Further, the MRAC controller model is not suitable for
handling the process constraints on inputs and outputs as shown in [2] for a coordinator
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Table 1: The main streams.

Stream Condensate LPG Raw gasoline
Temperature (◦C) 118 46 144
Pressure (atm) 4.6 4.0 4.6
Density (kg/m3) 670 585 727
Volume flow rate (m3/h) 22.76 8.78 21.88
Mass flow rate (kg/h) 15480 5061 10405
Plant capacity (ton/year) 130000 43000 87000

model predictive control (MPC). In this paper, the calculations and simulations are
implemented by using MATLAB (version 7.0) software package.

2. Process Model and Simulation

The feed can be considered as a pseudobinary mixture of Ligas (iso-butane, n-butane and
propane) and Naphthas (iso-pentane, n-pentane, and higher components). The column
is designed with N = 14 trays. The model is simplified by lumping some components
together (pseudocomponents) and modeling of the column dynamics is based on these
pseudocomponents only [3].

For the feed section, the operating pressure at the feed section is given at 4.6 atm. The
feed temperature for the preheater is the temperature at which the required phase equilibrium
is established. Consulting the equilibrium flash vaporization (EFV) curve at 4.6 atm, the
required feed temperature is selected at 118◦C corresponding to the point of 42% of the vapor
phase feed rate VF .

For the rectifying section, the typical pressure drop per tray is 6.75 kPa. Thus, the
pressure at the top section is 4 atm. Also consulting the Cox chart, the top section temperature
is determined at 46◦C. Then, we can calculate the reflux flow rate L via the energy balance
equation.

For the stripping section, the column base pressure is approximately the pressure
of the feed section (4.6 atm) because the pressure drop across this section is neglected.
Consulting the EFV curve and the Cox chart, the equilibrium temperature at this section
(4.6 atm) is determined at 144◦C. Then, we can calculate the reboiler duty or the heat input
QB to increase the temperature of stripping section from 118◦C to 144◦C.

Table 1 summarizes the initial calculated data for the main streams of input feed flow
rate (Condensate), output distillate overhead product: (LPG) and output bottom product
(Raw gasoline).

The vapor boilup V generated by the heat input to the reboiler is calculated as [4]:
V = (QB − BcB(tB − tF))/λ (kmole/h), where QB is the heat input (kJ/h); B is the flow rate of
bottom product (kg/h); cB is the specific heat capacity (kJ/kg · ◦C); tF is the inlet temperature
(◦C); tB is the outlet temperature (◦C); λ is the latent heat or the heat of vaporization (kJ/kg).
The latent heat at any temperature is described in terms of the latent heat at the normal boiling
point [5] λ = γλB(T/TB), where λ is the latent heat at the absolute temperature T in degrees
Rankine (◦R); λB is the latent heat at the absolute normal boiling point TB in degrees Rankine
(◦R); and γ is the correction factor obtained from the empirical chart.

Major design parameters to determine the liquid holdup on tray, column base and
reflux drum are calculated mainly based on [6–8].
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Velocity of vapor phase is arising in the column ωn = C
√
(ρL − ρG)/ρG(m/s), where

ρL (kg/m3) is the density of liquid phase; ρG (kg/m3) is the density of vapor phase; C is the
correction factor depending flow rates of two-phase flows.

The actual velocity ω is normally selected at ω = (0.80 − 0.85)ωn for paraffinic vapor.
The diameter of the column is calculated on the formula: Dk =

√
4Vm/3600πω(m),

where Vm (kmole/h) is the mean flow of vapor in the column.
The holdup in the column base is MB = (πHNBD

2
k/4) (ρB/(MW)B) (kmole), where

HNB (m) is the normal liquid level in the column base; (MW)B is the molar weight of the
bottom product (kg/kmole); ρB is the density of the bottom product (kg/m3).

Similarly, the holdup on each tray isM = (0.95πhTD2
k
/4)(ρT/(MW)T ) (kmole), where

hT is the average depth of clear liquid on a tray (m); (MW)T is the molar weight of the liquid
holdup on a tray (kg/kmole); ρT is the mean density of the liquid holdup on a tray (kg/m3).
And the holdup in the reflux drum MD = 5(Lf + Vf)/60 (kmole), where Lf is the reflux flow
rate (kmole/h); Vf is the distillate flow rate (kmole/h).

The rate of accumulation of material in a system is equal to the amount entered and
generated, less the amount leaving and consumed within the system. The model is simplified
under assumptions in [9].

(i) Constant relative volatility throughout the column and the vapor-liquid equilib-
rium relation can be expressed by

yn =
αxn

1 + (α − 1)xn
, (2.1)

where xn is the liquid concentration on nth stage; yn is the vapor concentration on
nth stage; α is the relative volatility.

(ii) The overhead vapor is totally condensed.

(iii) The liquid holdups on each tray, the condenser, and the reboiler are constant and
perfectly mixed.

(iv) The holdup of vapor is negligible throughout the system

(v) The molar flow rates of the vapor and liquid through the stripping and rectifying
sections are constant.

Under these assumptions, the dynamic model can be expressed by the following
equations:

(i) condenser (n =N + 2):

MDẋn = (V + VF)yn−1 − Lxn −Dxn, (2.2)

(ii) tray n(n = f + 2 to N + 1):

Mẋn = (V + VF)
(
yn−1 − yn

)
+ L(xn+1 − xn), (2.3)

(iii) tray above the feed flow (n = f + 1):

Mẋn = V
(
yn−1 − yn

)
+ L(xn+1 − xn) + VF

(
yF − yn

)
, (2.4)
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Table 2: The steady state values of concentrations xn and yn on each tray.

Stage Bottom Tray 1 Tray 2 Tray 3 Tray 4 Tray 5 Tray 6 Tray 7
xn 0.0375 0.0920 0.1559 0.2120 0.2461 0.2628 0.2701 0.2731
yn 0.1812 0.3653 0.5120 0.6044 0.6496 0.6694 0.6776 0.6809
Stage Tray 8 Tray 9 Tray 10 Tray 11 Tray 12 Tray 13 Tray 14 Distillate
xn 0.2811 0.3177 0.3963 0.5336 0.7041 0.8449 0.9369 0.9654
yn 0.6895 0.7256 0.7885 0.8666 0.9311 0.9687 0.9883 0.9937

Table 3: Product quality depending on the change of the feed rates.

Purity of the distillate
product xD (%)

Impurity of the bottoms
product xB (%)

Normal feed rate 96.54 3.75
Reduced feed rate 10% 90.23 0.66
Increased feed rate 10% 97.30 11.66

(iv) tray below the feed flow (n = f):

Mẋn = V
(
yn−1 − yn

)
+ L(xn+1 − xn) + LF(xF − xn), (2.5)

(v) tray n(n = 2 to f − 1):

Mẋn = V
(
yn−1 − yn

)
+ (L + LF)(xn+1 − xn), (2.6)

(vi) reboiler (n = 1):

MBẋ1 = (L + LF)x2 − Vy1 − Bx1. (2.7)

Although the model is simplified, the representation of the distillation system is still
nonlinear due to the vapor-liquid equilibrium relationship between yn and xn in (2.1).

The distillation process simulation is done using Matlab Simulink as shown in
Figure 2. The dynamic model is represented by a set of 16 nonlinear differential equations:
x1 = xB is the liquid concentration in bottom; x2 is the liquid concentration in the 1st tray, x3

is the liquid concentration in the 2nd tray; . . . ;x15 is the liquid concentration in the 14th tray;
and x16 = xD is the liquid concentration in the distillate.

If there are no disturbance in the operating conditions as shown in Figure 3, the system
is to reach the steady state such that the purity of the distillate product xDequals 0.9654 and
the impurity of the bottoms product xBequals 0.0375.

Table 2 indicates the steady-state values of concentration of xn and yn on each tray.
Since the feed stream depends on the upstream processes, the changes of the feed

stream can be considered as disturbances including the changing in feed flow rates and feed
compositions. Simulations with these disturbances indicate that the quality of the output
products gets worse if the disturbances exceed some certain ranges as shown in Table 3.

The designed system does not achieve the operational objective of the product quality
(xD ≥ 0.98 and xB ≤ 0.02) and the product quality will get worse dealing with disturbances.
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Figure 2: Model simulation with Matlab Simulink.

Hence we will use an adaptive controller—MRAC—to take the system from these steady-
state outputs of xD = 0.9654 and xB = 0.0375 to the desired output targets.

3. Linearization of the Distillation Process

In order to obtain a linear control model for this nonlinear system, we assume that the
variables deviate only slightly from some operating conditions [10]. Then the nonlinear
equation in (2.1) can be expanded into a Taylor’s series. If the variation xn − xn is small,
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Figure 3: The steady-state values of concentrations xn on each tray.

we can neglect the higher-order terms in xn − xn. The linearization of the distillation column
leads to a 16th-order linear model in the state space form:

ż(t) = Az(t) + Bu(t),

y(t) = Cz(t),
(3.1)

where

z(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

x1(t) − x1 Steady State

x2(t) − x2 Steady State

...

x16(t) − x16 Steady State

⎤

⎥⎥⎥⎥⎥⎥
⎦

, u(t) =

⎡

⎣
L(t) − LSteady State

V (t) − V Steady State

⎤

⎦,

y(t) =

[
x1(t) − x1 Steady State

x16(t) − x16 Steady State

]

.

(3.2)

The matrix A elements (n for each stage) are
(i) reboiler:

for n = 1, a1,1 = −

(
K1V + B

)

MB
, a1,2 =

(
L + LF

)

MB
, (3.3)
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(ii) stripping section, tray 1 ÷ 6:

for n = 2 ÷ 7, an,n−1 =

(
Kn−1V

)

M
, an.n = −

(
KnV + L + LF

)

M
, an,n+1 =

(
L + LF

)

M
,

(3.4)

(iii) feeding section, tray 7 ÷ 8:

for n = 8, a8,7 =

(
K7V

)

M
, a8.8 = −

(
K8V + L + LF

)

M
, a8,9 =

(
L
)

M
,

for n = 9, a9,8 =

(
K8V

)

M
, a9.9 = −

(
K9V + L

)

M
, a9,10 =

(
L
)

M
,

(3.5)

(iv) rectifying section, tray 9 ÷ 14:

for n = 10 ÷ 15, an,n−1 =

(
Kn−1

(
V + VF

))

M
, an.n = −

(
Kn

(
V + VF

)
+ L

)

M
,

an,n+1 =

(
L
)

M

(3.6)

(v) condenser:

for n = 16, a16,15 =

(
K15

(
V + VF

))

MD
, a16,16 = −

(
L +D

)

MD
, (3.7)

where Kn is the linearized Vapor-Liquid Equilibria (VLE) constant:

Kn =
dyn
dxn

=
α

(1 + (α − 1)xn)2
=

5.68

(1 + 4.68xn)2
. (3.8)

The matrix B elements are

for n = 1, b1,1 =
(x2)
MB

L, b1,2 = −
(
y1

)

MB
V,

for n = 2 ÷ 15, bn,1 =
(xn+1 − xn)

M
L, bn,2 = −

(
yn − yn−1

)

M
V,

for n = 16, b16,1 = − (x16)
MD

L, b16,2

(
y15

)

MD
V.

(3.9)
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The output matrix C is

C =

∣
∣
∣
∣
∣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

∣
∣
∣
∣
∣
. (3.10)

The full-order linear model which represents a two inputs-two outputs plant in equation in
(3.3) can be expressed as a reduced order linear model as in [11, 12]:

[
xD

xB

]

=
1

1 + τcs
G(0)

[
L

V

]

, (3.11)

where G(0) is the steady-state gain: G(0) = −CA−1B, τc is the time constant:

τc =
MI

Is lnS
+
MD(1 − xD)xD

Is
+
MB(1 − xB)xB

Is
, (3.12)

where MI (kmole) is the total holdup of liquid inside the column; MD (kmole) is the liquid
holdup in the condenser; MB (kmole) is the liquid holdup in the reboiler; Is is the “impurity
sum”; S is the separation factor.

As the result of calculation, the reduced-order linear model of the plant is a first-order
system with a time constant of τc = 1.9588(h):

[
xD

xB

]

=
1

1 + 1.9588s

[
0.0042 −0.0062

−0.0052 0.0072

][
L

V

]

. (3.13)

Equation (3.13) is equivalent to the following linear model in state space:

żr(t) =

∣∣∣∣∣

−0.5105 0

0 −0.5105

∣∣∣∣∣
zr(t) +

∣∣∣∣∣

1 0

0 1

∣∣∣∣∣
u(t),

yr(t) =

∣∣∣∣∣

0.0021 −0.0031

−0.0026 0.0037

∣∣∣∣∣
zr(t),

(3.14)

Where zr =
[
zr1

zr2

]
are state variable, u =

[
dL

dV

]
are two manipulated inputs, and yr =

[
dxB

dxD

]
are

two outputs of LPG and gasoline product.
Stability test. The system is asymptotically stable since all eigenvalues of the state matrix are
in the left half of the complex plane ([−0.5105,−0.5105]).

4. MRAC Building and Simulation

Adaptive control system is the ability of a controller which can adjust its parameters in such a
way as to compensate for the variations in the characteristics of the process. Adaptive control
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Żm(t)
++ I/S

Zm(t)

Am

C
ym(t)

Reference
output

Disturbances
Plant

−
+

e(t)

State error

LMRC

uc(t)

Reference
signal

M −+
u(t)

Control
signal

B
+++
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is widely applied in petroleum industries because of the two main reasons: firstly, most of
processes are nonlinear and the linearized models are used to design the controllers, so that
the controller must change and adapt to the model-plant mismatch; secondly, most of the
processes are nonstationary or their characteristics are changed with time, and this leads
again to adapt the changing control parameters.

The general form of an MRAC is based on an inner-loop Linear Model Reference
Controller (LMRC) and an outer adaptive loop shown in Figure 4. In order to eliminate errors
between the model and the plant and the controller is asymptotically stable, MRAC will
calculate online the adjustment parameters in gains L and M by θL(t) and θM(t) as detected
state error e(t) when changing A, B in the process plant.

Simulation program is constructed using Maltab Simulink with the following data.

(1) Process Plant:

ż = Az + Bu + noise,

y = Cz,
(4.1)

where A =
[
α1 0

0 α2

]
, B =

[
β1 0

0 β2

]
, C =

[
0.004 −0.007

−0.0011 0.0017

]
, and α1, α2, β1, β2 are changing and

dependent on the process dynamics.
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(2) Reference Model:

żm = Amzm + Bmuc,

ym = Cmzm,
(4.2)

where Am =
[ −0.2616 0

0 −0.2616

]
, Bm =

[
1 0

0 1

]
, Cm =

[
0.004 −0.007

−0.0011 0.0017

]

(3) State Feedback:

u =Muc − Lz, (4.3)

where L =
[
θ1 0

0 θ2

]
and M =

[
θ3 0

0 θ4

]
.

(4) Closed Loop:

ż = (A − BL)z + BMuc = Ac(θ)z + Bc(θ)uc (4.4)

(5) Error Equation:

e = z − zm =
[
e1

e2

]
is a vector of state errors,

ė = ż − żm = Az + Bu −Amzm − Bmuc = Ame + (Ac(θ) −Am)z + (Bc(θ) − Bm)uc

= Ame + Ψ
(
θ − θ0

)
,

(4.5)

where Ψ =
[
−β1z1 0 β1uc1 0

0 −β2z2 0 β2uc2

]
.

(6) Lyapunov Function:

V (e, θ) =
1
2

(
γeTPe +

(
θ − θ0

)T(
θ − θ0

))
, (4.6)

where γ is an adaptive gain and P is a chosen positive matrix.

(7) Derivative Calculation of Lyapunov Function:
dV

dt
= −

γ

2
eTQe +

(
θ − θ0

)T(dθ
dt

+ γΨTPe

)
, (4.7)

where Q = −AT
mP − PAm.
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For the stability of the system, dV/dt < 0, we can assign the second item (θ −
θ0)T ((dθ/dt) + γΨTPe) = 0 or dθ/dt = −γΨTPe. Then we always have dV/dt = −(γ/2)eTQe.
If we select a positive matrix P > 0, for instance, P =

[
1 0

0 2

]
, then we have Q = −AT

mP − PAm =
[

0.5232 0

0 1.0465

]
. Since matrix Q is obviously positive definite, then we always have dV/dt =

−(γ/2)eTQe < 0 and the system is stable with any plant-model mismatches.

(8) Parameters Adjustment:

dθ

dt
= −γ

⎡

⎢⎢⎢⎢⎢
⎣

−β1z1 0

0 −β2z2

βc1u1 0

0 β2u2c

⎤

⎥⎥⎥⎥⎥
⎦
[P]

[
e1

e2

]

=

⎡

⎢⎢⎢⎢⎢
⎣

dθ1/dt

dθ2/dt

dθ3/dt

dθ4/dt

⎤

⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎣

γβ1z1e1

2γβ2z2e2

−γβ1uc1e1

−2γβ2uc2e2

⎤

⎥⎥⎥⎥⎥
⎦
. (4.8)

(9) Simulation Results and Analysis:

We assume that the reduced-order linear model in (3.14) can also maintain the similar steady-
state outputs as the basic nonlinear model. Now we use this model as an MRAC to take the
process plant from these steady-state outputs (xD = 0.9654 and xB = 0.0375) to the desired
targets (0.98 ≤ xD ≤ 1 and 0 ≤ xB ≤ 0.02) amid the disturbances and the plant-model
mismatches as the influence of the feed stock disturbances.

The design of a new adaptive controller is shown in Figure 5 where we install an
MRAC and a closed-loop PID (Proportional, Integral, Derivative) controller to eliminate the
errors between the reference setpoints and the outputs.

We run this controller system with different plant-model mismatches, for instance, a
plant with A =

[ −0.50 0

0 −0.75

]
, B =

[
1.5 0

0 2.5

]
and an adaptive gain γ = 25. The operating setpoints

for the real outputs are xDR = 0.99 and xBR = 0.01. Then, the reference setpoints for the PID
controller are rD = 0.0261 and rB = −0.0275 since the real steady-state outputs are xD = 0.9654
and xB = 0.0375. Simulation in Figure 6 shows that the controlled outputs xD and xB are
always stable and tracking to the model outputs and the reference setpoints (the dotted lines,
rD and rB) amid the disturbances and the plant-model mismatches.
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Figure 6: Correlation of plant outputs, model outputs, and reference setpoints.

5. Conclusion

We have introduced a procedure to build up a mathematical model and simulation
for a condensate distillation column based on the energy balance (L-V) structure. The
mathematical modeling simulation is accomplished over three phases: the basic nonlinear
model, the full-order linearized model and the reduced-order linear model. Results from the
simulations and analysis are helpful for initial steps of a petroleum project feasibility study
and design.

The reduced-order linear model is used as the reference model for an MRAC controller.
The controller of MRAC and PID theoretically allows the plant outputs tracking the reference
setpoints to achieve the desired product quality amid the disturbances and the model-plant
mismatches as the influence of the feed stock disturbances.

In this paper, the calculation of the mathematical model building and the reduced-
order linear adaptive controller is only based on the physical laws from the process.
The real system identifications including the experimental production factors, specific
designed structures, parameters estimation, and the system validation are not mentioned
here. Further, the MRAC controller is not suitable for the on-line handling of the process
constraints.
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