
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 457468, 14 pages
doi:10.1155/2009/457468

Research Article
Output Feedback Stabilization of Linear
Time-Varying Uncertain Delay Systems

Tomoaki Hashimoto1 and Takashi Amemiya2

1 Department of Electrical and Electronic Engineering, Shinshu University, 4-17-1 Wakasato,
Nagano 380-8553, Japan

2 Department of Business Administration and Information, Setsunan University, 17-8 Ikeda-naka-machi,
Neyagawa, Osaka 572-8508, Japan

Correspondence should be addressed to Tomoaki Hashimoto, info@thashi.net

Received 27 February 2009; Accepted 24 May 2009

Recommended by John Burns

This paper investigates the output feedback stabilization problem of linear time-varying uncertain
delay systems with limited measurable state variables. Each uncertain parameter and each
delay under consideration may take arbitrarily large values. In such a situation, the locations
of uncertain entries in the system matrices play an important role. It has been shown that if
a system has a particular configuration called a triangular configuration, then the system is
stabilizable irrespective of the given bounds of uncertain variations. In the results so far obtained,
the stabilization problem has been reduced to finding the proper variable transformation such
that an M-matrix stability criterion is satisfied. However, it still has not been shown whether the
constructed variable transformation enables the system to satisfy the M-matrix stability condition.
The objective of this paper is to show a method that enables verification of whether the transformed
system satisfies the M-matrix stability condition.

Copyright q 2009 T. Hashimoto and T. Amemiya. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

This paper examines the stabilization problem of linear time-varying uncertain delay systems
by means of linear memoryless state feedback control. The systems under consideration
contain uncertain entries in the system matrices and uncertain delays in the state variables.
Each value of uncertain entries and delays may vary with time independently in an arbitrarily
large bound. Under this situation, the locations of uncertain entries in the system matrices
play an important role. This paper presents investigation of the permissible locations of
uncertain entries, which are allowed to take unlimited large values, for the stabilization using
linear state feedback control.

It is useful to classify the existing results on the stabilization of uncertain systems into
two categories. The first category includes several results which provide the stabilizability
conditions depending on the bounds of uncertain parameters. The results in the second
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category provide the stabilizability conditions that are independent of the bounds of
uncertain parameters but which depend on their locations. This paper specifically addresses
the second category.

For uncertain systems with delays, the Lyapunov stability approach with the
Krasovskii-based or Razumikhin-based method is a commonly used tool. The stabilization
problem has been reduced to solving linear matrix inequalities (LMIs) [1–3]. However,
LMI conditions fall into the first category; for this reason, they are often used to determine
the permissible bounds of uncertain parameters for the stabilization. When the bounds of
uncertain parameter values exceed a certain value, LMI solver becomes infeasible. In such
cases, guidelines for redesigning the controller are usually lacking.

On the other hand, the stabilizability conditions in the second category can be verified
easily merely by examining the uncertainty locations in given system matrices. Once a system
satisfies the stabilizability conditions, a stabilizing controller can be constructed, irrespective
of the given bounds of uncertain variations. We can redesign the controller for improving
robustness merely by modifying the design parameter when the uncertain parameters exceed
the upper bounds given beforehand.

In the second category, the stabilization problem of linear time-varying uncertain
systems without delays was studied by Wei [4]. The stabilizability conditions have a
particular geometric configuration with respect to the permissible locations of uncertain
entries. Using the concept of antisymmetric stepwise configuration (ASC) [4], Wei proved
that a linear time-varying uncertain system is stabilizable independently of the given bounds
of uncertain variations using linear state feedback control if and only if the system has
an ASC. Wei derived the successful result on the stabilization problem of systems without
delays, however, his method [4] is inapplicable to systems that contain delays in the state
variables.

On the one hand, based on the properties of an M-matrix, Amemiya and Leitmann [5]
developed the conditions for the stabilization of linear time-varying uncertain systems with
time-varying delays using linear memoryless state feedback control. The conditions obtained
in [5] show a similar configuration to an ASC, but the allowable uncertainty locations are
fewer than in an ASC by one step.

The aforementioned results presume that all state variables are accessible for designing
a controller. However, it is usual that the state variables of the systems are measured through
the outputs and hence only limited parts of them can be used directly. The output feedback
stabilization of linear uncertain delay systems with limited measurable state variables has
been investigated in [6, 7]. The conditions so far obtained show that if a system has a
particular configuration called a triangular configuration, then the system is stabilizable
independently of the given bounds of uncertain variations. The conditions in [7] consist of
not only the system matrix ΔA but also input and output coefficient matrices, ΔB and ΔC,
while the conditions in [6] consist of only ΔA.

The results so far obtained were derived using an M-matrix stability criterion. In
[5–7], the stabilization problem has been reduced to finding the variable transformation
such that the M-matrix stability condition is satisfied. Although the developed conditions
called a triangular configuration has been shown in [7], it still has not been shown whether
the constructed variable transformation enables the system to satisfy the M-matrix stability
condition. The objective of this paper is to show a method that enables verification of whether
the transformed system satisfies the M-matrix condition. This paper specially examines the
functional-order structure of the transformed system in order to verify whether the system
has an M-matrix structure.
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This paper is organized as follows. Some notations and terminology are given
in Section 2. The systems considered here are defined in Section 3. In Section 4, some
preliminary results are introduced to state the present problem. The main results are provided
in Section 5. Finally, some concluding remarks are presented in Section 6.

2. Notations and Terminology

First, some notations and terminology used in the subsequent description are given. For a, b ∈
R
m or A,B ∈ R

n×m, every inequality between a and b or A and B such as a > b or A > B
indicates that it is satisfied component-wise by a and b or A and B. If A ∈ R

n×m satisfies
A ≥ 0, A is called a nonnegative matrix. The transpose of A ∈ R

n×m is denoted by A′. For
a = (a1, . . . , am)

′ ∈ R
m, |a| ∈ R

m is defined as |a| = (|a1|, . . . , |am|)′. Also for A = (aij) ∈ R
n×m,

|A| denotes a matrix with |aij | as its (i, j) entries. Let diag{· · · } denote a diagonal matrix. Let
[a, b], a,b ∈ R be an interval in R. The set of all continuous or piecewise continuous functions
with domain [a, b] and range R

n is denoted, respectively, by Cn[a, b] or Dn[a, b]. We denote
it simply by Cn or Dn if the domain is R.

The notation for a class of functions is introduced below. Let ξ(μ) ∈ C1 and let m ∈ R

be a constant. If ξ(μ) satisfies the conditions

lim sup
|μ|→∞

∣
∣
∣
∣
∣

ξ
(

μ
)

μm

∣
∣
∣
∣
∣
<∞,

lim sup
|μ|→∞

∣
∣
∣
∣
∣

ξ
(

μ
)

μm−a

∣
∣
∣
∣
∣
=∞

(2.1)

for any positive scalar a ∈ R, then ξ(μ) is called a function of order m, and we denote this as
follows:

Ord
(

ξ
(

μ
))

= m. (2.2)

The set of all C1 functions of order m is denoted by O(m),

O(m) =
{

ξ
(

μ
)

| ξ
(

μ
)

∈ C1,Ord
(

ξ
(

μ
))

= m
}

. (2.3)

Also, it is worth to note that m can be a negative number and that the following relations
between ξ1(μ) ∈ O(m1) and ξ2(μ) ∈ O(m2) hold:

Ord
(

ξ1
(

μ
)

± ξ2
(

μ
))

= max{m1, m2},

Ord
(

ξ1
(

μ
)

× ξ2
(

μ
))

= m1 +m2,

Ord

(

ξ1
(

μ
)

ξ2
(

μ
)

)

= m1 −m2.

(2.4)
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A real square matrix all of whose off-diagonal entries are nonpositive is called an M-matrix
if it is nonsingular and its inverse matrix is nonnegative. The set of all M-matrices is denoted
byM.

3. System Description

Let n be a fixed positive integer. The system considered here is given by a delay differential
equation defined on x ∈ R

n for t ∈ [t0,∞) as follows:

ẋ(t) = A0x(t) + ΔA1(t)x(t) +
r∑

i=1

ΔA2i(t)x(t − τi(t)) + (b + Δb(t))u(t),

y(t) =
(

C′ + ΔC′(t)
)

x(t),

(3.1)

with an initial curve φ ∈ Dn[t0 −τ0, t0]. Here, A0, ΔA1(t), ΔA2i(t) (i = 1, . . . , r) are all real n×n
matrices, where r is a fixed positive integer; also,A0 is a known constant matrix. Furthermore,
ΔA1(t) and ΔA2i(t) (i = 1, . . . , r) are uncertain coefficient matrices and may vary with t ∈
[t0,∞). Other variables are as follows: u(t) ∈ R is a control variable, b ∈ R

n is a known
constant vector, and Δb(t) ∈ R

n is an uncertain coefficient vector which may vary with t ∈
[t0,∞). y(t) ∈ R

2 is an output variable,C ∈ R
n×2 is a known constant matrix, and ΔC(t) ∈ R

n×2

is an uncertain coefficient matrix which may vary with t ∈ [t0,∞).
In addition, all τi(t) (i = 1, . . . , r) are piecewise continuous functions and are uniformly

bounded, that is, for nonnegative constant τ0 they satisfy

0 ≤ τi(t) ≤ τ0 (i = 1, . . . , r) (3.2)

for all t ≥ t0. The upper bound τ0 can be arbitrarily large and is not necessarily assumed to be
known.

It is assumed that all entries of ΔA1(t), ΔA2i(t), Δb(t), and ΔC(t) are piecewise
continuous functions and are uniformly bounded, that is, for nonnegative constant matrices
ΔA10, ΔA2i0 ∈ R

n×n, ΔC0 ∈ R
n×2, and for a nonnegative constant vector Δb0 ∈ R

n, they
satisfy

∣
∣
∣ΔA1(t)

∣
∣
∣ ≤ ΔA10,

∣
∣
∣ΔA2i(t)

∣
∣
∣ ≤ ΔA2i0,

|Δb(t)| ≤ Δb0, |ΔC(t)| ≤ ΔC0
(3.3)

for all t ≥ t0. The upper bound of each entry can independently take an arbitrarily large value,
but each is assumed to be known.

Assumption 3.1. Because the system must be controllable, we assume that the pair (A0, b) of
the nominal system is a controllable pair and is in the controllable canonical form. Then A0
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and b are given as follows:

A0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0
. . . . . . 0

0 0 0 1

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

...

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.4)

Assumption 3.2. Because the system must be observable, we assume that C = (c1, c2) ∈ R
n×2 is

given as follows:

c1 = (1, 0, . . . , 0)′,

c2 = (0, . . . , 0, 1, 0, . . . , 0)′,
(3.5)

where all entries of C are equal to zero except that the first entry and the kth entry of c1 and
c2 are equal to 1, respectively. k has a strong relation to the configuration of uncertain entries
and is defined in the subsequent discussion.

Considering a necessary and sufficient condition for linear uncertain systems to be
observability invariant [8], we see that the observability of a given system might be lost
without Assumption 3.2.

Next, we consider the following system:

ż(t) = (A0 − LC′)z(t) + Ly(t) + bu(t), (3.6)

where z(t) ∈ R
n is an auxiliary state variable, and L ∈ R

n×2 is a constant matrix. This is an
observer in the most basic sense. Our objective is to find a controller for stabilizing the overall
2n-dimensional system consisting of (3.1) and (3.6). Let e(t) be defined by

e(t) = z(t) − x(t). (3.7)

Let u(t) be given by

u(t) = g ′z(t) = g ′e(t) + g ′x(t), (3.8)

where g ∈ R
n is a constant vector.

Definition 3.3. System (3.1) is said to be delay independently stabilizable if there exists a linear
memoryless state feedback control u(t) = g ′z(t) such that the equilibrium point x = 0 of
the resulting closed-loop system is uniformly and asymptotically stable for all admissible
uncertain delays and uncertain parameters.
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4. Preliminaries

The 2n-dimensional system consisting of x(t) ∈ R
n and e(t) ∈ R

n is written as follows:

ẇ(t) =

[

A0 − LC′ 0

0 A0 + bg ′

]

w(t) +

[

−Δb(t)g ′ −ΔA1(t) + LΔC′(t) −Δb(t)g ′

bg ′ + Δb(t)g ′ ΔA1(t) + Δb(t)g ′

]

w(t)

+
r∑

i=1

(

0 −ΔA2i(t)

0 ΔA2i(t)

)

w(t − τi(t)),

(4.1)

where w(t) = (e′(t), x′(t))′ ∈ R
2n.

Because of Assumption 3.1, it is possible to choose g ∈ R
n such that all eigenvalues of

(A0 + bg ′) are real, negative, and distinct. Likewise, because of Assumption 3.2, it is possible
to choose L ∈ R

n×2 such that all eigenvalues of (A0 − LC′) are real, negative, and distinct.
Let g and L be chosen in such a way. In addition, let λ1, λ2, . . . , λn and σ1, σ2, . . . , σn be the
eigenvalues of (A0 + bg ′) and (A0 − LC′), respectively. Let T and S be Vandermonde matrices
constructed from λi and σi, respectively, as follows:

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 · · · · · · · · · 1

λ1 λ2 · · · · · · · · · λn

λ1
2 λ2

2 · · · · · · · · · λn
2

...
...

...
...

...
...

λ1
n−1 λ2

n−1 · · · · · · · · · λnn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S =

[

S1 0

0 S2

]

,

(4.2)

where S1 and S2 are given by

S1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σk−2
1 σk−3

1 · · · σ1 1

σk−2
2 σk−3

2 · · · σ2 1

...
... · · ·

...
...

σk−2
k−1 σk−3

k−1 · · · σk−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σn−k
k

σn−k−1
k

· · · σk 1

σn−k
k+1 σn−k−1

k+1 · · · σk+1 1

...
... · · ·

...
...

σn−kn σn−k−1
n · · · σn 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.3)
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T and S are well known to be nonsingular in view of the previous assumptions. Define Λ and
Σ as follows:

Λ = T−1
(

A0 + bg ′
)

T = diag(λ1, λ2, . . . , λn),

Σ = S
(

A0 − LC′
)

S−1 = diag(σ1, σ2, . . . , σn).
(4.4)

Let P 1, P 2, and P 3 be defined as follows:

P 1 =

[

Σ 0

0 Λ

]

,

P 2 =

[

0 |S|ΔA30|T |
∣
∣T−1

∣
∣
∣
∣bg ′
∣
∣
∣
∣S−1

∣
∣
∣
∣T−1

∣
∣ΔA30|T |

]

,

P 3 =

⎡

⎣
|S|Δb0

∣
∣g ′
∣
∣
∣
∣S−1

∣
∣ |S|

(

|L|ΔC0′ + Δb0
∣
∣g ′
∣
∣

)

|T |
∣
∣T−1

∣
∣Δb0

∣
∣g ′
∣
∣
∣
∣S−1

∣
∣

∣
∣T−1

∣
∣Δb0

∣
∣g ′
∣
∣|T |

⎤

⎦,

(4.5)

where ΔA30 is given by

ΔA30 = ΔA10 +
r∑

i=1

ΔA2i0. (4.6)

In addition, let P be defined by

P = −P 1 − P 2 − P 3. (4.7)

Here, we introduce the fundamental lemma which plays a crucial role to lead the main
results.

Lemma 4.1 (see [6]). If there exist T and S which assure

P ∈ M, (4.8)

then system (3.1) is delay independently stabilizable.

Note that our problem has been reduced to finding T and S that enable P to satisfy
condition (4.8). In the subsequent discussion, we consider the possibility of choosing T and
S that assure P ∈ M.

5. Main Results

First, we introduce a set of matrices Ω(k) ∈ R
(n+1)×(n+1) as follows.
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Definition 5.1. Let k be an integer satisfying 0 ≤ k ≤ n. For this k, let Ω(k) = {D = (dij) ∈
R

(n+1)×(n+1)} be a set of matrices with the following properties:

(1) if 1 ≤ j ≤ k, then dij = 0, for j + 1 ≤ i ≤ 2k − j,

(2) if k + 1 ≤ j ≤ n + 1, then dij = 0, for 2k − j ≤ i ≤ j − 1.

Now, we state the main result.

Theorem 5.2. Construct a matrix Γ ∈ R
(n+1)×(n+1) as

Γ =

[

Δc0
1
′ 0

ΔA30 Δb0

]

(5.1)

by means of system parameters. If for fixed k,

Γ ∈ Ω(k), Δc0
2 = 0, (5.2)

then system (3.1) is delay independently stabilizable.

System (3.1) is said to have a triangular configuration if the system satisfies condition
(5.2). A schematic view of the system having a triangular configuration is shown below. Here,
∗ indicates an uncertain entry not necessarily equal to zero

c2 + Δc2

c1 + Δc1

k b + Δb

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 01

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 01

0 0 1 ∗ ∗ ∗ ∗ ∗ 0 01

0 0 0 1 ∗ ∗ ∗ 0 0 01

0 0 0 0 1 ∗ 0 0 0 01

0 0 0 0 0 1 0 0 0 01

0 0 0 0 0 ∗ 1 0 0 01

0 0 0 0 ∗ ∗ ∗ 1 0 01

0 0 0 ∗ ∗ ∗ ∗ ∗ 1 01

0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 11

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.3)

Proof of Theorem 5.2. According to Lemma 4.1, the existence of T and S which assure P ∈ M
is shown in the rest of this section. Here, let μ be a positive number and let αi (i = 1, . . . , n)
be all negative numbers that are different from one another. Likewise, let βi (i = 1, . . . , n)
be all negative numbers that are different from one another. Let μ be chosen larger than all
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upper bounds of uncertain elements ΔA30, Δb0, and Δc0
1. αi and βi are used for distinguishing

eigenvalues λi and σi from one another. Let λi and σi be chosen as follows:

λi = αiμ−1 ∈ O(−1) (i = 1, . . . , k − 1),

σi = βiμ−1 ∈ O(−1) (i = 1, . . . , k − 1),

λi = αiμ ∈ O(1) (i = k, . . . , n),

σi = βiμ ∈ O(1) (i = k, . . . , n).

(5.4)

Then, we can write T and S as follows:

T :=
[

T1 T2 ]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

...
...

−i + 1 i − 1

...
...

−n + 1 n − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
(5.5)

S1 =

⎡

⎢
⎢
⎢
⎣

−k
+2 · · ·

−k
+j

+1

· · · 0

⎤

⎥
⎥
⎥
⎦
, (5.6)

S2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n

−k
· · ·

n

−k
−j
+1

· · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.7)

where T1 and T2 denote n × (k − 1) and n × (n − k + 1) matrices, respectively. In addition,
S1 and S2 denote (k − 1) × (k − 1) and (n − k + 1) × (n − k + 1) matrices, respectively. In the

above notation, m and m denote a row vector and a column vector, whose all entries are

functions of μ of order m, respectively. For convenience, we adopt such notation for matrices
in the subsequent discussion and neglect further explanation when it is clear. The notation of
(5.5) means that all entries of the ith row of T1 and T2 are functions of μ of order (−i + 1) and
(i − 1), respectively. The notations of (5.6) and (5.7) mean that all entries of the jth column of
S1 and S2 are functions of μ of order (−k + j + 1) and (n − k − j + 1), respectively.
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Next, from the relations between the roots and the coefficients of the characteristic
equations det(A0 +bg ′) and det(A0 −LC′), we find that g ′ and L have the following structure:

g ′ =

⎡

⎢
⎢
⎢
⎣

n

−2k

+2

· · ·
n

−k
n

−k
+1

· · · 1

⎤

⎥
⎥
⎥
⎦
, (5.8)

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 0

...
...

−k + 2 0

−k + 1 1

0 1

0 2

...
...

0 n − k + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.9)

The notation of (5.8) means that the entry of the jth column of g ′ is a function of μ of order
(n− 2k + j + 1) if j ≤ k − 1, and of order (n− j + 1) if j ≥ k. The notation of (5.9) means that the
entry of the ith row and the first column of L is a function of μ of order −i if i ≤ k − 1, and the
entry of the ith row and the second column of L is of order i − k + 1 if i ≥ k.

Considering such structures of T , S, g ′ and L, it turns out from the careful calculation
that each block matrix in (4.5) is further decomposed into four block matrices as follows:

∣
∣
∣T−1

∣
∣
∣

∣
∣bg ′
∣
∣

∣
∣
∣S−1

∣
∣
∣ =

⎡

⎢
⎣

k − 3 2k − n − 2

−k + 1 −n + 2

⎤

⎥
⎦, (5.10)

∣
∣
∣T−1

∣
∣
∣Δb0∣∣g ′

∣
∣

∣
∣
∣S−1

∣
∣
∣ =

⎡

⎢
⎣

k − 4 2k − n − 3

−k − 2 −n − 1

⎤

⎥
⎦, (5.11)

∣
∣
∣T−1

∣
∣
∣ΔA30|T | =

⎡

⎢
⎣

− 2 2k − 4

−2k + 2 0

⎤

⎥
⎦, (5.12)

∣
∣
∣T−1

∣
∣
∣Δb0∣∣g ′

∣
∣|T | =

⎡

⎢
⎣

− 2 2k − 4

−2k − 2

⎤

⎥
⎦, (5.13)
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|S|ΔA30|T | =

⎡

⎢
⎣

− k k − 2

n − 2k + 1 n − 1

⎤

⎥
⎦, (5.14)

|S||L|ΔC0′|T | =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− k k − 2

0 · · · 0

...
. . .

...

0 · · · 0

0 · · · 0

...
. . .

...

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.15)

|S|Δb0∣∣g ′
∣
∣|T | =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− k k − 2

0 · · · 0

...
. . .

...

0 · · · 0

0 · · · 0

...
. . .

...

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.16)

|S|Δb0∣∣g ′
∣
∣

∣
∣
∣S−1

∣
∣
∣ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 2 k − n − 1

0 · · · 0

...
. . .

...

0 · · · 0

0 · · · 0

...
. . .

...

0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.17)

In the above notation, all the entries of each block matrix are functions of μ of the same order.
Now, let P ∈ R

2n×2n in (4.7) be decomposed into four block matrices as follows:

P =

[

P11 P12

P21 P22

]

, (5.18)

where

P11 = −Σ − |S|Δb0∣∣g ′
∣
∣

∣
∣
∣S−1

∣
∣
∣,

P12 = −|S|ΔA30|T | − |S||L|ΔC0′|T | − |S|Δb0∣∣g ′
∣
∣|T |,

P21 = −
∣
∣
∣T−1

∣
∣
∣

∣
∣bg ′
∣
∣

∣
∣
∣S−1

∣
∣
∣ −
∣
∣
∣T−1

∣
∣
∣Δb0∣∣g ′

∣
∣

∣
∣
∣S−1

∣
∣
∣,

P22 = −Λ −
∣
∣
∣T−1

∣
∣
∣ΔA30|T | −

∣
∣
∣T−1

∣
∣
∣Δb0∣∣g ′

∣
∣|T |.

(5.19)
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It is apparent that P ∈ M if and only if

P11 ∈ M,

P22 ∈ M,

P22 − P21P
−1
11 P12 ∈ M.

(5.20)

The following lemma shown in [9] is useful for verification of whether a given matrix is an
M-matrix.

Lemma 5.3 (see [9]). Let k be an integer satisfying 1 < k < n. Let B ∈ R
n×n be a diagonal matrix

whose every entry is positive, and let C ∈ R
n×n. Let B and C be decomposed into four block matrices

as follows:

B =

⎛

⎝

B11 0

0 B22

⎞

⎠, C =

⎛

⎝

C11 C12

C21 C22

⎞

⎠. (5.21)

Therein, B11 and B22 are k × k and (n − k) × (n − k) diagonal matrices, respectively. C11, C12, C21,
and C22 are k × k, k × (n− k), (n− k)× k, and (n− k)× (n− k) block matrices, respectively. Suppose
that all the entries of each block matrix are functions of μ of the same order. Let all the entries of B11

and B22 belong to O(b11) and O(b22), respectively. Let all the entries of C11, C12, C21, and C22 belong
to O(c11), O(c12), O(c21), and O(c22), respectively. For sufficiently large μ, if

b11 > c11,

b22 > c22,

b11 > c12 − b22 + c21,

(5.22)

then the matrix A = B − |C| is anM-matrix.

Using Lemma 5.3, we can deduce whether the matrix whose entry represents the
functional order is an M-matrix.

Taking into account the fact that Σ is a diagonal matrix in which all diagonal entries
belong to O(−1) from the first to (k−1)th entry or O(1) from the kth to nth entry, we see from
(5.17) that P11 ∈ M.

From (5.14)–(5.16), it follows that

P12 =

⎡

⎢
⎣

−k k − 2

n − 2k + 1 n − 1

⎤

⎥
⎦. (5.23)
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From (5.10) and (5.11), we have

P21 =

⎡

⎢
⎣

k − 3 2k − n − 2

−k + 1 −n + 2

⎤

⎥
⎦. (5.24)

From (5.12) and (5.13), it follows that

P22 = −Λ −

⎡

⎢
⎣

− 2 2k − 4

−2k + 2 0

⎤

⎥
⎦. (5.25)

Taking into account the fact that Λ is a diagonal matrix in which all diagonal entries belong
to O(−1) from the first to (k − 1)th entry or O(1) from the kth to nth entry, we obtain

−1 > −2,

1 > 0,

−1 > 2k − 4 − 1 − 2k + 2 = −3.

(5.26)

According to Lemma 5.3, the inequalities (5.26) show that P22 ∈ M. From (5.23) and (5.24), it
follows that

P21P
−1
11 P12 =

⎡

⎢
⎣

− 2 2k − 4

−2k + 2 0

⎤

⎥
⎦. (5.27)

Then, from (5.25) and (5.27), we have

P22 − P21P
−1
11 P12 = −Λ −

⎡

⎢
⎣

− 2 2k − 4

−2k + 2 0

⎤

⎥
⎦. (5.28)

Hence, it is apparent from the inequalities (5.26) that P22−P21P
−1
11 P12 ∈ M. Taking into account

the fact that all the conditions of (5.20) hold, we see that P ∈ M.
Therefore, using Lemma 4.1, we can conclude that system (3.1) is delay independently

stabilizable.

6. Conclusions

The stabilization problem of linear time-varying uncertain delay systems with limited
measurable state variables was studied here. Each uncertain parameter and each delay under
consideration may take arbitrarily large values. It was shown that if the uncertain entries
enter the system matrices in a way to form a particular geometric pattern called a triangular
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configuration, then the system is stabilizable irrespectively of the given bounds of uncertain
parameters and delays. The method that enables verification of whether the transformed
system satisfies the M-matrix stability condition was provided here. Moreover, it was shown
that the constructed variable transformation enables the system to satisfy the M-matrix
stability condition. The obtained conditions have a strong similarity to the ones called an
antisymmetric stepwise configuration by Wei [4]. To develop the conditions obtained here
into the ones of antisymmetric stepwise configurations is a problem to be considered next.
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