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A proposed computational method is applied to damp out the excess vibrations in smart
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state-control parametrization approach is proposed where the shifted Legendre polynomials are
employed to solve the optimization problem. Legendre operational matrix and the properties of
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law of the lumped parameter systems with respect to the quadratic cost function by solving
linear algebraic equations. Numerical examples are provided to demonstrate the applicability and
efficiency of the proposed approach.
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1. Introduction

Devices of Microelectromechanical systems (MEMSs) find wide applications as sensors and
actuators. The analysis of methods of actuation and sensing has been a topic of interest over
the past several years. Different actuation and sensing properties such as piezosensitive,
piezoelectric, electrostatic, thermal, electromagnatic, and optical have been used [1]. Piezo
materials can be integrated in various structural components as distributed sensors or
actuators.

The use of the piezoelectric actuators has been proved to be effective control devices
for the control of structural vibrations in a wide range of engineering applications. One of
the most widely used piezo materials in active control is piezoceramic such as PZT. This due
to their large bandwidth, mechanical simplicity, and their mechanical ability in producing
controlling forces [2].
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In this contest, the microelectromechanical systems (MEMSs) seem to be attractive in
improving the mechanical efficiency of structural active control. Borovic et al. [3] highlight
some MEMS control issues and provide an overview of MEMS control.

Piezoelectrically actuated microbeams have recently received considerable attention.
The behavior of electrically actuated microbeams has been studied using different models
and approaches [4–8]. With the growth of using microbeams MEMS, it is necessary to study
their dynamic behavior. In this paper, the studied microsystem is a microbeam totally covered
by a piezoelectric, PZT, film. While it is possible to cover the entire structure with piezoelectric
material, it is not possible to do so on large structures. The optimal boundary vibration
control for microbeams is investigated. The control action is implemented using piezoceramic
actuators to damp out the vibrations of microbeams where the control function appears in the
boundary conditions in the form of a moment. In the control problem, we wish to determine
the optimal boundary control actuators that minimize a given energy-based performance
measure. The minimization of the performance measure over the actuators is subjected to the
equation of motion governing the structural vibration, the imposed initial conditions, and
the boundary conditions. The performance measure is specified as a quadratic functional
of displacement and velocity along with a suitable penalty term involving the boundary
control function. For the determination of the optimal boundary controls, it is necessary to
convert the problem from one in which there is boundary control into one in which there
are distributed controls. The Galerkin-based approach is used then to reduce the modified
problem to the optimal control of a linear time-invariant lumped-parameter system. In
contrast to standard optimal control or variational methods for lumped parameter systems,
a direct state-control parameterization by orthogonal polynomial expansion is employed to
solve the modal space optimization problem.

In general, the approach is based on converting differential equations into integral
equations through integration, approximating state and control involved in the equation
by finite term series, and using the operational matrix of integration to eliminate the
integral operations. This method has been used in obtaining the continuous control of
various distributed and lumped parameter system modals [9–11]. Typical examples are
the applications of Walsh functions [12], block-pulse functions [13], Bessel functions [14],
Harr function [15], Chebyshev polynomials [16], Laguerre polynomials [17], Fourier Series
[18], Taylor series [19], Jacobi series [20, 21], Hermite polynomials [22], and wavelets [23–
29].

A computational method is proposed to sole the modal optimization problem with
quadratic performance index. The method is based on parametrizing the state and control
variables by finite-term Legendre series whose coefficient values will be determined. The
Legendre operational matrix and the properties of Kronecker product are used to relate
the unknown coefficients of control variables to coefficients of the state variables. The
performance index, as a result, can be expressed in terms of the unknown coefficients of
the state variables. The necessary condition for optimality is derived as a system of linear
algebraic equations in terms of the unknown coefficients of the state variables. Of the
attractive features of our proposed approach is that we can avoid difficult integral equations,
which are produced by variational methods [30]. This is achieved by reducing the problem
to the solution of algebraic system of equations. Moreover, solving a system of coupled initial
boundary-terminal-value problems as a requirement for the maximum principle [31] can
now be avoided. Numerical simulations are presented to assess the effectiveness and the
capabilities of piezo actuation by means of moments to damp out the vibration of microbeams
with a minimum level of voltage applied on the piezo actuators.
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Figure 1: Microbeam with distributed actuator layers.

2. Equation of Motion for a Piezoelectric Beam

Consider a microbeam of length l, width b, height hs and covered by layers of piezoelectric
materials of thickness hp. The dynamical equilibrium of the Euler-Bernoulli beam is defined
by [7, 32]

ρwtt + EcoIcowxxxx = 0, 0 < x < l, 0 < t < tf , (2.1)

where ρ is the mass per unit length of the layered beam, EcoIco is the bending stiffness of
the beam including the piezoelectric layers, and w(x, t) is the transverse displacement of the
beam.

The boundary and initial conditions, respectively, are

w(0, t) = w(l, t) = 0,

wxx(0, t) = wxx(l, t) =
Gp

EcoIco
f(t),

(2.2)

w(x, 0) = w0(x),

wt(x, 0) = wl(x),
(2.3)

where

EcoIco = D11 −
B2

11

A11
(2.4)

in which

A11 =
(
Eshs + Ephp

)
b, B11 =

Ep − Es

2
hphsb,

D11 =
b

12

(
Eshs

(
h2
s + 3h2

p

)
+ Ephp

(
h2
p + 3h2

s

))
, Gp =

(
hs

2
− B11

A11

)
be31

(2.5)
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in which e31 = d31Ep, where Ep and Es are Young’s modulus of the piezoelectric layer and
the microbeam, respectively. d31 is the actuator piezoelectric constant, and f(t) is the applied
voltage.

For convenience, we introduce the nondimensional variables

W(X, T) =
w(x, t)

l
, X =

x

l
, T =

t

l2

√
EcoIco
ρ

, Tf =
tf

l2

√
EcoIco
ρ

, (2.6)

where W(X, T), X, and T are dimensionless transverse displacement, position, and time,
respectively. Substituting (2.6) into (2.1)–(2.3) leads to the nondimensional equation of
motion

WTT +WXXXX = 0, 0 < X < 1, 0 < T < Tf (2.7)

with boundary conditions

W(0, T) = W(1, T) = 0, WXX(0, T) = WXX(1, T) = F(T) (2.8)

and initial conditions

W(X, 0) = W0(X), WT (X, 0) = W1(X). (2.9)

3. Optimal Control Problem

3.1. Problem Statement

Consider the set of all admissible control functions Uad = {F : F ∈ L2(0, Tf)}. The
performance index is given by

J(F) = μ1

∫1

0
W2(X, Tf

)
dX + μ2

∫1

0
W2

T

(
X, Tf

)
dX + μ3

∫Tf

0
F2(T)dT, (3.1)

where μ1, μ2, and μ3 are all nonnegative constants and μ1 + μ2 > 0 and μ3 /= 0. The last term
on the right hand side of (3.1) is a penalty on control energy. The optimal control problem is
now formulated:

Find F∗ ∈ Uad so that J(F∗) = min
F∈Uad

J(F), (3.2)

and such that W(X, T) satisfies all (2.7)–(2.9). As we will assume the existence of the optimal
control (3.2), it can be easily shown that this quadratic control problem has at most one
solution.
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3.2. Equivalent Optimal Control Problem

Let

W(X, T) = W(X, T) − α(X)F(T), (3.3)

where

α(X) =
1
2

(
X2 −X

)
. (3.4)

Substituting (3.3) into (2.1) gives

WTT (X, T) +WXXXX(X, T) = −α(X)F ′′(T), 0 < X < L, 0 < T < Tf , (3.5)

and the new boundary and initial conditions are, respectively,

W(0, T) = W(1, T) = 0,

WXX(0, T) = WXX(1, T) = 0,
(3.6)

W(X, 0) = W0(X) − α(X)F(0),

WT (X, 0) = W1(X) − α(X)F ′(0).
(3.7)

The optimal control problem, that is equivalent to (3.2), is

Find F∗ ∈ Uad so that J(F∗) = min
F∈Uad

J(F), (3.8)

and such that W(X, T) satisfies (3.5)–(3.7).

4. Optimal Control of Lumped Parameter System

In this section, the distributed parameter system optimization problem (3.5) is transformed
into a modal Lumped parameter problem by means of Galerkin approach [30].

4.1. Control Problem in Modal Space

A finite orthonormal expansion of W(X, T) in terms of a complete basis {ϕn(x) =
√

2 sinλnx}
∈ L2([0, 1]) gives the representation

W(X, T) =
N∑

n=1

Zn(T)ϕn(X), (4.1)
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where λn = nπ. The orthogonality of the Fourier sine series converts (3.5) into

d2

dT2
Zn(T) + λ4

nZn(T) = −2ηn
d2

dT2
F(T), (4.2)

where ηn =
∫1

0α(X) sin(λnX)dX, n = 1, 2, . . . ,N.

The performance index takes on the form

JN(F(T)) =
1
2
μ1

N∑

n=1

Z2
n

(
Tf
)
+

1
2
μ2

N∑

n=1

d

dt
Z2

n

(
Tf
)
+ μ3

∫Tf

0
F2(τ)dτ. (4.3)

Integrating (4.2) twice over the interval (0, t) gives

Zn(T) − TZ′
n(0) − Zn(0) + λ4

n

∫T

0

∫η

0
Zn(τ)dτ dη = −2ηn

[
F(T) − F(0) − TF ′(0)

]
(4.4)

or, in vector notation

−→
Z(T) −G(T)

d

dT

−→
Z(0) − −→

Z(0) + Λ
∫T

0

∫η

0

−→
Z(τ)dτ dη =

−→
E1 +

−→
E2 +

−→
E3, (4.5)

where

−→
Z(T) = [Z1(T), Z2(T), . . . , ZN(T)]tr, G(t) = TIN×N, Λ = diag

[
λ4
i

]

N×N
,

−→
E1 = −2D

−→
F(t),

−→
E2 = 2D

−→
F(0),

−→
E1 = 2tD

−→
F ′(0), D = diag

[
ηi
]
N×N,

(4.6)

where “tr” stands for the matrix transpose. The new optimal control problem is now
formulated

Find F∗(T) ∈ Uad so that JN(F∗(T)) = min
F(T)∈Uad

JN(F(T)) (4.7)

subject to the integral equation (4.5).

4.2. State-Control Parametrization

In this section, a direct method for solving the modal control problem (4.7) is developed by
parametrizing the state variables Zi(t) and the control variable F(t).

Let

Zi(T) =
m−1∑

j=0

aijSj(T), F(T) =
m−1∑

j=0

bjSj(T), (4.8)
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where

aij =
2j + 1
Tf

∫Tf

0
Zi(τ)Sj(τ)dτ, bj =

2j + 1
Tf

∫Tf

0
F(τ)Sj(τ)dτ (4.9)

0 ≤ j ≤ m − 1, 1 ≤ i ≤ N, and Sj(T) are shifted Legendre polynomials on the interval [0, Tf]
(see [33]). Using the expansions (4.8), we write

−→
Z(T) = AN×m

−→
Sm×1 or

−→
Z(T) = SN×Nm

−→
ANm×1,

−→
F(T) = B1

N×m
−→
Sm×1 or

−→
F(T) = SN×Nm

−→
B1

Nm×1,

−→
F(0) = B2

N×m
−→
Sm×1 or

−→
F(0) = SN×Nm

−→
B2

Nm×1,

−→
F ′(0) = B3

N×m
−→
Sm×1 or

−→
F ′(0) = SN×Nm

−→
B3

Nm×1,

G(T)
d

dt

−→
Z(0) = CN×m

−→
Sm×1 or G(T)

d

dt

−→
Z(0) = SN×NmCNm×1,

−→
Z(0) = WN×m

−→
Sm×1 or

−→
Z(0) = SN×Nm

−→
WNm×1,

(4.10)

where

A =

⎡

⎢⎢⎢⎢⎢⎢
⎣

a10 a11 · · · a1,m−1

a20 a21 · · · a2,m−1

...
...

...
...

aN0 aN1 · · · aN,m−1

⎤

⎥⎥⎥⎥⎥⎥
⎦

,
−→
A =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−−→
A1

−−→
A2

...
−−−→
AN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

C =

⎡

⎢⎢⎢⎢⎢⎢
⎣

c c 0 · · · 0

c c 0 · · · 0

...
...

...
...

...

c c 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

,
−→
C =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

−→
C1

−→
C2

...
−−→
CN

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

−→
S =

⎡

⎢⎢⎢⎢⎢⎢
⎣

S0(T)

S1(T)

...

Sm−1(T)

⎤

⎥⎥⎥⎥⎥⎥
⎦

, S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−→
S

tr
(T)

−→
S

tr
(T)

. . .

−→
S

tr
(T)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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W =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

Z1(0) 0 · · · 0

Z1(0) 0 · · · 0

...
...

...
...

Z1(0) 0 · · · 0

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

,
−→
W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−−→
W1

−−→
W2

...
−−−→
WN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b0 b1 · · · bm−1

b0 b1 · · · bm−1

...
...

...
...

b0 b1 · · · bm−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B2 =

⎡

⎢⎢⎢⎢⎢⎢
⎣

b0 −b1 b2 −b3 · · · (−1)m−1bm−1

b0 −b1 b2 −b3 · · · (−1)m−1bm−1

...
...

...
...

...
...

b0 −b1 b2 −b3 · · · (−1)m−1bm−1

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

B3 =

⎡

⎢⎢⎢⎢
⎣

0 2b1 −6b2 12b3 −20b4 · · · (−1)m(m − 1)mbm−1

0 2b1 −6b2 12b3 −20b4 · · · (−1)m(m − 1)mbm−1
...

...
...

...
...

...
...

0 2b1 −6b2 12b3 −20b4 · · · (−1)m(m − 1)mbm−1

⎤

⎥⎥⎥⎥
⎦
,

(4.11)

in which c = (Tf/2)(d/dt)Z1(0),
−→
Ai = [ai0, ai1, . . . , ai,m−1]

tr,
−→
Ci = [c, c, 0, . . . , 0]tr, and

−−→
Wi =

[Z1(0), 0, . . . , 0]
tr.

The double integral on the left-hand side of (4.5) is simplified as

∫T

0

∫η

0

−→
Z(τ)dτ dη = A

∫T

0

∫η

0

−→
S(τ)dτ dη = AH2 −→S(T), (4.12)

where H is the shifted Legendre operational matrix and is given by

H =
T

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1 1 0 0 · · · 0 0 0

−1
3

0
1
3

0 · · · 0 0 0

0
−1
5

0
1
5

· · · 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · −1
2m − 3

0
1

2m − 3

0 0 0 0 · · · 0
−1

2m − 1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.13)
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Using (4.10) and (4.12), (4.5) takes on the form

A
−→
S − C

−→
S −W

−→
S + ΛAH2 −→S = D

⎡

⎢
⎣−2B1 −→S︸︷︷︸

F(t)

+ 2B2 −→S(0)
︸ ︷︷ ︸

F(0)

β
−→
S

︸︷︷︸
1

+ 2B3 −→S ′
(0)

︸ ︷︷ ︸
F ′(0)

α
−→
S︸︷︷︸
t

⎤

⎥
⎦, (4.14)

where

β1×m =
[
β0, β1, . . . , βm−1

]
, α1×m = [α0, α1, . . . , αm−1] (4.15)

are the coefficients of shifted Legendre polynomials resulting from the expansions of 1 and
T , respectively [33].

By letting D = 2D and using the orthogonality of
−→
S(T), (4.14) becomes

A + ΛAH2 = C +W −DB1 +DB2−→S(0)β +DB3−→S ′
(0)α. (4.16)

Now using the vec notation and kronecker product [34], (4.16) takes on the form

−→
A + (Λ ⊗ Γ)

−→
A =

−→
C +

−→
W −
(
D ⊗ Im

)−→
B1 +
(
D ⊗Ω1

)−→
B2 +
(
D ⊗Ω2

)−→
B3, (4.17)

where
−→
A,

−→
C,

−→
W,

−→
B1,

−→
B2, and

−→
B3 are Nm × 1 vectors, Γ, Ω1, Ω2, and Im are m ×m matrices in

which Γ = (H2)tr
, Ω1 = (

−→
S(0)β)

tr
, Ω2 = (

−→
S
′
(0)α)

tr
, and Im is the m ×m identity matrix, and D

and Λ are N ×N matrices.
Using the substitutions

X = INm + (Λ ⊗ Γ), U1 = D ⊗ Im, U2 = D ⊗Ω1, U3 = D ⊗Ω2,
−→
Y =

−→
C +

−→
W,

(4.18)

equation (4.17) becomes

X
−→
A =

−→
Y +U1

−→
B1 +U2

−→
B2 +U3

−→
B3 =

−→
Y +K

−→
B1, (4.19)

where

K = U1 +U2I1 +U3I2 (4.20)

in which

I1 = diag
[
(−1)i+1

]m

i=1
, I2 = diag

[
(−1)i(i − 1)i

]m

i=1
. (4.21)
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Solving (4.19) for
−→
B1, we obtain

−→
B1 = M

−→
A +

−→
N, (4.22)

where M = K−1X and
−→
N = −K−1−→Y .

4.3. Approximation of Modal Performance Index

The cost functional (4.3) can be transformed into modal space

JN
( −→
F
)
=

1
2

N∑

n=1

−−→
Zn

tr(
Tf
)
R1

−−→
Zn

(
Tf
)
+

1
2

N∑

n=1

d

dT

−−→
Zn

tr(
Tf
)
R2

d

dT

−−→
Zn

(
Tf
)

+
1
N

∫Tf

0

−→
F

tr
(τ)R3

−→
F(τ)dτ,

(4.23)

where Ri =diag [μi], i=1, 2, 3. Inserting (4.10) into (4.23) gives

JN
( −→
F
)
=

1
2

[ −→
A

tr
Str(Tf

)
R1S
(
Tf
)−→
A +

−→
A

tr d

dT
Str(Tf

)
R2

d

dT
S
(
Tf
)−→
A

]

+
1
N

∫Tf

0

−→
B

1tr
Str(τ)R3S(τ)

−→
B1dτ,

(4.24)

or by using (4.22),

JN(A) =
1
2

[ −→
A

tr
P1
(
Tf
)−→
A +

−→
A

tr
P2
(
Tf
)−→
A

]
+

1
N

∫Tf

0

(
M

−→
A +

−→
N
)tr

P3(τ)
(
M

−→
A +

−→
N
)
dτ, (4.25)

where

P1(T) = Str(T)R1S(T),

P2(T) =
d

dT
Str(T)R2

d

dT
S(T)

P3(T) = Str(T)R3S(T).

, (4.26)

Expanding (M
−→
A +

−→
N)

tr
and letting P ∗

3 =
∫Tf

0 P3(t)dt, the performance index (4.25) takes on the
form

JN
( −→
A
)
=

1
N

[ −→
A

tr
MTP ∗

3M
−→
A +

−→
N

tr
P ∗

3M
−→
A +

−→
A

tr
MTP ∗

3
−→
N +

−→
N

tr
P ∗

3
−→
N

]

+
1
2

[ −→
A

tr(
P1
(
Tf
)
+ P2
(
Tf
))−→
A

]
.

(4.27)
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To this end, the optimal control problem (3.8) is converted into the mathematical program-
ming problem:

Find
−−→
A∗ ∈ R

N so that JN
(−−→
A∗
)
= min−→

A∈RN

JN
( −→
A
)
. (4.28)

4.4. Optimal Control Characterization

Let P4 = P1 + P2 and P5 = MtrP ∗
3M. By employing the properties of matrix differentiation

[34], we can obtain the necessary condition of the optimal control by differentiating the
performance index (4.27) with respect to the unknown vector

−→
A, we obtain

∂JN
( −→
A
)

∂
−→
A

=
1
N

[
(
P5
(
Tf
)
+ P tr

5

(
Tf
))−→
A +
(−→
N

tr
P ∗

3M

)tr

+
(
MtrP ∗

3
−→
N
)]

+
1
2
(
P4
(
Tf
)
+ P tr

4

(
Tf
))−→
A.

(4.29)

Let

P =
1
2
(
P4
(
Tf
)
+ P tr

4

(
Tf
))

+
1
n

(
P5
(
Tf
)
+ P tr

5

(
Tf
))
,

Q =
−1
N

(
MTP ∗tr

3 +MtrP ∗
3

)
.

(4.30)

Now we find
−−→
A∗ so that ∂JN(

−−→
A∗)/∂

−→
A = 0, we obtain

P
−−→
A∗ −Q

−→
N = 0 (4.31)

or

−−→
A∗ = P−1Q

−→
N (4.32)

and from (4.22), we have

−→
B∗ = M

(
P−1Q

−→
N
)
+
−→
N =

(
MP−1Q + I

)−→
N. (4.33)

The optimal state variable W∗(X, T) is obtained from (3.3), so we have

W∗(X, T) = W
∗
(X, T) + α(X)F∗(T), (4.34)
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where

W
∗
(X, T) =

N∑

n=1

⎛

⎝
m−1∑

j=0

a∗
ijSj(T)

⎞

⎠ϕn(X), F∗(T) =
m−1∑

j=0

b∗j Sj(T) (4.35)

in which a∗
ij and b∗j are the components of

−−→
A∗ and

−→
B∗, respectively.

5. Numerical Experiments

Numerical results are given to show the effectiveness of piezo actuators in controlling the
system and damping out the vibrations of the microbeam with a minimal use of voltage
applied to the piezo actuators at various terminal times, Tf , subject to the initial impact
conditions:

W(x, 0) = sinλ1x + sinλ2x, WT (x, 0) = 0, (5.1)

where λi = iπ, i = 1, 2.
For the numerical simulations, we let N = 2 and m = 10 (the first 10 shifted Legendre

polynomials). The measure of the total force used in the control process is given by

Jc
(
F0
)
=
∫Tf

0

(
F0(τ)

)2
dτ, (5.2)

and the controlled energy of the system is defined as

Ec

(
F0
)
=
∫1

0

{
μ1

[
W0(x, Tf)

]2
+ μ2

[
W0

T(x, Tf)
]2}

dx, (5.3)

where W0(x, T) corresponds to the optimal displacement of the microbeam. The controlled
and uncontrolled energies are denoted by Ec and Eu, respectively, and the force used is
denoted by Jc. In Tables 1–3, we study the effect of each two consecutive weighting factors
μi and μi+1 for i = 1, 3, and 5. While we vary each two consecutive μ′s, we set the other four
as well as the terminal time at 1. In Table 4, we study the effect of the terminal time on the
system energies.

The following observations are made.

(1) The system achieves substantial energy reduction when the weighting factors μ1

and μ2 are smaller. This implies that the smaller μ1 and μ2, the more emphasis on
kinetic energies; see Table 1.

(2) The system energies remain unchanged as the weighting factors μ3 and μ4 assume
different values; see Table 2.

(3) The weighting factors μ5 and μ6 are effective in regulating the system energies, see
Table 3.

(4) At any given terminal time, the system is damping the energy out to a desired
value; see Table 4.
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Table 1: Effect of μ1 and μ2.

μ1 = μ2 Eu (F = 0) Ec (F0) Jc (F0)
0.0625 0.014787 0.000006 0.000001
0.1250 0.029574 0.000010 0.064868
0.2500 0.059149 0.000019 0.691537
0.5000 0.118297 0.000033 0.006049
1.0000 0.236594 0.000043 0.064752
2.0000 0.473188 0.000056 0.013062

Table 2: Effect of μ3 and μ4.

μ3 = μ4 Eu (F = 0) Ec (F0) Jc (F0)
0.0625 0.236594 0.000042 0.010527
0.1250 0.236594 0.000042 0.000251
0.2500 0.236594 0.000042 0.040656
0.5000 0.236594 0.000046 0.263530
1.0000 0.236594 0.000043 0.064752
2.0000 0.236594 0.000044 0.128104

Table 3: Effect of μ5 and μ6.

μ5 = μ6 Eu (F = 0) Ec (F0) Jc (F0)
0.0625 0.236594 0.000003 0.003365
0.1250 0.236594 0.000006 0.005434
0.2500 0.236594 0.000015 0.000076
0.5000 0.236594 0.000032 0.159332
1.0000 0.236594 0.000043 0.064752
2.0000 0.236594 0.000056 0.023356

Table 4: Effect of terminal time (Tf ).

Tf Eu (F = 0) Ec (F0) Jc (F0)
1 0.236594 0.0000043 0.064752
5 0.029106 0.002017 0.005514
10 0.385400 0.000003 0.006740
15 0.25548 0.000001 0.004564

6. Conclusions

In this paper, a computational approach was presented to optimal boundary control of
smart mirco-beams with quadratic performance index. The Galerkin method is first used to
reduce the problem to optimal control of lumped parameter system. An algorithm based
on parametrizing the state and control variables by shifted Legendre polynomials was
employed to solve the lumped parameter optimization problem. The control parameters
are obtained from the integrated system state equations as a function of the approximated
state parameters, and the performance index was evaluated by an algorithm, which was
also proposed in the current study. The optimal control problem in lumped parameter
system was converted into a parameter optimization problem, which was quadratic in
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the unknown parameters. The optimal value of these parameters is obtained by using
quadratic programming results. The numerical examples presented support the theoretical
study and reveal the usefulness of the proposed approach.
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