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This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics
of shells. The main objective is to develop a new FEM methodology based on the minimum
potential energy theorem written regarding nodal positions and generalized unconstrained vectors
not displacements and rotations. These characteristics are the novelty of the present work and
avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is
created, and the change of configuration function is written following two independent mappings
from which the strain energy function is derived. This methodology is called positional and, as
far as the authors’ knowledge goes, is a new procedure to approximated geometrical nonlinear
structures. In this paper a proof for the linear and angular momentum conservation property of
the Newmark β algorithm is provided for total Lagrangian description. The proposed shell element
is locking free for elastic stress-strain relations due to the presence of linear strain variation along
the shell thickness. The curved, high-order element together with an implicit procedure to solve
nonlinear equations guarantees precision in calculations. The momentum conserving, the locking
free behavior, and the frame invariance of the adopted mapping are numerically confirmed by
examples.
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1. Introduction

An accurate analysis of structures that exhibit large deflections is of great importance for
structural design. The increasing search for economy and optimal material application leads
to the conception of very flexible structures. As a consequence, the equilibrium analysis in
the nondeformed position is no more acceptable for most applications. This affirmation is
confirmed by the large amount of research regarding this subject. One can see pioneering
studies related to nonlinear analysis of structures as the works of Bisshopp and Drucker [1],
Mattiasson [2], Goto et al. [3], Jenkins et al. [4], Kerr [5], Mondkar and Powell [6], Belytschko
et al. [7], among others.
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Moreover, some structures are naturally geometrically nonlinear as balloons, airbags,
cables, membranes and so on. The design of this kind of structures requires more
sophisticated theories than the linear ones. One can see, for instance, the works of Stein and
Hedgepath [8], Baginski et al. [9], Pipkin [10], Bonet et al. [11] among others.

This study is concerned with the development of a new Finite Element methodology
to solve geometrical nonlinear dynamics of shells. In order to achieve a robust formulation,
the resulting element should be free of shear and volumetric locking. This problem is solved
here by the natural presence of the transverse shear strain in the proposed kinematics. The
novelty of the proposed formulation is the use of positions and generalized unconstrained
vector mapping, resulting in a naturally objective continuum representation of the shell, free
of large rotation descriptions and locking. There exists another kind of rotation-free elements
as proposed in the works of Oñate and Zárate [12] and Flores and Oñate [13], developed
specifically for thin shells and based on curvature considerations.

There are different approaches regarding time integration for transient nonlinear FEM
dynamics, one can mention, as an example, three different approaches. The first is the explicit
time integration for fast solutions, analyzed in details by Argyris et al. [14] and works cited
therein, where small time steps are adopted and an indirect control of errors is made. The
second is the so-called variational energy conserving algorithms, necessary for corotational
like formulations; see for instance Simo et al. [15]. Finally, the implicit time integration for
total Lagrangian formulations as described by Lopez [16].

The formulation proposed here is total Lagrangian and, due to its unconstrained vector
mapping, it presents constant mass matrix. It is possible to apply the Newmak β integrator as
a momentum conserving algorithm. A simple proof of the momentum conserving property
of the Newmark β method is given in this paper. The proof is restricted to total Lagrangian
formulation (not extended to corotational formulations) and trivially fulfils the energy
conserving property for rigid bodies. All required features of the formulation as: locking
free, frame invariance, and momentum conserving (linear and angular) are checked in the
numerical examples section.

2. Strain Measure and Specific Strain Energy Potential

This section summarizes simple concepts used to derive the proposed formulation. The Green
strain tensor is derived directly from the gradient of the change of configuration function,
represented by letter A, given as follows:

Aij =
∂fi
∂xj

, (2.1)

where fi is the change of configuration function, as depicted in Figure 1, and xj represents
variation regarding initial position.

In Figure 1 dxi and dyi represent an infinitesimal fiber in the initial and current
continuum configurations, respectively. Following Ogden [17], the Green strain tensor can
be written as

Eij =
1
2
[
AkiAkj − δij

]
=

1
2
[
Cij − δij

]
, (2.2)
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Figure 1: Change of configuration.

in which index notation is adopted. The variables Cij and δij are the right Cauchy-Green
stretch tensor and the Kroenecker delta, respectively. The following quadratic strain energy
per unit of initial volume is adopted:

ue =
1
2
EijCijklEkl, (2.3)

resulting into a linear elastic constitutive law relating second Piola-Kirchhoff stress and Green
strain, usually called Saint-Venant-Kirchhoff elastic law, that is,

Sij =
∂ue
∂Eij

= CijklEkl. (2.4)

The elastic tensor is given by

Cijkl =
2Gν

1 − 2ν
δijδkl +G

(
δikδjl + δilδjk

)
, (2.5)

where G is the shear modulus, given by

G =
E

2(1 + ν)
(2.6)

with E being the well-known Young modulus and ν Poisson’s ratio.
The true stress (Cauchy stress) is achieved directly from the Second Piolla-Kirchhoff

stress following simple expressions given by Ogden [17] or Ciarlet [18], for instance. For the
sake of completeness it is necessary to recall that the right Cauchy-Green stretch tensor is
positive definite, symmetric, and has six independent values.

3. Equivalence between Classical and Generalized
Unconstrained Mapping of Solids

This section presents the equivalence of a classical finite element solid mapping and its
counterpart, the generalized vector mapping. Figure 2 shows a solid (following plane stress
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Figure 2: Classical and generalized unconstrained vector discretizations.

or plane strain condition) element of quadrangular shape classically mapped from a usual
nondimensional coordinate system. Figure 2 also shows the same solid mapped from the
same nondimensional coordinate system, this time using generalized unconstrained vector
parameters.

Without loss of generality the equivalence is shown for a low-order mapping and in
the next section extended to consider high-order interpolations. In order to be complete, let
us take the following shape functions: φ1 = (1/4)(1 − ξ1)(1 − ξ2), φ2 = (1/4)(1 + ξ1)(1 − ξ2),
φ3 = (1/4)(1 + ξ1)(1 + ξ2), φ4 = (1/4)(1 − ξ1)(1 + ξ2),

ϕ1 =
1
2
(1 − ξ1), ϕ2 =

1
2
(1 + ξ1), (3.1)

where ξi are nondimensional coordinates. The classical continuum mapping is written as

xi = φ	(ξ1, ξ2)X	i for i = 1, 2, 	 = 1, 2, 3, 4, (3.2)

where xi are the coordinates of any point of the mapped continuum, φ	 are the shape
functions, and X	i are the coordinates of nodes P	 named position parameters.

A totally similar mapping is given by

xi = ϕ	Xm
	i +

H	iϕ	
2

ξ2 for i = 1, 2, 	 = 1, 2, (3.3)

where the mid line nodal coordinates Xm
	i and nodal generalized vectors H	i are given by

Xm
1i =

X1i +X4i

2
, Xm

2i =
X2i +X3i

2
, H1i = X4i −X1i, H2i = X3i −X2i. (3.4)

Expression (3.3) shows that the equivalent vector mapping is done using nonunitary vectors
H	i as parameters. In order to generalize the formulation one writes the nodal vectors H1i

and H2i as functions of their lengths H1 and H2 resulting

xi = ϕ	Xm
	i +

H(	)

2
ξ2Vi	ϕ	 for i = 1, 2, 	 = 1, 2, (3.5)
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Figure 3: Mid-surface mapping.

where brackets mean that summation is not implied. The first term of (3.5) describes the
reference line approximation. The values Vi	 are the generalized nodal vectors. These vectors
are not orthogonal to the reference line and could not be unitary, if desired, see (3.3).
However, for the initial configuration they are made unitary, but in the current configuration
these vectors assume nonunitary values. This feature is the original of the generalized
unconstrained vector mapping of solids. Finally, if one adopts constant height (h0), a usual
assumption for bars and shells, (3.5) turns into the desired continuum mapping, that is,

xi = ϕ	Xm
	i +

h0

2
ξ2Vi	ϕ	 for i = 1, 2, 	 = 1, 2. (3.6)

This mapping is totally similar to the classical one, given in (3.2) and, consequently, has the
same objectiveness, Crisfield and Jelenić [19].

4. Improved Finite Element Kinematics

Improving the solid description of Figure 2 by a three-dimensional representation of a shell,
one can approximate the mid-surface positions of a shell, (see Figure 3), by the following
mapping:

fm0
i = xmi = φ	X	i, (4.1)

fm1
i = ymi = φ	Y	i, (4.2)

where xmi is the ith coordinate of a generic point in the mid surface of the shell at initial
configuration, X	i is the ith coordinate of node 	, ymi is the ith coordinate of a generic point in
the mid surface of the shell at current configuration, and Y	i is the ith coordinate of node 	 at
current configuration.

One can see in Figure 3 that fm0 is the positional mapping from the auxiliary space
to the initial mid-surface configuration, fm1 is the positional mapping from the auxiliary
space to the current mid-surface configuration, fm is the positional mapping from the
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initial configuration to the current one (not to be written) and the values Am0, Am1,
Am are their respective gradients. Expression (4.1) is totally similar to the reference line
description of the first term of (3.6). This time, high-order approximations for a surface are
used.

To complete the shell kinematic description for both initial and current configurations,
one realizes that the difference between a point out of the mid-surface, and its corresponding
belonging to the mid-surface generates position vectors −→v 0 or −→v 1, see Figure 4.

A general point of the shell can be defined by adding the position vectors to the
corresponding mid-surface point, that is,

xi = xmi + v0
i ,

yi = ymi + v1
i .

(4.3)

Following what has been described in Section 3, for constant strain regarding ξ3, one
writes v0

i and v1
i as functions of nondimensional coordinates, as

v0
i =

h0

2
φ	V

0
	i ξ3, (4.4)

v1
i =

h0

2
φ	V

1
	i ξ3, (4.5)

where h0, v0
i , v1

i are, respectively, the initial constant thickness of the shell, the normal unit
vector to the initial mid-surface and the current generalized vector (not necessarily normal to
the mid-surface).

To consider linear strain variation regarding ξ3 an improved kinematics is required.
This is done adopting a new scalar variable called here the linear rate of thickness variation
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and denoted by letter a. It is not necessary to introduce this new variable for initial
configuration, so expression (4.4) does not change, however, expression (4.5) turns into

v1
i =

h0

2
φ	V

1
	i

[
ξ3 + a ξ2

3

]
. (4.6)

The introduced quadratic term allows linear strain variation along the transverse direction of
the shell. The final generalized nodal vectors V 1

	i are not constrained, so the final thickness of
the shell is not the same as the initial one and can be recovered as

v1
i = φ	 V

1
	i,

h = h0

√
v1
i v

1
i .

(4.7)

The final mapping is generalized and unconstrained, like (3.6), improved in the membrane
and thickness sense and is written as

f0
i = xi = φ	X	i +

h0

2
ξ3φ	V

0
i	 ,

f1
i = yi = φ	Y	i +

h0

2

[
ξ3 + φ	A	ξ

2
3

]
φkV

1
ik,

(4.8)

in which the linear rate of thickness variation (scalar) is parameterized by its nodal values A	

as follows:

a = φ	A	. (4.9)

The current position has seven unknown parameters per each node 	, that is, three positions
Y	i, three generalized nodal vectors Vi	 , and the nodal rate of thickness variation A	 .

Function f0
i is used to find A0 while function f1

i is used to find A1 (trial). The
composition of these two values for each integration point gives the numerical value of the
gradient of the change of configuration for any initial geometry (curved), that is,

A = A1
(
A0

)−1
. (4.10)

It is worth to show the derivatives of f1
i regarding the nondimensional variables ξj ,

constituting the gradient A1
ij as follows:

A1
i1 = φ	,1Y	i +

h0

2

{[
ξ3 + φ	A	ξ

2
3

]
φk,1Vik +

[
φ	,1A	ξ

2
3

]
φkVik

}
,

A1
i2 = φ	,2Y	i +

h0

2

{[
ξ3 + φ	A	ξ

2
3

]
φk,2Vik +

[
φ	,2A	ξ

2
3

]
φkVik

}

A1
i3 =

h0

2
[
1 + 2φ	A	ξ3

]
φkVik.

, (4.11)
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5. Dynamic Nonlinear Equation

From this section on, a unified notation will be adopted for nodal parameters, they will be
called simply Y	i for each element 	 and for i varying from 1 to 7. The correspondence is
as follows, translations for i varying from 1 to 3, rate of thickness variation for i = 4 and
generalized vectors for i varying from 5 to 7.

The conservation of energy in a mechanical system is guaranteed if the input and
output of energy are at balance. If there is some kind of dissipation, the total energy of the
system changes along time. It can be understood by writing the total potential energy of a
system as follows:

Π = Π0 −Q(t, x), (5.1)

where, following Lánczos [20], Q(t, x) can be stated as the quantity of energy withdrawn
from the simple conservative idealized energy Π0. As a consequence, Π is the remaining
(current) mechanical energy of the system, and (5.1) can be rewritten as

Π0 = Π +Q(t, x). (5.2)

This equation can be understood as recovering the possibility of using stationary
properties for the mechanical system analysis, that is, one can use the minimum potential
energy theorem on the ideal energy function Π0 for equilibrium analysis.

For a structural problem associated with a fixed reference system, Figure 5, the ideal
potential energy function can be written as the composition of the strain energy (Ue), the
potential energy of applied conservative forces P, the kinetic energy (K) and dissipation (Q),
as follows:

Π0 = Ue − P +K +Q. (5.3)

In this work the nonconservative forces will be considered as part of the dissipative potential.
The strain energy function of the body, shell for instance, is considered to be stored in the
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initial volume of the body V0 and is written as an integral of the specific strain energy value
ue, (2.3), as

Ue =
∫

V0

ue dV0. (5.4)

The strain energy is assumed to be zero at the initial position, called nondeformed.
The potential energy of the applied conservative forces is written as

P = FiYi +
∫

s0

tiyi ds0, (5.5)

where Fi represents forces applied in direction ”i” and Yi is the ith current position of the
point where the load is applied, ti is the distributed force applied in direction ”i” and yi is
the current position of mid-surface points (i = 1, 2, 3 only). Gravitational force has not been
mentioned; however, as it is a conservative force, t can be introduced directly into the integral
of (5.5). The letter ds0 represents the initial differential area of elements. The kinetic energy is
written as

K =
1
2

∫

V0

ρ0ẏiẏi dv0, (5.6)

where ẏi are velocities and ρ0 is the mass density, relative to the initial volume V0. The
dissipative term, including normal distributed forces, is written in its differential form as

∂

∂yi
Q
(
t, y

)
=
∫

v0

∂

∂yi
q
(
y, t

)
dv0 =

∫

v0

λmρ0ẏi dv0 −
∫

s0

qi ds0, (5.7)

where q is the specific dissipative functional, λm is a proportional damping constant, ẏi are
velocities at any point, and qi are components of the normal distributed forces given by

qi = qφ	V 1
	i, (5.8)

where q is the normal distributed force over the element and V 1
	i the generalized vector

corresponding to the values Y	i for i varying from 5 to 7. The integral of these forces respects
the direction of the current position but its integral is performed over the initial surface as
the load magnitude is written regarding initial position. The current load is easily known by
multiplying these magnitudes by ds0/ds, for usual applications of thin structures the value
of ds0/ds ∼= 1.

Substituting (5.4), (5.5) and (5.6) in (5.3) results

Π0 =
∫

V0

ue dV0 − FiYi −
∫

s0

tiyi ds0 +
1
2

∫

V0

ρ0ẏiẏi dV0 +Q. (5.9)
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This energy function can be written substituting the exact position field by its approximation
described in Section 4, that is,

Π0 =
∫

V0

ue(ξ, Yi)dV0 − FiYi −
∫

s0

tiyi(ξ, Yi)ds0

+
1
2

∫

V0

ρ0ẏi(ξ, Yi)ẏi(ξ, Yi)dV0 +Q(ξ, Yi).

(5.10)

The minimum potential energy theorem is used on Π0 by differentiating (5.10) regarding a
generic nodal position Y	j , resulting

∂Π0

∂Y	j
=
∫

V0

∂ue(ξ, Yi)
∂Y	j

dV0 +
∫

V0

ρ0φ	j(ξ)φki(ξ)dV0Ÿki +
∫

V0

λmρ0φ	j(ξ)φki(ξ)dV0Ẏki

− F	j −
∫

s0

φ	j(ξ)φki(ξ)ds0tki −
∫

s0

qjφ	j(ξ)ds0 = 0.

(5.11)

It is worth noting that in this equation the dissipative potential is differentiated regarding
nodal positions, differently from (5.7), so (5.8) should be introduced in the last integral of
(5.11) to perform the numerical integration. Moreover, as the vibration frequency of the
thickness variation is too high, when compared to the other movements, the mass matrix
is generated neglecting this term.

One can rewrite (5.11) in a simple vector form as

g	j =
∂Ue

∂Y	j
+ Finert.

	j + Fdamp.
	j − Fc	j − F

nc
	j = 0, (5.12)

or

g	j =
∂Ue

∂Y	j
+MŸ	j + CẎ	j − Fc	j − F

nc
	j = 0. (5.13)

The involved forces are, inertial force Finert.
	j or MŸ	j , damping Fdamp.

	j or CẎ	j and the external
force, divided into conservative Fc

	j
and following forces Fnc

	j
. It is important to note that

the second representation of the inertial and damping forces is possible because the simple
vector mapping described in Sections 3 and 4 generates constant mass matrix. Splitting the
derivative of the specific strain energy, one writes

1
2

∂

∂Y	j
(EklCklimEim) =

1
2

∂

∂Eαβ
(EklCklimEim)

∂Eαβ

∂Y	j
= CαβimEim

∂Eαβ

∂Y	j
= Sαβ

∂Eαβ

∂Y	j
. (5.14)

Consequently

Fint.
	j =

∫

V0

CαβimEim
∂Eαβ

∂Y	j
dV0, (5.15)
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where Fint
	j is the first gradient vector of the strain energy potential regarding positions,

understood as internal force. Equation (5.12) represents the dynamic equilibrium of the shell
in the D’Alambert sense. If not, vector g	j can be understood as the unbalanced force of the
mechanical system.

The current position is the unknown of the problem, so it is necessary to solve the
nonlinear (5.12) regarding Y	j and time. The first solution step is to integrate (5.12) regarding
time. For an implicit approach this step is of great importance regarding the momentum
conserving properties of the adopted time integrator. In this work a proof (alternative to
the one given by Kane et al. [21]) that the Newmark β method conserves linear momentum
and angular momentum for any adopted time step is given. This proof is restrict to total
Lagrangian formulation (not corotational) and is trivially extended to energy conserving
property for rigid bodies.

6. Proof of the Linear and Angular Momentum Conserving
Properties of the Newmark β Method

In this section no indexes are used, so the variables, as they appear, are vectors. It is important
to mention that the proofs given here are restricted to total Lagrangian formulations. It is not
extended to nonlagrangian or corotational formulations.

The Newmark β approximations, following the notation given by Argyris and Mlejnek
[22], for position description are

YS+1 = YS + ΔtẎS + Δt2
[(

1
2
− β

)
ŸS + βŸS+1

]
, (6.1)

ẎS+1 = ẎS + Δt
(
1 − γ

)
ŸS + γΔtŸS+1. (6.2)

The linear momentum expression for a total Lagrangian description is given as

Q =
∫

V0

ρ0Ẏ dV0. (6.3)

If the body does not develop any deformation and the external forces are zero, then the linear
momentum does not vary along time, that is,

∂Q

∂t
=
∫

V0

ρ0Ÿ dV0. (6.4)

From the continuity of the body, Ogden [17], one concludes that, the following equation is
valid

Ÿ = 0. (6.5)
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Using (6.5), written for two times ts and ts+1, into (6.2), it results

ẎS+1 = ẎS, (6.6)

or by continuity

∫

V0

ρ0Ẏs+1 dV0 =
∫

V0

ρ0Ẏs dV0, (6.7)

that is, the linear momentum is conserved for any adopted time step and Newmark constants.
To prove the conservation of angular momentum more steps are required. The

Lagrangian expression of angular momentum is

J =
∫

V0

ρ0ẎxYdV0, (6.8)

where x is the vector product.
The angular momentum is constant when there is a fixed axis around which a rigid

body turns with constant angular velocity. As the body is considered rigid, no transfer of
energy from kinetics to strain energy occurs; as a consequence the conservation of momentum
means the conservation of energy for an isothermal situation. Assuming this hypothesis one
writes

∂J

∂t
=
∫

V0

ρ0
(
ŸxY + ẎxẎ

)
dV0 =

∫

V0

ρ0
(
ŸxY

)
dV0 = 0. (6.9)

Form the continuity assumption the equality

ŸxY = 0 (6.10)

must hold for any point of the continuum. It occurs in two situations, the trivial undesired
one, that is, Ÿ = 0 and the desired one,

Ÿ = −ω2Y, (6.11)

where ω is the angular velocity of the body around the rotation axis and Y is, without loss
of generality, the position vector of the point related to its projection over the rotation axis.
Using (6.11) for time ts+1 into the Newmark β (6.1) and (6.2), one writes

YS+1 = YS + ΔtẎS −Δt2
(

1
2
− β

)
ω2YS −Δt2βω2YS+1, (6.12)

ΔtẎS+1 = ΔtẎS −Δt2
(
1 − γ

)
ω2YS −Δt2γω2YS+1. (6.13)
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Rearranging terms of (6.12), one has

ΔtẎS =
(
Δt2βω2 + 1

)
YS+1 −

(
1 −Δt2

(
1
2
− β

)
ω2

)
YS. (6.14)

Substituting (6.14) into (6.13) results

ΔtẎS+1 =
(
Δt2βω2 + 1 −Δt2γω2

)
YS+1 −

(
1 −Δt2

(
1
2
− β

)
ω2 + Δt2

(
1 − γ

)
ω2

)
YS. (6.15)

Post-vector-multiplying (6.14) and (6.15) by Ys and Ys+1, respectively, and subtracting results
one achieves

Δt
(
Ẏs+1xYs+1 − ẎsxYs

)
=
(

1 −Δt2
(

1
2
− β

)
ω2 + Δt2

(
1 − γ

)
ω2 −Δt2βω2 − 1

)
(Ys+1xYs).

(6.16)

Finally (6.16) simplifies to

(
Ẏs+1xYs+1 − ẎsxYs

)
= Δtω2

(
1
2
− γ

)
(Ys+1xYs). (6.17)

By continuity one writes

∫

V0

ρ0Ẏs+1xYs+1 dV0 =
∫

V0

ρ0ẎsxYs dV0 +
∫

V0

ρ0Δtω2
(

1
2
− γ

)
(Ys+1xYs)dV0, (6.18)

or in a shorter notation

Js+1 = Js +
∫

V0

ρ0Δtω2
(

1
2
− γ

)
(Ys+1xYs)dV0. (6.19)

Therefore, the Newmark β method is angular momentum conserving for γ = 1/2, despite the
adopted time step, angular velocity or β parameter.

7. Time Marching Process and Newton Rapson Procedure

From the previous developments (5.12) can be written in a simpler form as

g =
∂Ue

∂Y
− Fc − Fnc +MŸ + CẎ = 0. (7.1)
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Expression (7.1) represents the dynamic equilibrium equation at any time and has to be
solved. In order to do so the first step is to write this equilibrium for a specific instant ts+1

as follows:

∂Π
∂Y

∣∣∣∣
S+1

=
∂Ue

∂Y

∣∣∣∣
S+1
− FS+1 +MŸS+1 + CẎS+1 = 0. (7.2)

Substituting the Newmark approximations (6.1) and (6.2) into (7.2) results

g(YS+1) =
∂Π
∂Y

∣∣∣∣
S+1

=
∂Ue

∂Y

∣∣∣∣
S+1
− FS+1 +

M

βΔt2
YS+1 −MQS + CRS +

γC

βΔt
YS+1 − γΔtCQS = 0,

(7.3)

where vectors QS and RS represent the dynamic contribution of the past and are given by

QS =
YS
βΔt2

+
ẎS
βΔt

+
(

1
2β
− 1

)
ŸS,

RS = ẎS + Δt
(
1 − γ

)
ŸS.

(7.4)

Equation (7.3) can be understood simply by g(YS+1) = 0 and is clearly nonlinear regarding
(YS+1). A Taylor expansion to solve this nonlinear equation is necessary. The second
derivative of the total energy potential is then given by

∂2Π
∂Y 2

∣∣∣∣∣
S+1

= ∇g(Ys+1) =
∂2Ue

∂Y 2

∣∣∣∣∣
S+1

+
M

βΔt2
+
γC

βΔt
. (7.5)

One builds the Taylor series of first order as:

0 = g(Y ) ∼= g
(
Y 0

)
+∇g

(
Y 0

)
ΔY (7.6)

and derives the Newton-Raphson procedure to solve the nonlinear (7.3), that is,

∇g
(
Y 0

)
ΔY = −g

(
Y 0

)
, (7.7)

where Y 0 is a trial position (usually Ys) for Ys+1 used in (7.3) to calculate g(Y 0). Solving ΔY
one calculates a new trial for Ys+1 as

YS+1 = Y 0 + ΔY. (7.8)
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The acceleration must be corrected for each iteration by an expression obtained from (6.1),
that is,

ŸS+1 =
YS+1

βΔt2
−QS. (7.9)

This equation is used in (6.2) to correct velocity. The stop criterion is given by (7.10), when a
chosen tolerance (TOL) is satisfied, that is,

∥∥∥g
(
Y 0

)∥∥∥ ≤ TOL or ‖ΔY‖ ≤ TOL. (7.10)

It must be noted that, before the first time step, the initial acceleration must be calculated as
follows:

Ÿ0 =M−1
[
F0 −

∂Ue

∂Y

∣∣∣∣
0
− CẎ0

]
. (7.11)

8. The Derivatives of the Specific Strain Energy

In order to conclude the description of the formulation the second derivatives of the strain
energy regarding nodal positions should be given as it has been done for the first derivative
in (5.15). From (5.14) and (5.15) one writes

∂2Ue

∂Yk∂Yj
=
∫

V0

∂

∂Yk

(

CαβimEim
∂Eαβ

∂Yj

)

dV0

=
∫

V0

(
∂Eim
∂Yk

Cαβim

∂Eαβ

∂Yj
+ EimCαβim

∂2Eαβ

∂Yj∂Yk

)

dV0.

(8.1)

Finally, the first and second derivatives of the Green strain regarding current nodal positions
should be done. Firstly the necessary derivatives of the Cauchy-Green stretch tensor are
presented. Next the derivatives of strains are straightforwardly achieved. Recalling that the
Cauchy-Green stretch tensor is given by

C = AtA (8.2)

and omitting, for simplicity, extra indices, one applies the proposed mapping, that is, A =
A1(A0)−1, and writes

C =
[(
A0

)t]−1(
A1

)t
(Yi)A1(Yi)

(
A0

)−1
. (8.3)
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Remembering that A0 is constant regarding the current position, the first derivative is
performed as

∂C

∂Yj
=
[(
A0

)t]−1 ∂
(
A1)t(Yi)
∂Yj

A1(Yi)(A0)−1 +
[(
A0

)t]−1(
A1

)t
(Yi)

∂A1(Yi)
∂Yj

(
A0

)−1
(8.4)

and, from (4.11), one has the following (not null) values of the current positional mapping
gradient:

∂A1
11

∂Y	1
= φ	,1(ξ1, ξ2),

∂A1
12

∂Y	1
= φ	,2(ξ1, ξ2),

∂A1
21

∂Y	2
= φ	,1(ξ1, ξ2),

∂A1
22

∂Yl2
= φl,2(ξ1, ξ2),

∂A1
31

∂Y	3
= φ	,1(ξ1, ξ2),

∂A1
32

∂Y	3
= φ	,2(ξ1, ξ2),

∂A1
i1

∂Y	4
=
h0

2
ξ2

3
{
φ	,1(ξ1, ξ2)Vkφk(ξ1, ξ2) + φ	(ξ1, ξ2)Vkφk,1(ξ1, ξ2)

}
,

∂A1
i2

∂Y	4
=
h0

2
ξ2

3
{
φ	,2(ξ1, ξ2)Vkφk(ξ1, ξ2) + φ	(ξ1, ξ2)GVkφk,2(ξ1, ξ2)

}
,

∂A1
i3

∂Y	7
= h0ξ3φ	(ξ1, ξ2)Vkφk(ξ1, ξ2),

∂A1
11

∂Y	5
=
h0

2

{
φ	,1(ξ1, ξ2)ξ3 +

[
φk,1(ξ1, ξ2)Akφ	(ξ1, ξ2) + φk(ξ1, ξ2)Akφ	,1(ξ1, ξ2)

]
ξ2

3

}
,

∂A1
12

∂Y	6
=
h0

2

{
φ	,2(ξ1, ξ2)ξ3 +

[
φk,2(ξ1, ξ2)Akφ	(ξ1, ξ2) + φk(ξ1, ξ2)Akφ	,2(ξ1, ξ2)

]
ξ2

3

}
,

∂A1
13

∂Y	7
=
h0

2
{
φ	(ξ1, ξ2) + 2ξ3φk(ξ1, ξ2)Akφ	(ξ1, ξ2)

}
,

∂A1
21

∂Y	5
=
h0

2

{
φ	,1(ξ1, ξ2)ξ3 +

[
φk,1(ξ1, ξ2)Akφ	(ξ1, ξ2) + φk(ξ1, ξ2)Akφ	,1(ξ1, ξ2)

]
ξ2

3

}
,

∂A1
22

∂Y	6
=
h0

2

{
φ	,2(ξ1, ξ2)ξ3 +

[
φk,2(ξ1, ξ2)Akφ	(ξ1, ξ2) + φk(ξ1, ξ2)Akφ	,2(ξ1, ξ2)

]
ξ2

3

}
,

∂A1
23

∂Y	7
=
h0

2
{
φ	(ξ1, ξ2) + 2ξ3φk(ξ1, ξ2)Akφ	(ξ1, ξ2)

}
,

∂A1
31

∂Y	5
=
h0

2

{
φ	,1(ξ1, ξ2)ξ3 +

[
φk,1(ξ1, ξ2)Akφ	(ξ1, ξ2) + φk(ξ1, ξ2)Akφ	,1(ξ1, ξ2)

]
ξ2

3

}
,

∂A1
32

∂Y	6
=
h0

2

{
φ	,2(ξ1, ξ2)ξ3 +

[
φk,2(ξ1, ξ2)Akφ	(ξ1, ξ2) + φk(ξ1, ξ2)Akφ	,2(ξ1, ξ2)

]
ξ2

3

}
,

∂A1
33

∂Y	7
=
h0

2
{
φ	(ξ1, ξ2) + 2ξ3φk(ξ1, ξ2)Akφ	(ξ1, ξ2)

}
.

(8.5)
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The first index of Y	m is the element node, and the second is the degree of freedom.
The second derivative of the Cauchy-Green stretch is given by

∂2C

∂Yj∂Yk
=
[(
A0

)t]−1 ∂
(
A1)t(Yi)
∂Yj

∂A1(Yi)
∂Yk

(A0)−1 +
[(
A0

)t]−1 ∂
(
A1)t(Yi)
∂Yk

∂A1(Yi)
∂Yj

(
A0

)−1

+
[(
A0

)t]−1 ∂2(A1)t(Yi)
∂Yj∂Yk

A1(Yi)(A0)−1 +
[(
A0

)t]−1(
A1

)t
(Yi)

∂A1(Yi)
∂Yj∂Yk

(
A0

)−1
,

(8.6)

where ∂A1/∂Yk are given by (8.5) and the second derivatives ∂2A1/(∂Yk∂Yj) are straightfor-
ward. Recalling (2.2), one achieves directly

∂E

∂Yj
=

1
2
∂C

∂Yj
,

∂2E

∂Yj∂Yk
=

1
2

∂2C

∂Yj∂Yk
. (8.7)

It is important to mention that the present technique can be applied to any strain
measure based on the Cauchy-Green stretch. Equation (7.5) indicates that the proposed
procedure can be operated by creating the Hessian matrix and internal forces for finite
elements and building the global matrix and internal force vector by summation of coincident
degrees of freedom, as it is done for usual FEM procedures. One should remember that all
nodal parameters follow the global system of reference, avoiding the use of rotation schemes.

9. Numerical Examples

This section provides eight examples covering selected tests to confirm the generality and
accuracy of the proposed formulation for static and dynamic situations. No mention to units
is made to keep a coherence with references. The important features are objectivity, locking
free behavior, Linear momentum conserving, angular momentum conserving, total energy
conserving, and generality in applications. More examples regarding static analysis can be
seen in Coda and Paccola [23, 24].

9.1. Objectivity of the Formulation Regarding Rotations

As mentioned in the introduction, this formulation is tested regarding mapping objectivity.
The employed way to test this property follows well-known methodologies; see for instance
Criesfield and Jelenić [19] and Ibrahimbergovic and Taylor [25]. A clamped vertical plate
(shell in deformed configuration) is subject to a transverse load at its free end as depicted in
Figure 6. Static conditions are considered, so inertial forces are neglected , gravitational forces
are also not considered. The physical properties of the structure are E = 100 000 and ν = 0.
The thickness of the shell is h = 0.1. The adopted discretization can also be seen in Figure 6.

Two situations are created. The first consists into applying a rotation over the shell
regarding the clamping axis without applying any load. The objective is to show that no
stress will be generated at any stage of rotation. One hundred turns are applied and no stress
appears; moreover, the positions are exactly the same after each turn. In Figure 7 one can see
an illustration of this situation for the first turn. The adopted rotation step is 0.1π .
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Figure 6: Geometrical characteristics of the problem and discretization.
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Figure 7: Stress values for the first turn—unloaded.

In the second situation the process is divided into two phases. First, the load is
increased to its final value in ten equal steps. The resulting stress, following the longitudinal
direction of the shell, at the superior face of the shell, is depicted in Figure 8.

Then the load is kept constant and acts, in the same sense and direction, and the
rotation, similar to the one used in the first situation, is applied. The adopted rotation step is
0.01π . At the beginning of the rotation process the action of rotation is against the action of
the loading. At a quarter of the first turn the loading is compressing the shell and the stress
values, following the longitudinal direction of the shell, are depicted in Figure 9.

At the half of the first turn the shell is in opposite position to the beginning of the
rotation process, and the initially superior face of the shell is now the inferior one. The stress
values at this face are negative and their values are depicted in Figure 10. The difference in
stress magnitude from the first deformed configuration and this one is due to the normal
traction force that increases the values in Figure 8 and decreases the absolute values in
Figure 10.
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Figure 8: Stress values for the first deformed configuration—no rotation.
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Figure 9: Stress values for a quarter of the first turn (π/2).

At three quarters of the first turn the stress values are the ones depicted in Figure 11,
exactly as expected.

Finally, after a complete revolution the stress values depicted in Figure 12 are exactly
the same ones present in Figure 8. Ninety nine more turns were performed, and the results are
repeated for each turn, revealing the total objectiveness of the generalized vector mapping.

9.2. Shear and Volumetric Locking Analysis

This example is extracted from Bucalem et al. [26] and is a benchmark to check FEM
formulations regarding shear and volumetric locking. It is an important example as the
solution for plates is very sensitive to the Poisson Ratio, and some shell theories fail to
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Figure 10: Stress values for the half turn (π).
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Figure 11: Stress values for three quarters of a turn (3π/2).

reproduce the analytical solution by the presence of shear locking. It is the analysis of a simple
supported square plate subjected to a static transverse concentrated load at its center. The
numerical results are compared with the analytical solution obtained using Navier’s series
for Kirchhoff plate theory. The thin plate geometry is depicted in Figure 13.

The adopted physical data are L = 2, E = 2.1 × 109, h = 0.002, and υ varying from
0 to 0.5. The applied load is P = 0.4 × 10−2. In Figure 14 the results obtained using the
presented improved formulation are compared to the analytical solution and the solution for
constrained linear rate of thickness variation. This last situation is called simply six-parameter
shell formulation.
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Figure 12: Stress values for one complete turn (2π).
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Figure 13: Analyzed plate and adopted discretization.

As one can observe the presented formulation is free from shear and volumetric
locking and reproduces perfectly the analytical solution. For more examples regarding the
shear locking free behavior of the proposed kinematics one is referred to Coda and Paccola
[23, 24], where an extensive static analysis for a six parameter shell element is presented.

9.3. Pinched Cylinder with Rigid Diaphragms (Static)

This benchmark consists in a cylinder with rigid diaphragms pinched by concentrated loads
at two opposite points at its top and bottom, see Figure 15. The adopted discretization
(2 × 18 × 6 mesh) is also depicted in Figure 15 comprising 1045 nodes. This example is also
used to test the formulation regarding shear and Poisson locking. It should be noted that
if a formulation suffers from any locking the correct results cannot be achieved. The use
of symmetry can hide some buckling modes of the problem; however, to compare with the
reference papers the symmetry is assumed. The number of modes one can get with accuracy
(excluding nonsymmetric ones) is about 30 for a total of 220 node for the total circumference
and cubic approximations. The results are compared to the ones achieved by Sansour and
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Figure 15: Pinched Cylinder geometry, loading and the adopted discretization.

Kollmann [27] with a mesh of 1681 nodes. Taking advantage of symmetry only one octant of
the cylinder is discretized. The adopted physical parameters are: R = 100, h = 1, E = 3 × 104,
L = 200. Two values are adopted for the Poisson ratio, υ = 0.3 and υ = 0.49, respectively, in
order to check the locking free behavior of the presented formulation.

The problem is solved with the proposed formulation following two strategies. The
first, called 7 parameters, does not constrain the linear rate of thickness. The second, called 6
parameters, totally constrains the linear rate of thickness variation. In Figure 16 the results
for υ = 0.3 are compared with Sansour and Kollmann [27] that employed an enhanced
strain quadrilateral element. As one can see the formulation proposed here can capture the
flexibility of the pinched shell for ν = 0.3 even if the linear rate of thickness variation is totally
constrained. A formulation suffering of shear locking is not able to run this example.

In Figure 17, the behavior of the proposed formulation (with the seventh parameter
constrained or not) is depicted for υ = 0.49. The reference value for this figure is the seven
parameter result with υ = 0.3. As expected, the proposed formulation does not lock for large
Poisson ratio. However, the results for the totally constrained rate of thickness variation lock
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Figure 17: Displacements for points A and B, υ = 0.49.

completely. Shell formulations based on six parameters and full constitutive relations can be
free from shear locking, but not from Poisson locking.

From this result it is obvious that the positional improved formulation based on
generalized vectors, together with high-order curved elements, is able to solve geometrically
nonlinear shell problems with precision and reduced mesh. Additional and practical
information is that the pinched cylinder benchmark problem is not very sensitive to the
Poisson ratio intensity.
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Figure 18: Energy conserving for linear momentum.

9.4. Linear Momentum Conservation

This example is used to confirm the proof given for the linear momentum conserving
property of the Newmark β method when used with the generalized vector mapping to
develop the positional formulation. A plate with the same dimensions of Section 9.1 with
no displacement restrictions and mass density ρ0 = 1 is subjected to an initial velocity in the
vertical direction of value V2 = 1. As the gravitational force is neglected and no displacement
restrictions are imposed the plate does not deform and moves with constant velocity. The
total applied kinetic energy is, of course, k = 0.2. Only two finite elements were used to
run this problem. In Figure 18 the numerical kinetic energy calculated for 1000 time steps
using different time steps is depicted. Remembering that the Newmark parameter γ = 0.5 is
mandatory the other one is adopted as β = 1/4.

As one can (see in Figure 18) the Newmark β method preserves the total energy of the
system when a linear momentum is applied. No strains were developed in this example.

9.5. Angular Momentum Conservation

In this example a vertical circular thick cylinder, (see Figure 19), is subjected to a field of
initial velocity generated by an angular velocity of w = 1. The dimensions of the cylinder
are: h = 0.4, l = 1.0 and r = 1.0. The physical parameters are: E = 100, ν = 0 and ρ0 = 0.1.
The total energy introduced in the problem by this velocity field is (considering the thickness
influence) k = 1.3069. Eighteen finite elements with forty eight nodes and β = 0.25 are used to
run this problem, as shown in Figure 19. One should note that the elements are curved despite
the straight lines that appear in Figure 19. The achieved total energy is depicted along 1000
time steps in Figure 20 for two different time steps. It is interesting noting that a small strain
energy was computed for this analysis.
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Figure 20: Energy conserving for angular momentum.

The exact solution is coincident with the numerical one for Δt = 0.01. The numerical
result for the large time step is also energy conserving; the difference in results is floating
and less than 1%. This difference is due to the better accuracy achieved when using a small
time step. In Figure 20 the number of time steps is the same, however for the larger one 15.9
turns are depicted and only 1.59 turns are depicted for the smaller one. The same total energy
is found after 1 000 000 time steps for the smaller time step, that is, performing 1590 turns.
Even better results are achieved for thinner shells. As a consequence, the proof given for the
momentum conserving property of the Newmark β method is confirmed also for angular
momentum.
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Figure 22: Energy and free end displacement along time.

9.6. Transverse Dynamic Load over a Clamped Beam—Energy
Conservation Check

This example adopts the proposed nonlinear shell element to run the nonlinear transversal
dynamic vibration of a clamped beam subjected to an initial field of velocity, see Figure 21.
It intends to show the transfer behavior of kinetic and strain energies for a deformable body.
The beam has young Modulus E = 0.2 × 109, mass density ρ0 = 500, length L = 1, thickness
h = 0.01, width b = 0.20 and Poisson’s ratio ν = 0. The applied velocity is proportional to
the distance from the clamped end and has a maximum value of v0 = 1, see Figure 20. The
adopted time step is Δt = 0.001. The exact total energy of the system is k0 = 0.16667.

Forty finite elements and 217 nodes are employed in the discretization. In Figure 22,
the kinetic, strain and total energies are depicted. The transversal displacement of the beam at
the free end is also depicted in Figure 22. As one can see the energy is completely conserved
for deformable situations. It is important to mention that in nonlinear applications the
coupling of vertical and horizontal movements is present, and this is the reason why the
peaks of the analysis do not repeat with the same shape, also there is not necessarily an
instant for which the kinetic energy becomes zero, as it is expected in some simple linear
analysis. Although it is not mentioned, the results for bar examples were extensively tested
against the ones presented by Greco and Coda [28].
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Figure 23: Airbag geometry, Cirak and Radovitzky [29].

Figure 24: Adopted discretization, initially flat.

9.7. Simple Airbag Simulation

This simple example is inspired in the airbag simulation presented by Cirak and Radovitzky
[29] that includes fluid structure interaction. In the present work only the structure (airbag)
is modeled subjected to a deterministic applied load in order to demonstrate the possibilities
of the proposed formulation regarding the analysis of very thin membranes and general
problems. A formulation suffering of shear locking is not able to run this example. The load
is orthogonal to the airbag surface and, as no comparisons can be made, the initial structure
discretization is simplified. The simulation corresponds to an initially-flat airbag made of an
elastic fabric with Young’s modulus of E = 6.0 × 109, Poisson’s ratio of ν = 0.3, and mass
density of ρ0 = 1000. The initial position of the real airbag can be seen in Figure 23, extracted
from the work of Cirak and Radovitzky [29]. The thickness of the airbag is h = 7.3 × 10−4

and the diameter in its flat initial configuration is D = 0.74. Our initial discretization
(1/8th of the airbag due to the assumed double symmetry) consists of 800 cubic elements
of ten nodes resulting in 3721 nodes, Figure 24. The adopted boundary condition at the
curved board is simply supported. The pressure of the fluid is simulated by the following
function:

100te(0.999t−0.01) r2
5066.25 for 0 < t < 0.01, 5066.25 for t > 0.01, (9.1)

where t is time and r is the distance from the center of the airbag. The adopted time step is
Δt = 0.0002 and the maximum tolerance for convergence is tol = 0.0005 in positions. An initial
random vertical defect with maximum amplitude of δ = 0.001 is assumed for the analysis.
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Figure 25: Airbag at 0.0042s.

Figure 26: Airbag at 0.0084s.

Figure 27: Airbag at 0.0314s.

Some selected deformed positions are depicted in Figures 25, 26, and 27. In Figure 28
the time story of the displacement of the top of the airbag is depicted. As one can see in
Figure 28 the top of the airbag stabilizes, to the final value, by geometrical accommodation.

9.8. Cylindrical Shell with Dynamic Snap Through

Following Argyris et al. [14], the second example is a cylindrical shell exhibiting dynamic
snap through, a severe nonlinearity. Important theoretical studies, related to severe
nonlinearities are presented by Breslavsky et al. [30] and others cited therein. This is a typical
benchmark example that has been used extensively as a test for all nonlinear shell dynamics
formulations presented so far. Snap through problems in shells produces higher dynamical
modes and this is the reason why it is believed that the standard integration schemes such
as the Newmark method are not adequate to produce a stable and accurate solution and that
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only algorithms with numerical dissipation and energy decaying schemes can be applied
with an acceptable time step. Despite this widespread belief, it will be shown that using
the proposed shell element it is possible to obtain stable and accurate solutions with the
Newmark integration for reasonable time step. Results will be compared to the TRIC element
and an ABACUS solution, both presented by Argyris et al. [14].

The geometry of the cylindrical shell is shown in Figure 29. The two straight edges
of the shell are simply supported, while the two curved edges are free. A concentrated load
is applied at the central node of the shell. The value of this load increases linearly from 0
to 50 × 106 in a time of 0.2, after that it is held constant. To avoid any distortion in results
the structure is totally discretized. The mesh used in the analysis is shown in Figure 30 and
consists of 32 curved finite elements with cubic approximation resulting in 169 nodes and
1183 degrees of freedom. Argyris et al. [14] used (for a symmetric quarter of the structure) 128
TRIC elements with 407 degrees of freedom to run this example, see Figure 30. The adopted
Newmark Parameters are β = 0.25 and γ = 0.5. The TRIC element is designed to run this
example using large time step within the context of corotational formulation. by the coupling
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Figure 30: Discretizations.
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Figure 31: Present solution for the apex displacement.

of rigid body movements, for the overall element, and strain modes. Argyris et al. [14] found
a maximum stable time step for their co rotational formulation of Δt = 1 × 10−3. Using the
proposed formulation we vary the time step from Δt = 0.0625 × 10−3 to Δt = 4 × 10−3 and
found not instability for the total Lagrangian formulation. The adopted physical properties
are E = 200 × 109, v = 0.25, ρ = 10.000 and thickness of h = 0.1.

As one can see, the results converge to the smaller time step, while for large time steps
the accuracy is lost, but the stability is kept.

10. Conclusions

A new, simple and robust formulation to solve dynamic geometrical nonlinear problems
with large deflections applied to shells is proposed and implemented. The formulation is
based on unconstrained vector mapping of the continuum, called here position description,
simplifying the understanding and the implementation of total Lagrangian geometrical
nonlinear analysis when compared to typical FEM shell formulations. The Newmark β
method has been proved to be linear and angular momentum conserving, for the proposed
total Lagrangian formulation. The high-order curved triangular element with improved
transverse position field is free from locking and does not need reduced integration or relaxed
constitutive relation to reproduce, with accuracy and small degrees of freedom, the static
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Figure 32: Results presented by Argyris et al. [14].

benchmarks of plate and shell analysis. Moreover, the formulation proved to be objective
regarding rotation for unloaded and loaded structures. The general dynamic analysis of thin
shells (airbag) and the snap through benchmark indicate that the formulation is promising
and should be extended to include physical nonlinearities (hyperelasticity and plasticity),
fluid-structure iteration and impact.
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[13] F. G. Flores and E. Oñate, “A rotation-free shell triangle for the analysis of kinked and branching
shells,” International Journal for Numerical Methods in Engineering, vol. 69, no. 7, pp. 1521–1551, 2007.

[14] J. Argyris, M. Papadrakakis, and Z. S. Mouroutis, “Nonlinear dynamic analysis of shells with the
triangular element TRIC,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 26-27,
pp. 3005–3038, 2003.

[15] J. C. Simo, M. S. Rifai, and D. D. Fox, “On a stress resultant geometrically exact shell model.
VI. Conserving algorithms for nonlinear dynamics,” International Journal for Numerical Methods in
Engineering, vol. 34, no. 1, pp. 117–164, 1992.

[16] S. Lopez, “Improving stability by change of representation in time-stepping analysis of non-linear
beams dynamics,” International Journal for Numerical Methods in Engineering, vol. 69, no. 4, pp. 822–
836, 2007.

[17] R. W. Ogden, Non-Linear Elastic Deformations, Ellis Horwood, London, UK, 1984.
[18] P. G. Ciarlet, Mathematical Elasticity, North-Holland, Amsterdam, The Netherlands, 1993.
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