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1. Introduction

It is well known that the notion of warped products plays some important role in differential
geometry as well as physics. The geometry of warped product was introduced by Bishop
and O’Neill [1]. Many geometers studied different objects/structures on manifolds endowed
with an warped product metric (see [2–6]).

Recently, Chen has introduced the notion of CR-warped product in Kaehlerian
manifolds and showed that there exist no proper warped product CR-submanifolds in the
form N = N⊥×fNT in Kaehlerian manifolds. Therefore, he considered warped product CR-
submanifolds in the form N = NT×fN⊥ which is called CR-warped product, where NT is
an invariant submanifold, and N⊥ is an anti-invariant submanifold of Kaehlerian manifold
M (see [2, 7, 8]). Analogue results have been obtained for Sasakian ambient as the odd
dimensional version of Kaehlerian manifold by Hasegawa and Mihai in [3] and Munteanu
in [9].

Almost paracontact manifolds and almost paracontact Riemannian manifolds were
defined and studied by Şato [10]. After then, many authors studied invariant and



2 Mathematical Problems in Engineering

anti-invariant submanifolds of the almost paracontact Riemannian manifold M with the
structure (F, g, ξ, η), when ξ is tangent to the submanifold, and ξ is not tangent to the
submanifold [11].

We note that CR-warped products in Kaehlerian manifold are corresponding warped
product semi-invariant submanifolds in almost paracontact Riemannian manifolds. In this
paper, we showed that there exist no warped product semi-invariant submanifolds in the
form N = NT×fN⊥ in contrast to Kaehlerian manifolds (see Theorem 3.1). So, from now
on we consider warped product semi-invariant submanifolds in the form N = N⊥×fNT ,
whereN⊥ is an anti-invariant submanifold, andNT is an invariant submanifold of an almost
paracontact Riemannian manifold M by reversing the two factor manifolds NT and N⊥, and
it simply will be called warped product semi-invariant submanifold in the rest of this paper
(see Example 3.3 and Theorem 3.4).

2. Preliminaries

Although there are many papers concerning the geometry of semi-invariant submanifolds
of almost paracontact Riemannian manifolds (see [11–13]), there is no paper concerning the
geometry of warped product semi-invariant submanifolds of almost paracontact Riemannian
manifolds in literature so far. So the purpose of the present paper is to study warped
product semi-invariant submanifolds in almost paracontact Riemannian manifolds. We first
review basic formulas and definitions for almost paracontact Riemannianmanifolds and their
submanifolds, which we shall use for later.

Let M be an (m + 1)-dimensional differentiable manifold. If there exist on M a (1, 1)
type tensor field F, a vector field ξ, and 1-form η satisfying

F2 = I − η ⊗ ξ, η(ξ) = 1, (2.1)

thenM is said to be an almost paracontact manifold, where ⊗, the symbol, denotes the tensor
product. In the almost paracontact manifold, the following relations hold good:

Fξ = 0, η ◦ F = 0, rank(F) = m. (2.2)

An almost paracontact manifoldM is said to be an almost paracontact metric manifold
if Riemannian metric g on M satisfies

g(FX, FY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ) (2.3)

for all X,Y ∈ Γ(TM) [14], where Γ(TM) denotes the differentiable vector field set on M.
From (2.2) and (2.3), we can easily derive the relation

g(FX, Y ) = g(X,FY ). (2.4)

An almost paracontact metric manifold is said to be an almost paracontact Riemannian
manifold with (F, g, ξ, η)-connection if ∇F = 0 and ∇η = 0, where ∇ denotes the connection
on M. Since F2 = I − η ⊗ ξ, the vector field ξ is also parallel with respect to ∇ [11, 13].
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In the rest of this paper, let us suppose that M is an almost paracontact Riemannian
manifold with structure (F, g, ξ, η)-connection.

Let M be an almost paracontact Riemannian manifold, and let N be a Riemannian
manifold isometrically immersed in M. For each x ∈ N, we denote by Dx the maximal
invariant subspace of the tangent space TxN of N. If the dimension of Dx is the same for
all x inN, then Dx gives an invariant distribution D on N.

A submanifold N in an almost paracontact Riemannian manifold is called semi-
invariant submanifold if there exists on N a differentiable invariant distribution D whose
orthogonal complementary D⊥ is an anti-invariant distribution, that is, F(D⊥) ⊂ TN⊥, where
TN⊥ denotes the orthogonal vector bundle of TN in TM. A semi-invariant submanifold is
called anti-invariant (resp., invariant) submanifold if dim(Dx) = 0 (resp., dim(D⊥

x) = 0).
It is called proper semi-invariant submanifold if it is neither invariant nor anti-invariant
submanifold.

A semi-invariant submanifoldN of an almost paracontact Riemannian manifoldM is
called a Riemannian product if the invariant distribution D and anti-invariant distribution
D⊥ are totally geodesic distributions in N. The geometry notion of the semi-invariant
submanifolds has been studied by many geometers in the various type manifolds. Authors
researched the fundamental properties of such submanifolds (see references).

Let N1 and N2 be two Riemannian manifolds with Riemannian metrics g1 and g2,
respectively, and f a differentiable function on N1. Consider the product manifold N1 × N2

with its projection π1 : N1×N2 → N1 and π2 : N1×N2 → N2. The warped product manifold
N = N1×fN2 is the manifoldN1 ×N2 equipped with the Riemannian metric tensor such that

g(X,Y ) = g1(π1∗X,π1∗Y ) + f2(π1(x))g2(π2∗X,π2∗Y ) (2.5)

for anyX,Y ∈ Γ(TN), where ∗ is the symbol for the tangent map. Thus we have g = g1+f2g2,
where f is called the warping function of the warped product. The warped product manifold
N = N1×fN2 is characterized by the fact that N1 and N2 are totally geodesic and totally
umbilical submanifolds ofN, respectively. Hence Riemannian products are special classes of
the warped products [4].

In this paper, we define and study a new class of warped product semi-invariant
submanifolds in an almost paracontact Riemannian manifolds, namely, we investigate the
class of warped product semi-invariant submanifolds, and we establish the fundamental
theory of such submanifolds.

Now, let N be an isometrically immersed submanifold in an almost paracontact
Riemannian manifold M. We denote by ∇ and ∇ the Levi-Civita connections on N and M,
respectively. Then the Gauss and Weingarten formulas are, respectively, defined by

∇XY = ∇XY + h(X,Y ),

∇XV = −AVX +∇⊥
XV

(2.6)

for any X,Y ∈ Γ(TN), V ∈ Γ(TN⊥), where ∇⊥ is the connection in the normal bundle TN⊥, h
is the second fundamental form ofN, andAV is the shape operator. The second fundamental
form h and the shape operator A are related by

g(AVX, Y ) = g(h(X,Y ), V ). (2.7)
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Now, let N be a differentiable manifold, and we suppose that N is an isometrically
immersed submanifold in almost paracontact Riemannian manifold M. We denote by g the
metric tensor ofM as well as that induced onN. For any vector field X tangent toN, we put

FX = tX + nX, (2.8)

where tX and nX denote the tangential and normal components of FX, respectively. For any
vector field V normal toN, we also put

FV = BV + CV, (2.9)

where BV and CV denote the tangential and normal components of FV , respectively. The
submanifold N is said to be invariant if n is identically zero, that is, F(TN) = TN. On the
other hand,N is said to be anti-invariant submanifold if t is identically zero, that is, F(TN) ⊂
(TN⊥).

We note that for any invariant submanifold N of an almost paracontact Riemannian
manifold M, if ξ is normal to N, then the induced structure from the almost paracontact
structure on N is an almost product Riemannian structure whenever t is nontrivial. If ξ is
tangent toN, then the induced structure onN is an almost paracontact Riemannian structure.

Furthermore, we say that N is a semi-invariant submanifold if there exist two
orthogonal distributions D1 and D2 such that

(1) TN splits into the orthogonal direct sum TN = D1 ⊕D2;

(2) the distribution D1 is invariant, that is, F(D1) ⊆ D1;

(3) the distribution D2 is anti-invariant, that is, F(D2) ⊆ TN⊥.

Given any submanifold N of an almost paracontact Riemannian manifold M, from
(2.4) and (2.8) we have

g(tX, Y ) = g(X, tY ), g(nX, V ) = g(X,BV ) (2.10)

for any X,Y ∈ Γ(TN), V ∈ Γ(TN⊥).
From now on we suppose that the vector field ξ is tangent toN.
We recall the following general lemma from [1] for later use.

Lemma 2.1. LetN = N1×fN2 be a warped product manifold with warping function f , then one has

(1) ∇XY ∈ Γ(TN1) for each X,Y ∈ Γ(TN1),

(2) ∇XZ = ∇ZX = X(ln f)Z, for each X ∈ Γ(TN1), Z ∈ Γ(TN2),

(3) ∇ZW = ∇N2
Z W − g(Z,W)gradf/f, for each Z,W ∈ Γ(TN2),

where ∇ and ∇N2 denote the Levi-Civita connections on N and N2, respectively.

LetN be a semi-invariant submaniold of an almost paracontact Riemannian manifold
M. We denote by the invariant distribution D and anti-invariant distribution D⊥. We also
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denote the orthogonal complementary of F(D⊥) in TN⊥ by ν, then we have direct sum

TN⊥ = F
(
D⊥

)
⊕ ν. (2.11)

We can easily see that ν is an invariant subbundle with respect to F.

3. Warped Product Semi-Invariant Submanifolds in
an Almost Paracontact Riemannian Manifold

Useful characterizations of warped product semi-invariant submanifolds in almost paracon-
tact Riemannian manifolds are given the following theorems.

Theorem 3.1. If N = NT×fN⊥ is a warped product semi-invariant submanifold of an almost
paracontact Riemannian manifold M such that NT is an invariant submanifold and N⊥ is an anti-
invariant submanifold of M, thenN is a usual Riemannian product.

Proof. Let ξ be normal to N. Taking into account that h is symmetric and using (2.3), (2.6),
(2.7), and considering Lemma 2.1(2), for X ∈ Γ(TNT ) and Z,W ∈ Γ(TN⊥), we have

g(∇XZ,W) = g(∇ZX,W) = g
(
∇ZX,W

)
= g

(
F∇ZX, FW

)
+ η

(
∇ZX

)
η(W),

X ln
(
f
)
g(Z,W) = g

(
∇ZFX, FW

)
= g(h(Z, FX), FW) = g

(
∇FXZ, FW

)

= g
(
∇FXFZ,W

)
= −g(AFZFX,W) = −g(h(FX,W), FZ)

= −g
(
∇WFX, FZ

)
= −g

(
∇WX,Z

)
= −X ln

(
f
)
g(W,Z),

(3.1)

which implies that X ln(f) = 0.
If ξ is tangent toN, then ξ can be written as follows:

ξ = ξ1 + ξ2, (3.2)

where ξ1 ∈ Γ(TNT ) and ξ2 ∈ Γ(TN⊥). Since ∇Xξ = 0, from the Gauss formulae, we have

h(X, ξ) = 0, ∇Xξ = 0 (3.3)

for any X ∈ Γ(TN). Considering Lemma 2.1(2), we get

∇Zξ1 = ξ1
(
ln f

)
Z = 0, ∇Xξ2 = X

(
ln f

)
ξ2 = 0,

∇ξ2ξ1 = ∇ξ1ξ2 = ξ1
(
ln f

)
ξ2 = 0

(3.4)
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for any X ∈ Γ(TNT) and Z ∈ Γ(TN⊥). If ξ2 is identically zero, then from Lemma 2.1 we have

∇Zξ1 = ∇ξ1Z = ξ1
(
ln f

)
Z = 0, ∇Xξ1 ∈ Γ(TNT). (3.5)

It follows that the warping function f is a constant and N is usual Riemannian product.
Hence the proof is complete.

If the warping function is constant, then the metric on the “second” factor could be
modified by an homothety, and hence, the warped product becomes a direct product.

Now, we give two examples for almost paracontact Riemannian manifold and their
submanifolds in the form N = N⊥×fNT to illustrate our results. Firstly, we construct an
almost paracontact metric structure on R

2n+1 (see Example 3.2) and after give an example
which is concerning its submanifold (see Example 3.3).

Example 3.2. Let

R
2n+1 =

{(
x1, x2, . . . , xn, y1, y2, . . . , yn, t

) | xi, yi, t ∈ R, i = 1, 2, . . . , n
}
. (3.6)

The almost paracontact Riemannian structure (F, g, ξ, η) is defined on R
2n+1 in the following

way:

F

(
∂

∂xi

)
=

∂

∂yi
, F

(
∂

∂yi

)
=

∂

∂xi
, F

(
∂

∂t

)
= 0, ξ =

∂

∂t
, η = dt. (3.7)

If Z = λi(∂/∂xi) + μi(∂/∂yi) + ν(∂/∂t) ∈ T(R2n+1), then we have

g(Z,Z) =
n∑
i=1

λ2i +
n∑
i=1

μ2
i + ν2. (3.8)

From this definition, it follows that

g(Z, ξ) = η(Z) = ν, g(FZ, FZ) = g(Z,Z) − η2(Z), Fξ = 0, η(ξ) = 1 (3.9)

for an arbitrary vector field Z. Thus (R2n+1, F, g, ξ, η) becomes an almost paracontact
Riemannian manifold, where g and {∂/∂xi, ∂/∂yi, ∂/∂t} denote usual inner product and
standard basis of T(R2n+1), respectively.

Example 3.3. Let N be a submanifold in R
5 with coordinates (x1, x2, y1, y2, t) given by

x1 = v cos θ, x2 = v sin θ, y1 = v cos β, y2 = v sin β, t =
√
2u. (3.10)
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It is easy to check that the tangent bundle ofN is spanned by the vectors

Z1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
+ cos β

∂

∂y1
+ sin β

∂

∂y2
,

Z2 = −v sin θ
∂

∂x1
+ v cos θ

∂

∂x2
,

Z3 = −v sin β
∂

∂y1
+ v cos β

∂

∂y2
,

Z4 =
√
2
∂

∂t
.

(3.11)

We define the almost paracontact Riemannian structure of R
5 by

F

(
∂

∂xi

)
= − ∂

∂xi
, F

(
∂

∂yi

)
=

∂

∂yi
, F

(
∂

∂t

)
= 0, η =

1√
2
dt. (3.12)

Then with respect to the almost paracontact Riemannian structure F of R
5, the space F(TN)

becomes

FZ1 = − cos θ
∂

∂x1
− sin θ

∂

∂x2
+ cos β

∂

∂y1
+ sin β

∂

∂y2
,

FZ2 = v sin θ
∂

∂x1
− v cos θ

∂

∂x2
,

FZ3 = −v sin β
∂

∂y1
+ v cos β

∂

∂y2
,

FZ4 = 0.

(3.13)

Since FZ1 and FZ4 are orthogonal to N and FZ2, FZ3 are tangent to N, D and D⊥ can be
taken subspace sp{Z1, Z4} and subspace sp{Z2, Z3}, respectively, where ξ can be taken as Z4

for FZ4 = 0 and η(Z4) = 1. Furthermore, the metric tensor of N is given by

g = 2
(
du2 + dv2

)
+ v2

(
dθ2 + dβ2

)
= 2gN⊥ + v2gNT . (3.14)

Thus N is a warped product semi-invariant submanifold with dimensional 5 of almost
paracontact manifold R

5 with warping function f = v2.

Now, let N = N⊥×fNT be a warped product semi-invariant submanifold of an almost
paracontact Riemannian manifold M, where N⊥ is an anti-invariant submanifold, and NT is



8 Mathematical Problems in Engineering

an invariant submanifold of M. If we denote the Levi-Civita connections on M and N by ∇
and ∇, respectively, by using (2.6) and (2.8), we have

∇XFY = F∇XY,

∇XtY + h(X, tY ) −AnYX +∇⊥
XnY = t(∇XY ) + n(∇XY ) + Bh(X,Y ) + Ch(X,Y )

(3.15)

for any X,Y ∈ Γ(TN). Taking into account the tangential and normal components of (3.15),
respectively, we have

(∇Xt)Y = AnYX + Bh(X,Y ), (3.16)

(∇Xn)Y = Ch(X,Y ) − h(X, tY ), (3.17)

where the derivatives of t and n are, respectively, defined by

(∇Xt)Y = ∇XtY − t(∇XY ), (∇Xn)Y = ∇⊥
XnY − n(∇XY ). (3.18)

Next, we are going to investigate the geometric properties of the leaves of the warped product
semi-invariant submanifolds in an almost paracontact Riemannian manifold.

Theorem 3.4. Let N be a warped product semi-invariant submanifold of an almost paracontact
Riemannian manifold M. Then the invariant distribution D and the anti invariant distribution D⊥

are always integrable.

Proof. From (3.16) and considering Lemma 2.1(1), we have

∇XFU = F∇XU,

X ln
(
f
)
tU + h(X, tU) = X ln

(
f
)
tU + Bh(X,U) + Ch(X,U)

(3.19)

for any X ∈ Γ(D⊥) and U ∈ Γ(D). From the tangential and normal components of (3.19),
respectively, we arrive at

Bh(X,U) = 0, (3.20)

h(X, tU) = Ch(X,U). (3.21)

By using (3.16) and (3.20) we get

AnXU = −X(
ln f

)
tU. (3.22)

Furthermore, by using the Gauss-Weingarten formulas and taking into account that D⊥ is
totally geodesic in N and it is anti-invariant in M, by direct calculations, it is easily to see
that

AnYX = −Bh(X,Y ), (3.23)
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which is also equivalent to

AnYX = AnXY (3.24)

for any X,Y ∈ Γ(D⊥). Moreover, using (2.4) and (2.7) and making use ofA being self-adjoint,
we obtain

g(AnXY,Z) = g(h(Y,Z), nX) = g
(
∇ZY, FX

)
= g

(
∇ZFY,X

)

= −g(AnYZ,X) = −g(AnYX,Z),
(3.25)

which gives us

AnXY = −AnYX (3.26)

for any X,Y ∈ Γ(D⊥) and Z ∈ Γ(TN). Thus from (3.24) and (3.26), we arrive at

AnXY = 0, Bh(X,Y ) = 0 (3.27)

for any X,Y ∈ Γ(D⊥). Furthermore, by using (2.6), (2.8), and (2.9) and considering
Lemma 2.1(3), we have

h(U, tV ) +∇UtV = F(∇UV ) + Fh(V,U)

= F

(
∇′

UV − g(V,U)
gradf

f

)
+ Bh(V,U) + Ch(V,U)

= t
(∇′

UV
) − g(V,U)n

(
gradf

f

)
+ Bh(V,U) + Ch(V,U)

(3.28)

for any V,U ∈ Γ(D), where ∇′ denote the Levi-Civita connection on D. Taking into account
the normal and tangential components of (3.28), respectively, we have

h(U, tV ) = −g(U,V )n
(
gradf

f

)
+ Ch(U,V ), (3.29)

∇′
UtV − g(tV,U)

gradf
f

= t
(∇′

UV
)
+ Bh(V,U). (3.30)

From (3.29), we can easily see that

h(U, tV ) = h(V, tU) (3.31)
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for any U,V ∈ Γ(D). Finally, by using (3.17) and (3.31), we have

n([V,U]) = n(∇VU − ∇UV ) = ∇⊥
V nU − (∇V nU) − ∇⊥

UnV + (∇Un)V

= (∇Un)V − (∇V n)U = Ch(U,V ) − h(U, tV ) − Ch(V,U) + h(V, tU) = 0
(3.32)

for any V,U ∈ Γ(D), that is, [V,U] ∈ Γ(D).
In the same way, making use of (3.16) and (3.27) for any X,Y ∈ Γ(D⊥), we conclude

that

t([X,Y ]) = t(∇XY − ∇YX)

= ∇XtY − (∇Xt)Y − ∇Y tX + (∇Y t)X

= (∇Y t)X − (∇Xt)Y = AnXY −AnYX = 0

(3.33)

that is, [X,Y ] ∈ Γ(D⊥). So we obtain the desired result.

Since the distributionsD andD⊥ are integrable, we denote the integral manifolds ofD
and D⊥ byNT and N⊥, respectively.

Now, the following theorem characterizes (warped product or Riemannian product)
semi-invariant submanifolds in almost paracontact manifolds.

Theorem 3.5. LetN be a submanifold of an almost paracontact Riemannian manifoldM. ThenN is
a semi-invariant submanifold if and only nt = 0.

Proof. Let us assume that N is a semi-invariant submanifold of an almost paracontact
Riemannian manifold M and by Q and P ; we denote the projection operators on subspaces
Γ(D⊥) and Γ(D), respectively, then we have

P +Q = I, P 2 = P, Q2 = Q, PQ = QP = 0. (3.34)

Moreover, by using (2.1), (2.8), and (2.9), if ξ is tangent toN, then we get

X − η(X)ξ = t2X + BnX, ntX + CnX = 0, (3.35)

tBV + BCV = 0, nBV + C2V = V (3.36)

for any X ∈ Γ(TN) and V ∈ Γ(TN⊥). On the other hand, if ξ is normal to N, then (3.35) and
(3.36) become, respectively,

X = t2X + BnX, ntX + CnX = 0,

V − η(V )ξ = nBV + C2V, tBV + BCV = 0.
(3.37)
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From (2.8), we have

FX = FPX + FQX,

tX + nX = tPX + tQX + nPX + nQX
(3.38)

for any X ∈ Γ(TN). From the tangential and normal components, we have

tX = tPX + tQX, nX = nPX + nQX. (3.39)

Since D is invariant and D⊥ is anti-invariant, we get

nP = 0, Qt = 0. (3.40)

We have

tP = t (3.41)

by virtue ofQ = I −P . Now by using the right-hand side to the second equation of (3.35) and
using (3.40) and (3.41), we conclude that

nt = 0, (3.42)

which is also equivalent to

Cn = 0. (3.43)

Conversely, for a submanifold N of an almost paracontact Riemannian manifold M,
we suppose that nt = 0. For any vector fields tangent X to N and V normal to N, by using
(2.4) and (3.43), we have

g(X,FV ) = g(FX, V ),

g(X,BV ) = g(nX, V ),

g(X,FBV ) = g(FnX, V ),

g(X, tBV ) = g(CnX,V ) = 0

(3.44)

for all X ∈ Γ(TN). So we have g(tBV,X) = 0. Since X, tBV ∈ Γ(TN), it implies tB = 0 which
is also equivalent to BC = 0 from (3.36). Since Fξ = 0, we get tξ = nξ = 0. So, from (3.35) and
(3.36), we conclude

t3 = t, C3 = C. (3.45)
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Now, if we put

P = t2, Q = I − P, (3.46)

then we can derive that P + Q = I, P 2 = P, Q2 = Q, and PQ = QP = 0 which show
thatQ and P are orthogonal complementary projection operators and define complementary
distributions D⊥ and D, respectively, where D and D⊥ denote the distributions which are
belong to subspaces TNT and TN⊥, respectively. From (3.42), (3.45), and (3.46)we can derive

tP = t, tQ = 0, QtP = 0, nP = 0. (3.47)

These equations show that the distribution D is an invariant and the distribution D⊥ is an
anti-invariant. The proof is complete.

Theorem 3.6. LetN be a semi-invariant submanifold of an almost paracontact Riemannian manifold
M. Then N is a warped product semi-invariant submanifold if and only if the shape operator of N
satisfies

AFXZ = −X(
μ
)
FZ, X ∈ Γ

(
D⊥

)
, Z ∈ Γ(D) (3.48)

for some function μ onN satisfyingW(μ) = 0, W ∈ Γ(D).

Proof. We suppose that N is a warped product semi-invariant submanifold in an almost
paracontact Riemannian manifold M. Then from (3.22), we have

AFXZ = −X(
ln f

)
FZ (3.49)

for any X ∈ Γ(D⊥) and Z ∈ Γ(D). Since f is the only function on N⊥, we can easily see that
W(ln f) = 0 for all W ∈ Γ(D).

Conversely, let us assume that N is a semi-invariant submanifold in an almost
paracontact Riemannian manifold M satisfying

AFXZ = X
(
μ
)
FZ, X ∈ Γ

(
D⊥

)
, Z ∈ Γ(D) (3.50)

for some function μ on N satisying W(μ) = 0 for all W ∈ Γ(D). Since the ambient space M is
an almost paracontact Riemannian manifold and making use of (2.4) and (3.27), we arrive at

g(∇XY, FZ) = g
(
∇XY, FZ

)
= g

(
∇XFY,Z

)
= −g(AFYX,Z) = 0 (3.51)

for any X,Y ∈ Γ(D⊥) and Z ∈ (D). Thus the anti-invariant distribution D⊥ is totally geodesic
in N. In the same way, making use of ∇ being Levi-Civita connection and (3.22), we have

g(∇ZW,X) = g
(
∇ZW,X

)
= −g

(
∇ZX,W

)
= −g

(
∇ZFX, FW

)

= g(AFXZ, FW) = X
(
μ
)
g(Z,W)

(3.52)
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for any Z,W ∈ Γ(D) and X ∈ Γ(D⊥), where μ = ln(1/f). Since the invariant distribution
D of semi-invariant submanifold N is always integrable (Theorem 3.4) and W(μ) = 0, for
each W ∈ Γ(TNT), which implies that the integral manifold of D is an extrinsic sphere in N,
that is, it is a totally umbilical submanifold and its mean curvature vector field is non-zero
and parallel, thus we know thatN is a Riemannian warped productN⊥×fNT , whereN⊥ and
NT denote the integral manifolds of the distributions of D⊥ and D, respectively, and f is the
warping function. So we obtain the desired result.

In the rest of this section, we are going to obtain an inequality for the squared norm
of the second fundamental form by means of the warping function for warped product
semi-invariant submanifolds of an almost paracontact Riemannian manifold. Now, we recall
that semi-invariant N is said to be mixed geodesic (resp., D-geodesic and D⊥-geodesic)
submanifold if the second fundamental form h of N satisfies h(X,Z) = 0, X ∈ Γ(D) and
Z ∈ Γ(D⊥) (resp., h(X,Y ) = 0, X,Y ∈ Γ(D) and h(Z,W) = 0, Z,W ∈ Γ(D⊥)).

Now, we are going to give the following lemma for later use.

Lemma 3.7. Let N = N⊥×fNT be a warped product semi-invariant submanifold of an almost
paracontact Riemannian manifold M. Then one has

(1) g(h(D⊥, D⊥), FD⊥) = 0,

(2) g(h(Z,W), FX) = −X(ln f)g(tZ,W), Z,W ∈ Γ(D), X ∈ Γ(D⊥),

(3) g(h(X,Z), FY ) = 0, for any X,Y ∈ Γ(D⊥) and Z ∈ Γ(D),

(4) g(h(D,FD), FD⊥) = 0 if and only ifN = N⊥×fNT is a usual Riemannian product, where
D and D⊥ denote the leaves of NT and N⊥, respectively.

Proof. (1) For any X,Y,Z ∈ Γ(D⊥), by using (2.4) and (3.27) and considering that the ambient
space is an almost paracontact Riemannian manifold, we have

g(h(X,Y ), FZ) = g
(
∇XY, FZ

)
= g

(
∇XFY,Z

)
= −g(AnYX,Z) = 0. (3.53)

(2)Making use of ∇ being Levi-Civita connection and Lemma 2.1(2.2), we get

g(h(Z,W), FX) = g
(
∇WFZ,X

)
= −g

(
∇WX, tZ

)
= −X ln g · g(W, tZ) (3.54)

for any Z,W ∈ Γ(D), X ∈ Γ(D⊥).
(3) In the same way, we have

g(h(X,Z), FY ) = g
(
∇XZ, FY

)
= g(∇XtZ, Y ) = X ln fg(tZ, Y ) = 0 (3.55)

for any X,Y ∈ Γ(D⊥) and Z ∈ Γ(D).
(4) Considering Lemma 2.1(3) we derive

g(h(W,FZ), FX) = g
(
∇FZW, FX

)
= g

(
∇FZFW,X

)
= −g(tZ, tW)X

(
ln f

)
(3.56)

for anyZ,W ∈ Γ(D) and X ∈ Γ(D⊥).
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Theorem 3.8. Let N = N⊥×fNT be a warped product semi-invariant submanifold of an almost
paracontact Riemannian manifold M. Then one has the following.

(1) The squared norm of the second fundamental form of N inM satisfies

‖h‖2 ≥ 1
f2

∥∥gradf∥∥2(Tr(t))2, (3.57)

where Tr(t) denote the trace of mapping t.

(2) If the equality sign of (3.57) holds identically, thenN⊥ is a totally geodesic,NT is a totally
umbilical submanifolds of M, and N is a mixed geodesic submanifold in M. Furthermore,
N is a minimal submanifold M if and only if Tr(t) = 0 or N = N⊥×fNT is a usual
Riemannian product.

Proof. Let {e1, e2, . . . , ep, e1, e2, . . . , eq,N1,N2, . . . ,Ns, ξ} be an orthonormal basis of an
almost paracontact Riemannian manifold M such that {e1, e2, . . . , ep} is tangent to
Γ(TN⊥), {e1, e2, . . . , eq} is tangent to Γ(TNT ), and {N1,N2, . . . ,Ns} is tangent to Γ(ν). Taking
into account Lemma 3.7 and the basic linear algebra rules, by direct calculations, we have

h(X,Y ) = g
(
h(X,Y ),Nj

)
Nj, 1 ≤ j ≤ s,

h(Z,W) = −ei ln f(tZ,W)Fei + g
(
h(Z,W),Nj

)
Nj, 1 ≤ i ≤ p,

h(X,Z) = g
(
h(X,Z),Nj

)
Nj

(3.58)

for all X,Y ∈ Γ(TN⊥) and Z,W ∈ Γ(TNT ). Since

‖h‖2 =
p∑

i,j=1

s∑

=1

g
(
h
(
ei, ej

)
,N


)2 + 2
p∑
i=1

q∑
k=1

s∑

=1

g
(
h
(
ei, e

k
)
,N


)2

+
q∑

r,k=1

p∑
i=1

(
ei ln f

)2
g
(
tek, er

)2
+

q∑
r,k=1

s∑

=1

g
(
h
(
ek, er

)
,N


)2
,

(3.59)

here by direct calculations, we get

(
ei
(
ln f

))2 = 1
f2

∥∥gradf∥∥2
, Tr(t) =

q∑
k=1

g
(
tek, ek

)
. (3.60)

So we conclude that

‖h‖2 ≥ 1
f2

∥∥gradf∥∥2(Tr(t))2, (3.61)

which proves our assertion.
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Now we assume that the equality case of (3.57) holds identically, then from (3.58),
respectively, we obtain

h
(
D⊥, D⊥) = 0, h(D,D) ∈ Γ

(
F
(
D⊥)), (3.62)

h
(
D⊥, D

)
= 0. (3.63)

Since N⊥ is totally geodesic submanifold in N, the first condition in (3.62) implies that
N⊥ is totally geodesic submanifold in M. Moreover, Lemma 2.1(3) shows that NT is totally
umbilical submanifold inN. Therefore, the second condition in (3.62) implies thatNT is also
totally umbilical submanifold in M. On the other hand, (3.20) and (3.63) imply that N is
mixed geodesic submanifold inM.

Conclusion 3.9. The geometry of the warped products in Riemannian manifolds is totally
different from the geometry of the warped products in complex manifolds. Namely, in the
complex manifolds, there exists no proper warped product CR-submanifold in the formN =
N⊥×fNT (see [2, 8])while there exists no proper warped product semi-invariant submanifold
in the form N = NT×fN⊥ in Riemannian manifolds (see Theorem 3.1). The first condition in
(3.62) implies that warped product CR-submanifold is minimal in complex manifolds while
it does not imply that warped product semi-invariant submanifold is minimal in Riemannian
product manifolds.

Acknowledgment

The author would like to thank the referees for valuable suggestions and comments, which
have improved the present paper.

References

[1] R. L. Bishop and B. O’Neill, “Manifolds of negative curvature,” Transactions of the American
Mathematical Society, vol. 145, pp. 1–49, 1969.

[2] B.-Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds,” Monatshefte für
Mathematik, vol. 133, no. 3, pp. 177–195, 2001.

[3] I. Hasegawa and I. Mihai, “Contact CR-warped product submanifolds in Sasakian manifolds,”
Geometriae Dedicata, vol. 102, pp. 143–150, 2003.

[4] V. A. Khan, K. A. Khan, and Sirajuddin, “Contact CR-warped product submanifolds of Kenmotsu
manifolds,” Thai Journal of Mathematics, vol. 6, no. 1, pp. 138–145, 2008.

[5] K. Matsumoto and I. Mihai, “Warped product submanifolds in Sasakian space forms,” SUT Journal of
Mathematics, vol. 38, no. 2, pp. 135–144, 2002.

[6] D. Won Yoon, K. Soo Cho, and S. Gook Han, “Some inequalities for warped products in locally
conformal almost cosymplectic manifolds,” Note di Matematica, vol. 23, no. 1, pp. 51–60, 2004.

[7] B.-Y. Chen, “CR-warped products in complex projective spaces with compact holomorphic factor,”
Monatshefte für Mathematik, vol. 141, no. 3, pp. 177–186, 2004.

[8] B.-Y. Chen, “Geometry of warped product CR-submanifolds in Kaehler manifolds. II,”Monatshefte für
Mathematik, vol. 134, no. 2, pp. 103–119, 2001.

[9] M. I. Munteanu, “Warped product contact CR-submanifolds of Sasakian space forms,” Publicationes
Mathematicae Debrecen, vol. 66, no. 1-2, pp. 75–120, 2005.
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