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vertical well, different productivity equations should be used under different reservoir boundary
conditions.
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1. Introduction

Well productivity is one of primary concerns in oil field development and provides the basis
for oil field development strategy. To determine the economical feasibility of drilling a well,
the engineers need reliable methods to estimate its expected productivity. Well productivity
is often evaluated using the productivity index, which is defined as the production rate per
unit pressure drawdown. Petroleum engineers often relate the productivity evaluation to the
long time performance behavior of a well, that is, the behavior during pseudo-steady-state or
steady-state flow.

The productivity index expresses an intuitive feeling, that is, once the well production
is stabilized, the ratio of production rate to some pressure difference between the reservoir
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and the well must depend on the geometry of the reservoir/well system only. Indeed, a long
time ago, petroleum engineers observed that in a bounded reservoir or a reservoir with strong
water drive, the productivity index of a well stabilizes in a long time asymptote.

When an oil reservoir is bounded with a constant pressure boundary (such as a gas
cap or an aquifer), flow reaches the steady-state regime after the pressure transient reaches
the constant pressure boundary. Rate and pressure become constant with time at all points in
the reservoir and wellbore once steady-state flow is established. Therefore, the productivity
index during steady-state flow is a constant.

Strictly speaking, steady-state flow can occur only if the flow across the drainage
boundary is equal to the flow across the wellbore wall at well radius, and the fluid properties
remain constant throughout the oil reservoir. These conditions may never be met in an oil
reservoir; however, in oil reservoirs produced by a strong water drive, whereby the water
influx rate at reservoir outer boundary equals the well producing rate, the pressure change
with time is so slight that it is practically undetectable. In such cases, the assumption of
steady-state is acceptable.

In many oil reservoirs the producing wells are completed as partially penetrating
wells; that is, only a portion of the pay zone is perforated. This may be done for a variety
of reasons, but the most common one is to prevent or delay the unwanted fluids into the
wellbore. If a vertical well partially penetrates the formation, there is an added resistance to
flow in the vicinity of the wellbore. The streamlines converge and the area for flow decreases,
which results in added resistance.

The problem of fluid flow into wells with partial penetration has received much
attention in the past, the exact solution of the partial penetration problem presents great
analytical problems. Brons and Marting [4], Papatzacos [5], Basinev [3] developed solutions
to the two dimensional diffusivity equation, which included flow of fluid in the vertical
direction. They only obtained semianalytical and semiempirical expressions to calculate the
added resistance due to partial penetration.

The primary goal of this study is to present new steady-state productivity formulas
for a partially penetrating vertical well in a circular cylinder drainage reservoir with constant
pressure at outer boundary. Analytical solutions are derived by making the assumption of
uniform fluid withdrawal along the portion of the wellbore open to flow. The producing
portion of a partially penetrating vertical well is modeled as a uniform line sink. This paper
also gives new expressions for calculating the added resistance due to partial penetration, by
solving the three-dimensional Laplace equation.

2. Literature Review

Putting Darcy’s equation into the equation of continuity, the productivity formula of a fully
penetrating vertical well in a homogeneous, isotropic permeability reservoir is obtained [1,
page 52]:

Qw = FD
2πKH(Pe − Pw)/

(
μB
)

ln(Re/Rw)
, (2.1)

where Pe is outer boundary pressure, Pw is flowing wellbore pressure, K is permeability, H
is payzone thickness, μ is oil viscosity, B is oil formation volume factor, Re is drainage radius,
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Rw is wellbore radius, and FD is the factor which allows the use of field units, and it can be
found in a Table 1 at page 52 of [1].

Formula (2.1) is applicable for a fully penetrating vertical well in a circular drainage
area with constant pressure outer boundary.

If a vertical well partially penetrates the formation, there is an added resistance to
flow which is limited to the region around the wellbore, this added resistance is included by
introducing the pseudo-skin factor, Sps. Thus, Formula (2.1) may be rewritten to include the
pseudo-skin factor due to partial penetration as [2, page 92]

Qw = FD
2πKH(Pe − Pw)/

(
μB
)

ln(Re/Rw) + Sps
. (2.2)

Define partial penetration factor η:

η =
Lp

H
, (2.3)

where Lp is the producing well length, that is, perforated interval.
Several authors obtained semianalytical and semiempirical expressions for evaluating

pseudo-skin factor due to partial penetration.
Bervaldier’s pseudo-skin factor formula [3]:

Sps =
(

1
η
− 1
)[ ln

(
Lp/Rw

)

(
1 − Rw/Lp

) − 1

]

. (2.4)

Brons and Marting’s pseudo-skin factor formula [4] is as follows:

Sps =
(

1
η
− 1
)
[
ln(hD) −G

(
η
)]
, (2.5)

where

hD =
(

H

2Rw

)(
Kh

Kv

)1/2

,

G
(
η
)
= 2.948 − 7.363η + 11.45η2 − 4.675η3.

(2.6)

Papatzacos’s pseudo-skin factor formula [5] is as follows:

Sps =
(

1
η
− 1
)

ln
(
πhD

2

)
+
(

1
η

)
ln

[(
η

2 + η

)(
I1 − 1
I2 − 1

)1/2
]

, (2.7)
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where

I1 =
H

h1 + 0.25Lp
,

I2 =
H

h1 + 0.75Lp
,

(2.8)

and h1 is the distance from the top of the reservoir to the top of the open interval.
It must be pointed out that the aforementioned formulas are only applicable to a

reservoir with both impermeable top and bottom boundaries.

3. Partially Penetrating Vertical Well Model

Figure 1 is a schematic of an off-center partially penetrating vertical well. A partially
penetrating well of drilled length L drains a circular cylinder porous volume with height
H and radius Re.

The following assumptions are made.

(1) The reservoir has constant Kx, Ky, Kz permeabilities, thickness H, porosity φ.
During production, the partially penetrating vertical well has a circular cylinder
drainage volume with height H and radius Re. The well is located at R0 away from
the axis of symmetry of the cylindrical body.

(2) At time t = 0, pressure is uniformly distributed in the reservoir, equal to the initial
pressure Pi. If the reservoir has constant pressure boundaries (edge water, gas cap,
bottom water), the pressure is equal to the initial value at such boundaries during
production.

(3) The production occurs through a partially penetrating vertical well of radius Rw,
represented in the model by a uniform line sink, the drilled well length is L, the
producing well length is Lp.

(4) A single phase fluid, of small and constant compressibility Cf , constant viscosity
μ, and formation volume factor B, flows from the reservoir to the well. Fluid
properties are independent of pressure. Gravity forces are neglected.

(5) There is no water encroachment and no water/gas coning. Edge water, gas cap, and
bottom water are taken as constant pressure boundaries, multiphase flow effects are
ignored.

(6) Any additional pressure drops caused by formation damage, stimulation, or
perforation are ignored, we only consider pseudo-skin factor due to partial
penetration.

The porous media domain is:

Ω =
{(
x, y, z

)
| x2 + y2 < R2

e, 0 < z < H
}
, (3.1)

where Re is cylinder radius, Ω is the cylindrical body.
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Figure 1: Partially penetrating vertical well model.

Located at R0 away from the center of the cylindrical body, the coordinates of the
top and bottom points of the well line are (R0, 0, 0) and (R0, 0, L), respectively, while point
(R0, 0, L1) and point (R0, 0, L2) are the beginning point and end point of the producing portion
of the well, respectively. The well is a uniform line sink between (R0, 0, L1) and (R0, 0, L2), and
there hold

Lp = L2 − L1, Lp ≤ L ≤ H. (3.2)

We assume

Kx = Ky = Kh, Kz = Kv, (3.3)

and define average permeability:

Ka = (KxKyKz)
1/3 = K2/3

h
K1/3
v . (3.4)

The reservoir initial pressure is a constant:

P |t=0 = Pi. (3.5)

The pressure at constant pressure boundaries (edge water, gas cap, bottom water) is
assumed to be equal to the reservoir initial pressure during production:

Pe = Pi. (3.6)

Suppose point (R0, 0, z′) is in the producing portion, and its point convergence
intensity is q, in order to obtain the pressure at point (x, y, z) caused by the point (R0, 0, z′),
according to mass conservation law and Darcy’s law, we have to obtain the basic solution of
the diffusivity equation in Ω [6, 7]:

Kh
∂2P

∂x2
+Kh

∂2P

∂y2
+Kv

∂2P

∂z2
= μqBδ(x − R0)δ

(
y
)
δ
(
z − z′

)
, in Ω, (3.7)
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where Ct is total compressibility coefficient of porous media, δ(x − R0), δ(y), δ(z − z′) are
Dirac functions.

In order to simplify the equations, we take the following dimensionless transforms:

xD =
(x
L

)(Ka

Kh

)1/2

, yD =
(y
L

)(Ka

Kh

)1/2

, zD =
(z
L

)(Ka

Kv

)1/2

, (3.8)

LD =
(
Ka

Kv

)1/2

, HD =
(
H

L

)(
Ka

Kv

)1/2

, (3.9)

L1D =
(
L1

L

)(
Ka

Kv

)1/2

, L2D =
(
L2

L

)(
Ka

Kv

)1/2

, (3.10)

LpD = L2D − L1D =
(
Lp

L

)(
Ka

Kv

)1/2

, (3.11)

ReD =
(
Re

L

)(
Ka

Kh

)1/2

, R0D =
(
R0

L

)(
Ka

Kh

)1/2

. (3.12)

The dimensionless wellbore radius is [8]

RwD ≈
[(

Kh

Kv

)1/4

+
(
Kh

Kv

)−1/4
](

Rw

2L

)
. (3.13)

Assume q is the point convergence intensity at the point sink (R0, 0, z′), the partially
penetrating well is a uniform line sink, the total productivity of the well is Q, and there holds

q =
Q

LpD
. (3.14)

Define the dimensionless pressures:

PD =
KaL(Pe − P)

μqB
, PwD =

KaL(Pe − Pw)
μqB

. (3.15)

Then (3.7) becomes [6, 7]

∂2PD
∂xD2

+
∂2PD
∂yD2

+
∂2PD
∂zD2

= −δ(xD − R0D)δ
(
yD
)
δ
(
zD − z′D

)
, in ΩD, (3.16)

where

ΩD =
{(
xD, yD, zD

)
| x2

D + y2
D < R2

eD, 0 < zD < HD

}
. (3.17)
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If point r0 and point r are with distances ρ0 and ρ, respectively, from the axis of
symmetry of the cylindrical body, then the dimensionless off-center distances are

ρ0D =
(ρ0

L

)(Ka

Kh

)1/2

, ρD =
(ρ
L

)(Ka

Kh

)1/2

. (3.18)

There holds

(
π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
=
(
Kv

Kh

)1/2(πL
2H

)(
4Re

L
−

2ρ0

L
−

2ρ
L
−

2√ρ0ρ

L

)

=
(
Kv

Kh

)1/2(πRe

H

)(
2 −

ρ0

Re
−
ρ

Re
−
√
ρ0ρ

Re

)

=
(
Kv

Kh

)1/2(πRe

H

)(
2 − ϑ0 − ϑ −

√
ϑ0ϑ

)
,

(3.19)

where

ϑ0 =
ρ0

Re
, ϑ =

ρ

Re
. (3.20)

Since the reservoir is with constant pressure outer boundary (edge water), in order to
delay water encroachment, a producing well must keep a sufficient distance from the outer
boundary. Thus in this paper, it is reasonable to assume that

ϑ0 ≤ 0.6, ϑ ≤ 0.6 (3.21)

If

ϑ0 = ϑ = 0.6,
Kv

Kh
= 0.25,

Re

H
= 15, (3.22)

then

(
Kv

Kh

)1/2(πRe

H

)(
2 − ϑ0 − ϑ −

√
ϑ0ϑ

)

= 0.251/2 × (π × 15) ×
(

2.0 − 0.6 − 0.6 −
√

0.6 × 0.6
)
= 4.7124,

exp(−4.7124) = 8.983 × 10−3.

(3.23)

Moreover if

ϑ0 = ϑ = 0.5,
Kv

Kh
= 0.5,

Re

H
= 10, (3.24)



8 Mathematical Problems in Engineering

then

(
Kv

Kh

)1/2(πRe

H

)(
2 − ϑ0 − ϑ −

√
ϑ0ϑ

)

= 0.51/2 × (π × 10) ×
(

2.0 − 0.5 − 0.5 −
√

0.5 × 0.5
)
= 11.107,

exp(−11.107) = 1.501 × 10−5 .

(3.25)

Recall (3.19), there holds

exp
[
−
(

π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
]
=
(
Kv

Kh

)1/2(πRe

H

)(
2 − ϑ0 − ϑ −

√
ϑ0ϑ

)
,

(3.26)

since there holds (3.21), and according to the aforementioned calculations in (3.22), (3.23),
(3.24), and (3.25), we obtain

exp
[
−
(

π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
]
≈ 0. (3.27)

Because

0 <
(

π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
<

(
π

HD

)
(
2ReD − ρ0D − ρD

)
, (3.28)

thus

exp
[
−
(

π

HD

)
(
2ReD − ρ0D − ρD −

√
ρ0DρD

)
]
> exp

[
−
(

π

HD

)
(
2ReD − ρ0D − ρD

)
]
. (3.29)

Combining (3.27) and (3.29), we have

exp
[
−
(

π

HD

)
(
2ReD − ρ0D − ρD

)
]
≈ 0. (3.30)

4. Boundary Conditions

In this paper, we always assume constant pressure lateral boundary:

P
(
x, y, z

)
= Pe = Pi, (4.1)

on cylindrical lateral surface:

Γ =
{(
x, y, z

)
| x2 + y2 = R2

e, 0 < z < H
}
. (4.2)
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Recall (3.15), the dimensionless form of constant pressure lateral boundary condition
is

PD
(
xD, yD, zD

)
= 0, (4.3)

on

ΓD =
{(
xD, yD, zD

)
| x2

D + y2
D = R2

eD, 0 < zD < HD

}
. (4.4)

Also we have the following dimensionless equations for top and bottom boundary
conditions:

(i) If the circular cylinder drainage volume is with top and bottom impermeable
boundaries, that is, the boundaries at z = 0 and z = H are both impermeable (e.g.,
the reservoir does not have gas cap drive or bottom water drive), then

∂PD
∂zD

∣∣∣∣
zD=0

= 0;
∂PD
∂zD

∣∣∣∣
zD=HD

= 0. (4.5)

(ii) If the circular cylinder drainage volume is with impermeable boundary at z = H,
constant pressure boundary at z = 0, (e.g., the reservoir has gas cap drive), then

PD|zD=0 = 0;
∂PD
∂zD

∣∣∣∣
zD=HD

= 0. (4.6)

(iii) If the circular cylinder drainage volume is with impermeable boundary at z = 0,
constant pressure boundary at z = H (e.g., the reservoir has bottom water drive),
then

PD|zD=HD
= 0;

∂PD
∂zD

∣∣∣∣
zD=0

= 0. (4.7)

(iv) If the circular cylinder drainage volume is with top and bottom constant pressure
boundaries, that is, the boundaries at z = 0 and z = H are both constant pressure
boundaries (e.g., the reservoir has both gas cap drive and bottom water drive), then

PD|zD=0 = 0; PD|zD=HD
= 0. (4.8)

5. Point Sink Solutions

For convenience, we use dimensionless variables given by (3.8) through (3.13), but we drop
the subscript D. In order to obtain the dimensionless pressure of a point sink in a circular
cylinder reservoir, we need to solve a dimensionless Laplace equation in dimensionless space:

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
= −δ

(
x − x′

)
δ
(
y
)
δ
(
z − z′

)
, in Ω, (5.1)
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Figure 2: Geometric representation of a circular system.

where

Ω =
{(
x, y, z

)
| x2 + y2 < R2

e, 0 < z < H
}
. (5.2)

The following initial reservoir condition and lateral reservoir boundary condition will
be used to obtain point sink pressure in a circular cylinder reservoir with constant pressure
outer boundary:

P(t, x, y, z)
∣∣
t=0 = 0, in Ω,

P
(
t, x, y, z

)
= 0, on Γ,

(5.3)

where Γ = {(x, y, z) | x2 + y2 = R2
e, 0 < z < H}.

The problem under consideration is that of fluid flow toward a point sink from an off-
center position within a circular of radius Re. We want to determine the pressure change at
an observation point with a distance ρ from the center of circle.

Figure 2 is a geometric representation of the system. In Figure 2, the point sink r0 and
the observation point r are with distances ρ0 and ρ, respectively, from the circular center; and
the two points are separated at the center by an angle θ. The inverse point of the point sink r0

with respect to the circle is point r∗. Point r∗ is with a distance ρ∗ from the center, and ρ1 from
the observation point. The inverse point is the point outside the circle, on the extension of the
line connecting the center and the point sink, and such that

ρ∗ =
R2
e

ρ0
. (5.4)

Assume R′ is the distance between point r and point r0, then

R′ =
√
ρ2 + ρ2

0 − 2ρρ0 cos θ. (5.5)

If the observation point r is on the drainage circle, ρ = Re, then

R′ =
√
R2
e + ρ2

0 − 2Reρ0 cos θ, Re > ρ0 > 0. (5.6)
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If the observation point r is on the wellbore, then

R′ = Rw. (5.7)

Define

λn =
nπ

H
. (5.8)

5.1. Impermeable Upper and Lower Boundaries

If upper and lower boundaries are impermeable,

∂P

∂z

∣
∣
∣∣
z=0

= 0,
∂P

∂z

∣
∣
∣∣
z=H

= 0, (5.9)

obviously for such impermeable boundary conditions, we have

δ
(
z − z′

)
=
∑∞

n=0 cos(λnz′) cos(λnz)
(Hdn)

, (5.10)

where

dn =

⎧
⎪⎨

⎪⎩

1, if n = 0,

1
2
, if n > 0.

(5.11)

Let

P
(
x, y, z

)
=
∞∑

n=0

ϕn
(
x, y

)
cos(λnz), (5.12)

and substituting (5.12) into (5.1) and compare the coefficients of cos(λnz), we obtain

Δϕn − λ2
nϕn = −

cos(λnz′)δ(x − x′)δ
(
y
)

(Hdn)
, (5.13)

in circular area Ω1 = {(x, y) | x2 + y2 < R2
e}, and

ϕn = 0, (5.14)

on circumference Γ1 = {(x, y) | x2 + y2 = R2
e}, and Δ is two-dimensional Laplace operator,

Δϕn =
∂2ϕn

∂x2
+
∂2ϕn

∂y2
. (5.15)
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Case 1. If n = 0, then

Δϕ0 = −
δ(x − x′)δ

(
y
)

H
, in Ω1,

ϕ0 = 0, on Γ1.

(5.16)

Using Green’s function of Laplace problem in a circular domain, we obtain [9–11]

ϕ0
(
x, y;x′, 0

)
=
(

1
2πH

){

ln

[∣∣ρ − ρ∗
∣∣

∣
∣ρ − ρ0

∣
∣

∣∣ρ0
∣∣

Re

]}

. (5.17)

Case 2. If n > 0, then ϕn satisfies (5.13). Since [−1/(2π)]K0(λnR′) satisfies the equations:

Δu − λ2
nu = δ(x − x′)δ

(
y
)
,

u = 0, on Γ1.
(5.18)

So [−αn/(2π)]K0(λnR′) is a basic solution of (5.13), where

αn =
(
− 1
Hdn

)
cos
(
nπz′

H

)
=
(
− 2
H

)
cos
(
λnz

′), (5.19)

βn =
αn

(2π)
=
( −2

2πH

)
cos
(
nπz′

H

)
=
( −1
πH

)
cos
(
λnz

′). (5.20)

Define

ψn = ϕn + βnK0
(
λnR

′), (5.21)

thus

ϕn = ψn − βnK0
(
λnR

′), (5.22)

then ψn satisfies homogeneous equation

Δψn − λ2
nψn = 0, in Ω1,

ψn = βnK0(λnR′), on Γ1,
(5.23)

and R′ has the same meaning as in (5.6).



Mathematical Problems in Engineering 13

Under polar coordinates representation of Laplace operator and by using methods of
separation of variables, we obtain a general solution [9–11]:

ψn =
[
A0nI0

(
λnρ

)
+ B0nK0

(
λnρ

)]
[a0nθ + b0n] +

∞∑

m=1

[
AmnIm

(
λnρ

)
+ BmnKm

(
λnρ

)]

× [amn cos(mθ) + bmn sin(mθ)],

(5.24)

where Ain, Bin, ain, bin, i = 0, 1, . . . are undetermined coefficients.
Because ψn is continuously bounded within Ω1, but Ki(0) =∞, so there holds

Bin = 0, i = 0, 1, . . . . (5.25)

There hold [7, 12]

Kυ(z) =
(
πi

2

)
eυπi/2H

(1)
υ (zi),

Iυ(z) = e−υπi/2Jυ(zi),

(5.26)

where Kυ(z) is modified Bessel function of second kind and order υ, Iυ(z) is modified Bessel
function of first kind and order υ, Jυ(z) is Bessel function of first kind and order υ, H(1)

υ (z) is
Hankel function of first kind and order υ, and i =

√
−1.

Also there hold [13, page 979]

H
(1)
0

(
σR′

)
= J0

(
σρ0

)
H

(1)
0 (σRe) + 2

∞∑

m=1

Jm
(
σρ0

)
H

(1)
m (σRe) cos(mθ), (5.27)

K0
(
λnR

′) =
(
πi

2

)
H

(1)
0

(
iλnR

′). (5.28)

Let σ = iλn, (note that i2 = −1) putting (5.26) into (5.27), and using (5.28), we have the
following Cosine Fourier expansions of K0(λnR′) [13, page 952]:

K0
(
λnR

′) =
(
πi

2

)[

J0
(
iλnρ0

)
H

(1)
0 (iλnRe) + 2

∞∑

m=1

Jm
(
iλnρ0

)
H

(1)
m (iλnRe) cos(mθ)

]

= J0
(
iλnρ0

)
K0(λnRe) + 2

∞∑

m=1

e−mπi/2Jm
(
iλnρ0

)
Km(λnRe) cos(mθ)

= I0
(
λnρ0

)
K0(λnRe) + 2

∞∑

m=1

Im
(
λnρ0

)
Km(λnRe) cos(mθ).

(5.29)
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Note that ψn = βnK0(λnR′) on Γ1, comparing coefficients of Cosine Fourier expansions
of K0(λnR′) in (5.29) and (5.24), we obtain

a0n = 0, b0n = 1, bin = 0, i = 1, 2, . . . . (5.30)

Define

Ymn = amnAmn, n = 0, 1, 2, . . . , (5.31)

and recall (5.24), then we have

ψn =
∞∑

m=0

YmnIm
(
λnρ

)
cos(mθ), n = 0, 1, 2, . . . , (5.32)

where

Y0n =
βnK0(λnRe)I0

(
λnρ0

)

I0(λnRe)
,

Ymn =
2βnKm(λnRe)Im

(
λnρ0

)

Im(λnRe)
.

(5.33)

There hold [13, page 919]

Im(x) �
exp(x)

(2πx)1/2
, Km(x) �

[π/(2x)]1/2

exp(x)
, x 	 1, ∀m ≥ 0. (5.34)

Note that H in Formula (5.8) is in dimensionless form, recall Formulas (3.9), (3.12)
and (3.18), for dimensionless H, Re, ρ0, ρ, there hold

λnRe 	 1, λnρ0 	 1, λnρ 	 1, (5.35)
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thus

Km(λnRe)
Im(λnRe)

≈ π exp(−2λnRe), (5.36)

Im
(
λnρ0

)
Im
(
λnρ

)
≈
[

exp
(
λnρ0

)

(
2πλnρ0

)1/2
,

exp
(
λnρ

)

(
2πλnρ

)1/2

]

=
exp

[
λn
(
ρ + ρ0

)]

(2πλn)(ρρ0)
1/2

,

(5.37)

YmnIm
(
λnρ

)
=

2βnKm(λnRe)Im
(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

≈
(
2βn

)[
π exp(−2λnRe)

]
{

exp
[
λn
(
ρ + ρ0

)]

(2πλn)
(
ρρ0

)1/2

}

=
(
2βn

)
[

π

(2πλn)
(
ρρ0

)1/2

]

exp
[
−λn

(
2Re − ρ0 − ρ

)]

=

[
βn

λn
(
ρρ0

)1/2

]

exp
[
−λn

(
2Re − ρ0 − ρ

)]
.

(5.38)

There holds

∣∣ψn
∣∣ =

∞∑

m=0

∣∣YmnIm
(
λnρ

)
cos(mθ)

∣∣

<
∞∑

m=0

∣∣YmnIm
(
λnρ

)∣∣

=
∞∑

m=0

∣∣∣∣∣
2βnKm(λnRe)Im

(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

∣∣∣∣∣
.

(5.39)

Combining Formulas (3.18), (5.38), and (5.39), we obtain

∞∑

n=1

∣∣∣ψn cos
(nπz
H

)∣∣∣

≤
∞∑

n=1

∣∣ψn
∣∣

=
∞∑

n=1

∞∑

m=0

∣∣∣∣∣
2βnKm(λnRe)Im

(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

∣∣∣∣∣
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≤
∞∑

n=1

[∣∣
∣
∣
∣

2βnK0(λnRe)I0
(
λnρ0

)
I0
(
λnρ

)

I0(λnRe)

∣
∣
∣
∣
∣
+
∞∑

m=1

∣
∣
∣
∣
∣

2βnKm(λnRe)Im
(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

∣
∣
∣
∣
∣

]

=
∞∑

n=1

∣
∣
∣
∣
∣

2βnK0(λnRe)I0
(
λnρ0

)
I0
(
λnρ

)

I0(λnRe)

∣
∣
∣
∣
∣
+
∞∑

n=1

∞∑

m=1

∣
∣
∣
∣
∣

2βnKm(λnRe)Im
(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

∣
∣
∣
∣
∣

= Ξ1 + Ξ2,

(5.40)

where

Ξ1 =
∞∑

n=1

∣
∣
∣
∣∣

2βnK0(λnRe)I0
(
λnρ0

)
I0
(
λnρ

)

I0(λnRe)

∣
∣
∣
∣∣
, (5.41)

Ξ2 =
∞∑

n=1

∞∑

m=1

∣∣∣∣∣
2βnKm(λnRe)Im

(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

∣∣∣∣∣
. (5.42)

There holds

Ξ1 =
∞∑

n=1

∣∣∣∣∣
2βnK0(λnRe)I0

(
λnρ0

)
I0
(
λnρ

)

I0(λnRe)

∣∣∣∣∣

≈
∞∑

n=1

[ ∣∣βn
∣∣

λn
(
ρρ0

)1/2

]

exp
[
−λn

(
2Re − ρ0 − ρ

)]

=
∞∑

n=1

[
1

nπ2(ρρ0)
1/2

]

exp
[
−
(nπ
H

)(
2Re − ρ0 − ρ

)]

<
∞∑

n=1

[
1

π2
(
ρρ0

)1/2

]

exp
[
−
(nπ
H

)(
2Re − ρ0 − ρ

)]

≈
[

1

π2
(
ρρ0

)1/2

]{
exp

[
−(π/H)

(
2Re − ρ0 − ρ

)]

1 − exp
[
−(π/H)

(
2Re − ρ0 − ρ

)]

}

≈ 0,

(5.43)

where we use Formula (3.26),

exp
[
−
( π
H

)(
2Re − ρ0 − ρ

)]
≈ 0, (5.44)

x + x2 + x3 + x4 + x5 + · · · = x

1 − x , 0 < x < 1. (5.45)
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If m > −1/2, there holds [13, page 916]

Im(z) =
[

(z/2)m

Γ(m + 1/2)Γ(1/2)

]∫1

−1
(1 − t2)m−1/2

cosh(zt)dt, (5.46)

thus for m ≥ 1,

Im
(
λnρ

)
≤
[

(λnρ/2)m

Γ(m + 1/2)Γ(1/2)

]∫1

−1
cosh

(
λnρt

)
dt

=

[
2(λnρ/2)m

(
λnρ

)
Γ(m + 1/2)Γ(1/2)

]

sinh
(
λnρ

)

=

[
(λnρ/2)m−1

Γ(m + 1/2)Γ(1/2)

]

sinh
(
λnρ

)

<

[
(λnρ/2)m−1

2Γ(m + 1/2)Γ(1/2)

]

exp
(
λnρ

)
,

(5.47)

where we use

∫1

−1
cosh

(
λnρt

)
dt =

2 sinh
(
λnρ

)

λnρ
,

sinh
(
λnρ

)
<

exp
(
λnρ

)

2
,

(5.48)

and if −1 < t < 1, m ≥ 1, then

(1 − t2)m−1/2 ≤ 1. (5.49)

Putting Formula (5.47) into Formula (5.42), we obtain

Ξ2 =
∞∑

n=1

∞∑

m=1

∣∣∣∣∣
2βnKm(λnRe)Im

(
λnρ0

)
Im
(
λnρ

)

Im(λnRe)

∣∣∣∣∣

<
∞∑

n=1

∞∑

m=1

(
2π
∣∣βn
∣∣) exp

[
−λn

(
2Re − ρ0 − ρ

)]
[ (

λnρ/2
)m−1

2Γ(m + 1/2)Γ(1/2)

][ (
λnρ0/2

)m−1

2Γ(m + 1/2)Γ(1/2)

]

=
∞∑

n=1

∞∑

m=1

(
2
H

)
(λ2

nρρ0/4)m−1

[2Γ(m + 1/2)Γ(1/2)]2
exp

[
−λn

(
2Re − ρ0 − ρ

)]

=
∞∑

n=1

(
2
H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)] ∞∑

m=1

(λ2
nρρ0/4)m−1

[2Γ(m + 1/2)Γ(1/2)]2
.

(5.50)
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Note that

Γ(m + 1/2) =
1 × 3 × 5 × · · · × (2m − 1)

√
π

2m

>
1 × 2 × 6 × · · · × (2m − 2)

√
π

2m

=
2m−1(m − 1)!

√
π

2m

=
(m − 1)!

√
π

2
,

(5.51)

then we obtain

Ξ2 <
∞∑

n=1

(
2
H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)] ∞∑

m=1

(λ2
nρρ0/4)m−1

[2Γ(m + 1/2)Γ(1/2)]2

<
∞∑

n=1

(
2
H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)] ∞∑

m=1

(λ2
nρρ0/4)m−1

[(m − 1)!π]2

=
∞∑

n=1

(
2
H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)] ∞∑

k=0

(
λn
√
ρρ0/2

)2k

(k!π)2

=
∞∑

n=1

(
2

π2H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)]
I0
(
λn
√
ρρ0

)
,

(5.52)

where we use [13, page 919]

I0(z) =
∞∑

k=0

(z/2)2k

(k!)2
, Γ

(
1
2

)
=
√
π. (5.53)

Note that λn
√
ρρ0 	 1, and we have

I0
(
λn
√
ρρ0

)
≈

exp
(
λn
√
ρρ0

)

(
2πλn

√
ρρ0

)1/2
, (5.54)
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thus Formula (5.52) can be simplified as follows:

Ξ2 <
∞∑

n=1

(
2

π2H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)]
I0
(
λn
√
ρρ0

)

≈
∞∑

n=1

(
2

π2H

)
exp

[
−λn

(
2Re − ρ0 − ρ

)]
⎡

⎣
exp

(
λn
√
ρρ0

)

(
2πλn

√
ρρ0

)1/2

⎤

⎦

<
∞∑

n=1

[
2

π2H(2π)1/2(ρρ0
)1/4

]
exp

[
−λn

(
2Re − ρ0 − ρ −

√
ρρ0

)]

λ1/2
n

=
∞∑

n=1

[
2

π3(2nH)1/2(ρρ0
)1/4

]

exp
[
−
(nπ
H

)(
2Re − ρ0 − ρ −

√
ρρ0

)]

<
∞∑

n=1

[
2

π3(2H)1/2(ρρ0
)1/4

]

exp
[
−
(nπ
H

)(
2Re − ρ0 − ρ −

√
ρρ0

)]

=

[
2

π3(2H)1/2(ρρ0
)1/4

]{
exp

[
−(π/H)

(
2Re − ρ0 − ρ −

√
ρρ0

)]

1 − exp
[
−(π/H)

(
2Re − ρ0 − ρ −

√
ρρ0

)]

}

≈ 0,

(5.55)

where we use Formulas (5.45) and (3.26)

exp
[
−
( π
H

)(
2Re − ρ0 − ρ −

√
ρρ0

)]
≈ 0. (5.56)

Combining Formulas (5.40), (5.43), and (5.55), we prove

∞∑

n=1

ψn cos
(nπz
H

)
≈ 0. (5.57)

Combining Formulas (5.4), (5.12), (5.17), (5.20), (5.22), (5.29), and (5.57), the point
convergence pressure of point (x′, 0, z′) is

P
(
x, y, z;x′, 0, z′

)
=
(

1
2πH

){

ln

[∣∣R2
e − ρρ0

∣∣
∣∣ρ − ρ0

∣∣Re

]}

+
∞∑

n=1

[
βnK0(λnRe)I0(λnR′)

I0(λnRe)
− βnK0

(
λnR

′)
]

cos(λnz)

=
( −1
πH

) ∞∑

n=1

[
K0(λnRe)I0(λnR′)

I0(λnRe)
−K0

(
λnR

′)
]

cos(λnz) cos
(
λnz

′)

+
(

1
2πH

){

ln

[∣∣R2
e − ρρ0

∣∣
∣∣ρ − ρ0

∣∣Re

]}

.

(5.58)
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5.2. Constant Pressure Upper or Lower Boundaries

If the reservoir is with gas cap and impermeable bottom boundary, then

P |z=0 = 0,
∂P

∂z

∣
∣
∣
∣
z=H

= 0, (5.59)

and assume the outer boundary is at constant pressure

P = 0, (5.60)

on cylindrical surface Γ = {(x, y) | x2 + y2 = R2
e, 0 < z < H}.

Define

ωn =
[(2n − 1)π]

(2H)
,

gn(z) =
√

2
H

sin(ωnz), (n = 1, 2, 3, . . .),

(5.61)

then under the boundary condition of (5.59), we have

δ
(
z − z′

)
=
∞∑

n=1

gn(z)gn
(
z′
)
. (5.62)

Let

P
(
x, y, z

)
=
∞∑

n=1

ϕn
(
x, y

)
sin(ωnz), (5.63)

where ϕn satisfies

Δϕn −ω2
nϕn =

(
− 2
H

)
δ
(
x − x′

)
δ
(
y
)

sin
(
ωnz

′), (5.64)

in Ω1, and

ϕn = 0, (5.65)

on Γ1.
Let

ψn = ϕn + ζnK0
(
ωnR

′), (5.66)
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where

ζn =
( −1
πH

)
sin
(
ωnz

′), (5.67)

and R′ has the same meaning as in Formula (5.6).
Thus ψn satisfies homogeneous equation:

Δψn −ω2
nψn = 0, (5.68)

in Ω1, and

ψn = ζnK0
(
ωnR

′), (5.69)

on Γ1.
Using polar coordinates, we have

ψn =
ζnK0(ωnRe)I0(ωnR

′)
I0(ωnRe)

, (5.70)

then

ϕn = ψn − ζnK0
(
ωnR

′), (5.71)

and point convergence pressure of point (x′, 0, z′) is:

P
(
x, y, z;x′, 0, z′

)
=
∞∑

n=1

[
ζnK0(ωnRe)I0(ωnR

′)
I0(ωnRe)

− ζnK0
(
ωnR

′)
]

sin(ωnz)

=
( −1
πH

) ∞∑

n=1

[
K0(ωnRe)I0(ωnR

′)
I0(ωnRe)

−K0
(
ωnR

′)
]

sin(ωnz) sin
(
ωnz

′).

(5.72)

If the reservoir is with bottom water and impermeable top boundary, then

P |z=H = 0,
∂P

∂z

∣∣∣∣
z=0

= 0, (5.73)

and recall Formula (5.60), the outer boundary is at constant pressure.
Define

hn(z) =

√
2
H

cos(ωnz), (n = 1, 2, 3, . . .), (5.74)
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then under the boundary condition of (5.73), we have

δ
(
z − z′

)
=
∞∑

n=1

hn(z)hn
(
z′
)
. (5.75)

Let

P
(
x, y, z

)
=
∞∑

n=1

ϕn
(
x, y

)
cos(ωnz), (5.76)

where ϕn satisfies

Δϕn −ω2
nϕn =

(
− 2
H

)
δ
(
x − x′

)
δ
(
y
)

cos
(
ωnz

′), (5.77)

in Ω1, and

ϕn = 0, (5.78)

on Γ1.
Let

ψn = ϕn + ηnK0
(
ωnR

′), (5.79)

where

ηn =
( −1
πH

)
cos
(
ωnz

′), (5.80)

thus ψn satisfies

Δψn −ω2
nψn = 0, (5.81)

in Ω1, and

ψn = ηnK0
(
ωnR

′), (5.82)

on Γ1.
Using polar coordinates, we have

ψn =
ηnK0(ωnRe)I0(ωnR

′)
I0(ωnRe)

, (5.83)
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then

ϕn = ψn − ηnK0
(
ωnR

′), (5.84)

and point convergence pressure of point (x′, 0, z′) is

P
(
x, y, z;x′, 0, z′

)
=
∞∑

n=1

[
ηnK0(ωnRe)I0(ωnR

′)
I0(ωnRe)

− ηnK0
(
ωnR

′)
]

cos(ωnz)

=
( −1
πH

) ∞∑

n=1

[
K0(ωnRe)I0(ωnR

′)
I0(ωnRe)

−K0
(
ωnR

′)
]

cos(ωnz) cos
(
ωnz

′).

(5.85)

If the reservoir is with gas cap and bottom water, then

P |z=0 = 0, P |z=H = 0, (5.86)

and recall Formula (5.60), the outer boundary is at constant pressure.
Define

fn(z) =

√
2
H

sin(λnz), (n = 1, 2, 3, . . .), (5.87)

where λn has the same meaning as in Formula (5.8).
Under the boundary condition of (5.86), we have

δ
(
z − z′

)
=
∞∑

n=1

fn(z)fn
(
z′
)
. (5.88)

Let

P
(
x, y, z

)
=
∞∑

n=1

ϕn
(
x, y

)
sin(λnz), (5.89)

where ϕn satisfies

Δϕn − λ2
nϕn =

(
− 2
H

)
δ
(
x − x′

)
δ
(
y
)

sin
(
λnz

′), (5.90)

in Ω1, and

ϕn = 0, (5.91)

on Γ1.
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Let

ψn = ϕn + ιnK0
(
λnR

′), (5.92)

where

ιn =
( −1
πH

)
sin
(
λnz

′), (5.93)

thus ψn satisfies

Δψn − λ2
nψn = 0, (5.94)

in Ω1, and

ψn = ιnK0
(
λnR

′), (5.95)

on Γ1.
Using polar coordinates, we have

ψn =
ιnK0(λnRe)I0(λnR′)

I0(λnRe)
, (5.96)

then

ϕn = ψn − ιnK0
(
λnR

′), (5.97)

and point convergence pressure of point (x′, 0, z′) is

P
(
x, y, z;x′, 0, z′

)
=
∞∑

n=1

[
ιnK0(λnRe)I0(λnR′)

I0(λnRe)
− ιnK0

(
λnR

′)
]

sin(λnz)

=
( −1
πH

) ∞∑

n=1

[
K0(λnRe)I0(λnR′)

I0(λnRe)
−K0

(
λnR

′)
]

sin(λnz) sin
(
λnz

′).

(5.98)
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6. Uniform Line Sink Solutions

For convenience, we drop the subscript D for dimensionless variables. In order to calculate
the pressure at wellbore, assume the observation point r is on the wellbore, and recall Formula
(5.7), R′ = Rw and

∣
∣ρ − ρ0

∣
∣ = Rw, ρρ0 =

(
ρ0 + Rw

)
ρ0 ≈ ρ2

0 = R2
0. (6.1)

The partially penetrating vertical well is taken as a uniform line sink. Recall Formula
(5.9), integrate z′ at both sides of Formula (5.58) from L1 to L2, if the upper and lower
boundaries are impermeable, pressure at wellbore point (Rw, z) is

P(Rw, z) =
∫L2

L1

P
(
Rw, z;Rw, z

′)dz′

=
(

Lp

2πH

)
ln

(
R2
e − R2

0

ReRw

)

+
( −1
πH

) ∞∑

n=1

[
K0(λnRe)I0(λnRw)

I0(λnRe)
−K0(λnRw)

]

× cos
(nπz
H

)∫L2

L1

cos
(
nπz′

H

)
dz′.

(6.2)

Recall Formula (5.34), there hold

K0(x) ≈
√
π

2x
e−x,

K0(x)
I0(x)

≈ πe−2x, (6.3)

if x > 1, and

I0(x) ≈ 1.0, (6.4)

if 0 < x < 0.5.
Combining to Formulas (3.9), (3.12), (3.13), and (5.8), we obtain

λnRe > 1, λnRw < 0.5, (6.5)

so

K0(λnRe)
I0(λnRe)

≈ πe−2λnRe , I0(λnRw) ≈ 1.0. (6.6)
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According to Formula (6.6), we have

∣
∣
∣
∣
∣

( −1
πH

) ∞∑
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[
K0(λnRe)I0(λnRw)

I0(λnRe)

]
cos
(nπz
H

)∫L2

L1

cos
(
nπz′

H

)
dz′
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

( −1
πH

) ∞∑

n=1

[
K0(λnRe)I0(λnRw)

I0(λnRe)

](
H

nπ

)
cos
(nπz
H

)[
sin
(
nπL2

H

)
− sin

(
nπL1

H

)]∣∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

( −1
πH

) ∞∑

n=1

[
K0(λnRe)I0(λnRw)

I0(λnRe)

](
H

nπ

)∣∣
∣
∣
∣

=
(

1
π2

) ∞∑

n=1

1
n

∣
∣
∣
∣
K0(λnRe)I0(λnRw)

I0(λnRe)

∣
∣
∣
∣

≤
(

1
π2

) ∞∑

n=1

∣∣∣∣
K0(λnRe)I0(λnRw)

I0(λnRe)

∣∣∣∣

≈
(

1
π2

) ∞∑

n=1

πe−2λnRe

=
e−2πRe/H

π
(
1 − e−2πRe/H

)

=
1

π
(
e2πRe/H − 1

)

≈ 0,

(6.7)

because the value of Re/H is very big.
Combining Formulas (6.2) and (6.7) yields

P(Rw, z) =
(

Lp

2πH

)
ln

(
R2
e − R2

0

ReRw

)

+
(

1
πH

) ∞∑

n=1

K0(λnRw) cos
(nπz
H

)∫L2

L1

cos
(
nπz′

H

)
dz′

=
(

Lp

2πH

)
ln

(
R2
e − R2

0

ReRw

)

+
∞∑

n=1

(
1
nπ2

)
K0(λnRw) cos

(nπz
H

)[
sin
(
nπL2

H

)
− sin

(
nπL1

H

)]
,

(6.8)
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where we use

∫L2

L1

cos
(
nπz′

H

)
dz′ =

(
H

nπ

)[
sin
(
nπL2

H

)
− sin

(
nπL1

H

)]
. (6.9)

In order to obtain the average wellbore pressure, integrate both sides of Formula (6.2)
with respect to z from L1 to L2, then divided by Lp, we obtain

Pa(Rw) =
1
Lp

∫L2

L1

P(Rw, z)dz

=
(

Lp

2πH

)
ln

(
R2
e − R2

0

ReRw

)

+
∞∑

n=1

(
1
nπ2

)
K0(λnRw)

[
sin
(
nπL2

H

)
− sin

(
nπL1

H

)][
1
Lp

∫L2

L1

cos
(nπz
H

)
dz

]

=
(

Lp

2πH

)
ln

(
R2
e − R2

0

ReRw

)

+

(
H

π3Lp

)
∞∑

n=1

(
1
n2

)
K0(λnRw)

[
sin
(
nπL2

H

)
− sin

(
nπL1

H

)]2

=
(

Lp

2πH

)
ln

(
R2
e − R2

0

ReRw

)

+

(
4H
π3Lp

)
∞∑

n=1

(
1
n2

)
K0(λnRw)sin2

(
nπLp

2H

)
cos2

[
nπ(L2 + L1)

2H

]
.

(6.10)

Recall Formula (5.59), let R′ = Rw, integrate z′ at both sides of Formula (5.72) from L1

to L2, if the reservoir is with gas cap and impermeable bottom boundary, pressure at wellbore
point (Rw, z) is

P(Rw, z) =
∫L2

L1

P
(
Rw, z;Rw, z

′)dz′

=
( −1
πH

) ∞∑

n=1

[
K0(ωnRe)I0(ωnRw)

I0(ωnRe)
−K0(ωnRw)

]
Ξ1,

(6.11)

where

Ξ1 = sin(ωnz)
∫L2

L1

sin
(
ωnz

′)dz′

= sin
[
(2n − 1)πz

2H

][
(−2H)

(2n − 1)π

]{
cos
[
(2n − 1)πL2

2H

]
− cos

[
(2n − 1)πL1

2H

]}
.

(6.12)
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With a similar procedure in Formula (6.7), there holds

∣
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∣
∣

≈ 0,

(6.13)

thus

P(Rw, z) =
∫L2

L1

P
(
Rw, z;Rw, z

′)dz′

=
(

1
πH

) ∞∑

n=1

K0(ωnRw) sin
[
(2n − 1)πz

2H

][ −2H
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]

×
{
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[
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]}
.

(6.14)

In order to obtain the average wellbore pressure, integrate both sides of Formula (6.14)
with respect to z from L1 to L2, then divided by Lp, we obtain

Pa(Rw) =
1
Lp

∫L2

L1

P(Rw, z)dz

=
1
Lp

∞∑

n=1

[
2

(2n − 1)π2

]
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]
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]}

×
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sin
[
(2n − 1)πz

2H

]
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=

(
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1

(2n − 1)2
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{
cos
[
(2n − 1)πL2

2H

]
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[
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=

(
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1

(2n − 1)2
K0(ωnRw)sin2

[(2n − 1)πLp
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[
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]
.

(6.15)
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Recall Formula (5.73), let R′ = Rw, integrate z′ at both sides of Formula (5.85) from
L1 to L2, if the reservoir is with bottom water and impermeable top boundary, pressure at
wellbore point (Rw, z) is

P(Rw, z) =
∫L2

L1

P
(
Rw, z;Rw, z

′)dz′

=
( −1
πH

) ∞∑

n=1

[
K0(ωnRe)I0(ωnRw)

I0(ωnRe)
−K0(ωnRw)

]
Ξ2,

(6.16)

where

Ξ2 = cos(ωnz)
∫L2

L1

cos
(
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[
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2H
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(2n − 1)π

]{
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[
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2H

]
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[
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2H

]}
.

(6.17)

With a similar procedure in Formula (6.7), there hold
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(6.18)

P(Rw, z) =
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(6.19)
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In order to obtain the average wellbore pressure, integrate both sides of Formula (6.19)
with respect to z from L1 to L2, then divided by Lp, we obtain

Pa(Rw) =
1
Lp
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(6.20)

Recall Formula (5.86), let R′ = Rw, integrate z′ at both sides of Formula (5.98) from L1

to L2, if the reservoir is with bottom water and gas cap, pressure at wellbore point (Rw, z) is

P(Rw, z) =
∫L2

L1

P
(
Rw, z;Rw, z

′)dz′

=
( −1
πH

) ∞∑

n=1

[
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]
Ξ3,

(6.21)

where

Ξ3 = sin(λnz)
∫L2
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(
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H
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(6.22)

With a similar procedure in Formula (6.7), there holds
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(6.23)
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thus

P(Rw, z) =
∫L2
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P
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(6.24)

In order to obtain the average pressure, integrate both sides of Formula (6.24) with
respect to z from L1 to L2, then divided by Lp, we obtain
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(6.25)

7. Partially Penetrating Vertical Well Productivity

Note that Formula (6.10) is in dimensionless form, substitute Formulas (3.14) and (3.15) into
Formula (6.10), then rearrange and simplify the resulting formula, the productivity formula
for a partially penetrating vertical well is obtained:

Qw = FD
2πKhH(Pe − Pw)/

(
μB
)

ln(ReD/RwD) + Sps
, (7.1)

where Pw is average wellbore pressure, Sps is pseudo-skin factor due to partial penetration:

Sps =

⎛

⎝ 8H2
D

π2L2
pD

⎞

⎠
N∑

n=1

(
1
n2

)
K0

[(
nπ

HD

)
RwD

]
sin2

(
nπLpD

2HD

)
cos2

[
nπ(L2D + L1D)

2HD

]
. (7.2)

However, (7.1) is only applicable to a circular cylinder drainage reservoir has both
impermeable top and bottom boundaries, and has constant pressure lateral boundary.

If the well is fully penetrating, (Lp = L = H,) then Sps = 0, and if the reservoir is an
isotropic permeability reservoir, that is, Ka = Kh = Kv = K, then Formula (7.1) reduces to
Formula (2.1).
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Substituting Formulas (3.14) and (3.15) into Formula (6.15), then rearranging and
simplifing the resulting formula, we obtain the productivity formula for a partially
penetrating vertical well in a reservoir with impermeable bottom boundary and constant
pressure top boundary (gas cap):

Qw = FD
π3KhL

2
p(Pe − Pw)/

(
μB
)

16HΘ1
, (7.3)

where

Θ1 =
N∑

n=1

1

(2n − 1)2
K0

{[
(2n − 1)π

2HD

]
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}

× sin2
[(2n − 1)πLpD

4HD

]
sin2

[
(2n − 1)π(L2D + L1D)

4HD

]
.

(7.4)

Substituting Formulas (3.14) and (3.15) into Formula (6.20), then rearranging and
simplifing the resulting formula, we obtain the productivity formula for a partially
penetrating vertical well in a reservoir with impermeable top boundary and constant pressure
bottom boundary (bottom water):

Qw = FD
π3KhL

2
p(Pe − Pw)/

(
μB
)

16HΘ2
, (7.5)

where

Θ2 =
N∑

n=1

1
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× sin2
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4HD

]
.

(7.6)

Substituting Formulas (3.14) and (3.15) into Formula (6.25), then rearranging and
simplifing the resulting formula, we obtain the productivity formula for a partially
penetrating vertical well in a reservoir with both bottom water and gas cap:

Qw = FD
π3KhL

2
p(Pe − Pw)/

(
μB
)

4HΘ3
, (7.7)

where

Θ3 =
N∑

n=1

1
n2
K0

[(
nπ

HD

)
RwD

]
sin2

(
nπLpD

2HD

)
sin2

[
nπ(L2D + L1D)

2HD

]
. (7.8)

It must be pointed out that N = 500 in the summation of the series in the
aforementioned formulas is sufficient to reach engineering accuracy.
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8. Conclusions and Discussions

Comparing Formulas (7.1), (7.3), (7.5), and (7.7), we can reach the the following conclusions.
If top and bottom reservoir boundaries are impermeable, the radius of the cylindrical

system and off-center distance appears in the productivity formulas; if the reservoir has a gas
cap or bottom water, the effects of the radius and off-center distance on productivity can be
ignored.

Because the pay zone thickness H is very small compared with the circular cylinder
drainage radius Re, when the reservoir has gas cap or bottom water which provides the
main drive mechanism, the lateral boundary has little influence on productivity, the well
is producing as if the reservoir is infinite. The performance is the same for a centered well
and an off-center well, even the reservoir is with an edge water boundary (constant pressure
outer boundary). The effects of drainage radius and off-center distance on productivity are
negligible, thus Re and R0 do not show up in Formulas (7.3), (7.5), and (7.7). However, (7.3),
(7.5), and (7.7) are applicable to both centered and off-center wells.

If both top and bottom boundaries are impermeable, then Re and R0 play important
roles in well productivity, as indicated by Formula (7.1).

Formula (7.2) for pseudo-skin factor is obtained by solving three-dimensional Laplace
equation, thus it is more reliable than semianalytical and semiempirical expressions of
pseudo-skin factor, that is, Formulas (2.4) and (2.7).

Field data will be provided in forthcoming papers in the near future, which can show
that the proposed formulas are reliable and accurate, they are fast analytical tools to evaluate
well performance.

In this paper, we always assume the lateral boundary is at constant pressure, so
the proposed formulas are only applicable for steady-state, this study can be improved by
considering:

(1) pseudo-steady-state productivity formulas for an oil reservoir with impermeable
upper, lower, and lateral boundaries;

(2) steady-state productivity formulas for an oil reservoir with impermeable lateral
boundary, but constant pressure upper or lower boundary;

(3) productivity formulas for a partially penetrating vertical well in a box-shaped
reservoir, and the corresponding equation of pseudo-skin factor due to partial
penetration;

(4) non-Darcy flow effect on an oil well productivity.
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