
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 653723, 15 pages
doi:10.1155/2009/653723

Research Article
Pursuit-Evasion Differential Game with Many
Inertial Players

Gafurjan I. Ibragimov and Mehdi Salimi

Department of Mathematics & Institute for Mathematical Research, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia

Correspondence should be addressed to Mehdi Salimi, mehdisalimi@math.upm.edu.my

Received 18 April 2009; Accepted 17 July 2009

Recommended by Alexander P. Seyranian

We consider pursuit-evasion differential game of countable number inertial players in Hilbert
space with integral constraints on the control functions of players. Duration of the game is fixed.
The payoff functional is the greatest lower bound of distances between the pursuers and evader
when the game is terminated. The pursuers try to minimize the functional, and the evader tries to
maximize it. In this paper, we find the value of the game and construct optimal strategies of the
players.

Copyright q 2009 G. I. Ibragimov and M. Salimi. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

Many books have been devoted to differential games, such as books by Isaacs [1], Pontryagin
[2], Friedman [3], Krasovskii and Subbotin [4].

Constructing the player’s optimal strategies and finding the value of the game are of
specific interest in studying of differential games.

The pursuit-evasion differential games involving several objects with simple motions
take the attention of many authors. Ivanov and Ledyaev [5] studied simple motion
differential game of several players with geometric constraints. They obtained sufficient
conditions to find optimal pursuit time in R

n, by using the method of the Lyapunov function
for an auxiliary problem.

Levchenkov and Pashkov [6] investigated differential game of optimal approach of
two identical inertial pursuers to a noninertial evader on a fixed time interval. Control
parameters were subject to geometric constraints. They constructed the value function of the
game and used necessary and sufficient conditions which a function must satisfy to be the
value function [7].
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Chodun [8] examined evasion differential game with many pursuers and geometric
constraints. He found a sufficient condition for avoidance.

Ibragimov [9] obtained the formula for optimal pursuit time in differential game
described by an infinite system of differential equations. In [10] simple motion differential
game of many pursuers with geometric constraints was investigated in the Hilbert space l2.

In the present paper, we consider a pursuit-evasion differential game of infinitely
many inertial players with integral constraints on control functions. The duration of the game
θ is fixed. The payoff functional of the game is the greatest lower bound of the distances
between the evader and the pursuers at θ. The pursuer’s goal is to minimize the payoff, and
the evader’s goal is to maximize it. This paper is close in spirit to [10]. We obtain a sufficient
condition to find the value of the game and constructed the optimal strategies of players.

2. Formulation of the Problem

In the space l2 consisting of elements α = (α1, α2, . . . , αk, . . .), with
∑∞

k=1 α
2
k < ∞, and inner

product (α, β) =
∑∞

k=1 αkβk, the motions of the countably many pursuers Pi and the evader E
are defined by the equations

Pi : ẍi = ui, xi(0) = x0
i , ẋi(0) = x1

i ,

E : ÿ = v, y(0) = y0, ẏ(0) = y1,
(2.1)

where xi, x0
i , x

1
i , ui, y, y

0, y1, v ∈ l2, ui = (ui1, ui2, . . . , uik, . . .) is the control parameter of the
pursuer Pi, and v = (v1, v2, . . . , vk, . . .) is that of the evader E; here and throughout the
following, i = 1, 2, . . . , m, . . .. Let θ be a given positive number, and let I = {1, 2, . . . , m, . . .}.

As a real life example, one may consider the case of a missile catching an aircraft. If
the initial positions and speeds (first derivative) of both missile and aircraft are given and the
constraints of bothmissile and aircraft are their available fuel, which could bemathematically
interpreted as the mean average of their acceleration function (second derivative), then the
corresponding pursuit-evasion problem is described by (2.1).

A ball (resp., sphere) of radius r and center at the point x0 is denoted by H(x0, r) =
{x ∈ l2 : ‖x − x0‖ ≤ r} (resp., by S(x0, r) = {x ∈ l2 : ‖x − x0‖ = r}).
Definition 2.1. A function ui(·), ui : [0, θ] → l2, such that uik : [0, θ] → R1, k = 1, 2, . . . , are
Borel measurable functions and

‖ui(·)‖2 =
(∫θ

0
‖ui(s)‖2 ds

)1/2

≤ ρi, ‖ui‖ =

( ∞∑

k=1

u2ik

)1/2

, (2.2)

where ρi is given positive number, is called an admissible control of the ith pursuer.

Definition 2.2. A function v(·), v : [0, θ] → l2, such that vk : [0, θ] → R1, k = 1, 2, . . . , are
Borel measurable functions and

‖v(·)‖2 =
(∫θ

0
‖v(s)‖2 ds

)1/2

≤ σ, (2.3)

where σ is a given positive number, is called an admissible control of the evader.
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Once the players’ admissible controls ui(·) and v(·) are chosen, the corresponding
motions xi(·) and y(·) of the players are defined as

xi(t) = (xi1(t), xi2(t), . . . , xik(t), . . .), y(t) =
(
y1(t), y2(t), . . . , yk(t), . . .

)
,

xik(t) = x0
ik + tx

1
ik +

∫ t

0

∫s

0
uik(r)dr ds, yk(t) = y0

k + ty
1
k +

∫ t

0

∫s

0
vk(r)dr ds.

(2.4)

One can readily see that xi(·), y(·) ∈ C(0, θ; l2),whereC(0, θ; l2) is the space of functions

f(t) =
(
f1(t), f2(t), . . . , fk(t), . . .

) ∈ l2, t ≥ 0, (2.5)

such that the following conditions hold:

(1) fk(t), 0 ≤ t ≤ θ, k = 1, 2, . . . , are absolutely continuous functions;

(2) f(t), 0 ≤ t ≤ θ, is a continuous function in the norm of l2.

Definition 2.3. A functionUi(t, xi, y, v), Ui : [0,∞) × l2 × l2 × l2 → l2, such that the system

ẍi = Ui

(
t, xi, y, v

)
, xi(0) = x0

i , ẋi(0) = x1
i ,

ÿ = v, y(0) = y0, ẏ(0) = y1,
(2.6)

has a unique solution (xi(·), y(·)), with xi(·), y(·) ∈ C(0, θ; l2), for an arbitrary admissible
control v = v(t), 0 ≤ t ≤ θ, of the evader E, is called a strategy of the pursuerPi. A strategyUi is
said to be admissible if each control formed by this strategy is admissible.

Definition 2.4. StrategiesUi0 of the pursuers Pi are said to be optimal if

inf
U1,...,Um,...

Γ1(U1, . . . , Um, . . .) = Γ1(U10, . . . , Um0, . . .), (2.7)

where Γ1(U1, . . . , Um, . . .) = supv(·)infi∈I‖xi(θ) − y(θ)‖, Ui are admissible strategies of the
pursuers Pi, and v(·) is an admissible control of the evader E.

Definition 2.5. A function V (t, x1, . . . , xm, . . . , y), V : [0,∞) × l2 × · · · × l2 × · · · × l2 → l2, such
that the countable system of equations

ẍk = uk, xk(0) = x0
k, ẋk(0) = x1

k, k = 1, 2, . . . , m, . . . ,

ÿ = V
(
t, x1, . . . , xm, . . . , y

)
, y(0) = y0, ẏ(0) = y1,

(2.8)

has a unique solution (x1(·), . . . , xm(·), . . . , y(·)), with xi(·), y(·) ∈ C(0, θ, l2), for arbitrary
admissible controls ui = ui(t), 0 ≤ t ≤ θ, of the pursuers Pi, is called a strategy of the evader
E. If each control formed by a strategy V is admissible, then the strategy V itself is said to be
admissible.
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Definition 2.6. A strategy V0 of the evader E is said to be optimal if supVΓ2(V ) = Γ2(V0),where
Γ2(V ) = infu1(·),...,um(·),...infi∈I‖xi(θ) − y(θ)‖, where ui(·) are admissible controls of the pursuers
Pi, and V is an admissible strategy of the evader E.

If Γ1(U10, . . . , Um0, . . .) = Γ2(V0) = γ, then we say that the game has the value γ [7].
It is to find optimal strategies Ui0 and V0 of the players Pi and E, respectively, and

the value of the game. Instead of differential game described by (2.1) we can consider an
equivalent differential game with the same payoff function and described by the following
system:

Pi : ẋi(t) = (θ − t)ui(t), xi(0) = xi0 = x1
i θ + x0

i ,

E : ẏ(t) = (θ − t)v(t), y(0) = y0 = y1θ + y0.
(2.9)

Indeed, if the pursuer Pi uses an admissible control ui(t) = (ui1(t), ui2(t), . . .), 0 ≤ t ≤ θ, then
according to (2.1) we have

xi(θ) = x0
i + x

1
i θ +

∫θ

0

∫ t

0
ui(s)dsdt = x0

i + x
1
i θ +

∫θ

0
(θ − t)ui(t)dt, (2.10)

and the same result can be obtained by (2.9)

xi(θ) = xi0 +
∫θ

0
(θ − t)ui(t)dt = x0

i + x
1
i θ +

∫θ

0
(θ − t)ui(t)dt. (2.11)

Also, for the evader the same argument can be made, therefore in the distance‖xi(θ) − y(θ)‖
we can take either the solution of (2.1) or the solution of (2.9).

The attainability domain of the pursuer Pi at time θ from the initial state xi0 at time
t0 = 0 is the closed ballH(xi0, ρi(θ3/3)

1/2). Indeed, by Cauchy-Schwartz inequality

‖xi(θ) − xi0‖ =

∥
∥
∥
∥
∥

∫θ

0
(θ − s)ui(s)ds

∥
∥
∥
∥
∥

≤
∫θ

0
(θ − s)‖ui(s)‖ds

≤
(∫θ

0
(θ − s)2 ds

)1/2

·
(∫θ

0
‖ui(s)‖2 ds

)1/2

≤ ρi
(
θ3

3

)1/2

.

(2.12)

On the other hand, if x ∈ H(xi0, ρi(θ3/3)
1/2), that is, ‖x − xi0‖ ≤ ρi(θ3/3)

1/2
, then for

the pursuer’s control

ui(t) =
3(θ − t)
θ3

(x − xi0), 0 ≤ t ≤ θ, (2.13)

we obtain xi(θ) = x.
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The pursuer’s control is admissible because

∫θ

0
‖ui(t)‖2 dt =

(
3
θ3

)2 θ3

3
‖x − xi0‖2 ≤

⎛

⎝ρi

(
θ3

3

)1/2
⎞

⎠

2

· 3
θ3

= ρ2i . (2.14)

Likewise, the attainability domain of the evader E at time θ from the initial state y0 at time
t0 = 0 is the closed ballH(y0, σ(θ3/3)

1/2).

3. An Auxiliary Game

In this section we fix the index i and study an auxiliary differential game of two players Pi
and E, also for simplicity we drop the index i and use the notion ρi = ρ, xi0 = x0 and xi = x.
Let

X =

{

z ∈ l2 : 2
(
y0 − x0, z

) ≤ θ3

3

(
ρ2 − σ2

)
+
∥
∥y0

∥
∥2 − ‖x0‖2

}

, ρ ≥ σ, (3.1)

if x0 /=y0; if x0 = y0, then

X =

⎧
⎨

⎩
z ∈ l2 :

(
p, z − y0

) ≤ ρ
(
θ3

3

)1/2
⎫
⎬

⎭
, (3.2)

where p is an arbitrary fixed unit vector.
Consider the one-pursuer game described by the equations

P : ẋ = (θ − t)u(t), x(0) = x0,

E : ẏ = (θ − t)v(t), y(0) = y0,
(3.3)

with the state of the evader E being subject to y(θ) ∈ X. The goal of the pursuer P is to realize
the equality x(τ) = y(τ) at some τ, 0 ≤ τ ≤ θ, and that of the evader E is opposite.

We define the pursuer’s strategy as follows: if x0 = y0, then we set

u(t) = v(t), 0 ≤ t ≤ θ, (3.4)

and if x0 /=y0, then we set

u(t) = v(t) − (v(t), e)e + e
(

3
θ3

(θ − t)2
(
ρ2 − σ2

)
+ (v(t), e)2

)1/2

, 0 ≤ t ≤ τ, (3.5)

where e = (y0 − x0)/‖y0 − x0‖, and

u(t) = v(t), τ < t ≤ θ, (3.6)

where τ, 0 ≤ τ ≤ θ, is the time instant at which x(τ) = y(τ) for the first time.
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Lemma 3.1. If σ ≤ ρ and y(θ) ∈ X, then the pursuer’s strategy (3.4), (3.5), and (3.6) in the game
(3.3) ensures that x(θ) = y(θ).

Proof. If x0 = y0, then from (3.4) we have x(t) = y(t), 0 ≤ t ≤ θ, because

x(t) = x0 +
∫ t

0
(θ − s)u(s)ds

= y0 +
∫ t

0
(θ − s)v(s)ds = y(t).

(3.7)

In particular, x(θ) = y(θ).
Let x0 /=y0. By (3.5) and (3.6), we have y(t) − x(t) = ef(t),where

f(t) =
∥
∥y0 − x0

∥
∥ +

∫ t

0
(θ − s)(v(s), e)ds

−
∫ t

0
(θ − s)

(
3
θ3

(θ − s)2
(
ρ2 − σ2

)
+ (v(s), e)2

)1/2

ds.

(3.8)

Obviously f(0) = ‖y0 − x0‖ > 0.Now we show that f(θ) ≤ 0. This will imply that f(τ) = 0 for
some τ ∈ [0, θ].

To this end we consider the following two-dimensional vector function:

g(t) =

((
3
θ3

)1/2

(θ − t)2
(
ρ2 − σ2

)1/2
, (θ − t)(v(t), e)

)

, 0 ≤ t ≤ θ. (3.9)

For the last integral of (3.8)we have

∫θ

0
(θ − s)

(
3
θ3

(θ − s)2
(
ρ2 − σ2

)
+ (v(s), e)2

)1/2

ds

=
∫θ

0

(
3
θ3

(θ − s)4
(
ρ2 − σ2

)
+ (θ − s)2(v(s), e)2

)1/2

ds

=
∫θ

0

∣
∣g(s)

∣
∣ds

≥
∣
∣
∣
∣
∣

∫θ

0
g(s)ds

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

(∫θ

0

(
3
θ3

)1/2

(θ − s)2
(
ρ2 − σ2

)1/2
ds,

∫θ

0
(θ − s)(v(s), e)ds

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

⎛

⎝

(
θ3

3

)1/2(
ρ2 − σ2

)1/2
,

∫θ

0
(θ − s)(v(s), e)ds

⎞

⎠

∣
∣
∣
∣
∣
∣

=

⎛

⎝θ3

3

(
ρ2 − σ2

)
+

(∫θ

0
(θ − s)(v(s), e)ds

)2
⎞

⎠

1/2

.

(3.10)



Mathematical Problems in Engineering 7

Then

f(θ) ≤ ∥
∥y0 − x0

∥
∥ +

∫θ

0
(θ − s)(v(s), e)ds −

⎛

⎝θ3

3

(
ρ2 − σ2

)
+

(∫θ

0
(θ − s)(v(s), e)ds

)2
⎞

⎠

1/2

.

(3.11)

By assumption, y(θ) ∈ X, therefore

2
(
y0 − x0, y(θ)

) ≤ θ3

3

(
ρ2 − σ2

)
+
∥
∥y0

∥
∥2 − ‖x0‖2, (3.12)

so (e, y(θ)) ≤ d,where

d =

(
θ3/3

)(
ρ2 − σ2) +

∥
∥y0

∥
∥2 − ‖x0‖2

2
∥
∥y0 − x0

∥
∥

. (3.13)

As (e, y(θ)) = (e, y0 +
∫θ
0(θ − s)v(s)ds) ≤ d, then we obtain

∫θ

0
(θ − s)(v(s), e)ds ≤ d − (

y0, e
)
. (3.14)

On the other hand, ψ(t) = ‖y0 − x0‖ + t − ((θ3/3)(ρ2 − σ2) + t2)1/2 is an increasing function on
(−∞,∞). Then it follows from (3.11) and (3.14) that

f(θ) ≤ ∥
∥y0 − x0

∥
∥ + d − (

y0, e
) −

(
θ3

3

(
ρ2 − σ2

)
+
(
d − (

y0, e
))2

)1/2

. (3.15)

Now we show that the right-hand side of the last inequality is equal to zero. We show

∥
∥y0 − x0

∥
∥ + d − (

y0, e
)
=

(
θ3

3

(
ρ2 − σ2

)
+
(
d − (

y0, e
))2

)1/2

. (3.16)
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The left part of this equality is positive, since

∥
∥y0 − x0

∥
∥ + d − (

y0, e
)

=

(
θ3/3

)(
ρ2 − σ2) +

∥
∥y0

∥
∥2 − ‖x0‖2 + 2

(
‖x0‖2 − 2

(
x0, y0

)
+
∥
∥y0

∥
∥2
)
− 2

∥
∥y0

∥
∥2 + 2

(
x0, y0

)

2
∥
∥y0 − x0

∥
∥

=

(
θ3/3

)(
ρ2 − σ2) + ‖x0‖2 − 2

(
x0, y0

)
+
∥
∥y0

∥
∥2

2
∥
∥y0 − x0

∥
∥

=

(
θ3/3

)(
ρ2 − σ2) +

∥
∥x0 − y0

∥
∥2

2
∥
∥y0 − x0

∥
∥

> 0.

(3.17)

Therefore taking square we have

∥
∥y0 − x0

∥
∥2 +

(
d − (

y0, e
))2 + 2

∥
∥y0 − x0

∥
∥
(
d − (

y0, e
))

=
θ3

3

(
ρ2 − σ2

)
+
(
d − (

y0, e
))2

,

(3.18)

then

∥
∥y0 − x0

∥
∥2 + 2

∥
∥y0 − x0

∥
∥

((
θ3/3

)(
ρ2 − σ2) +

∥
∥y0

∥
∥2 − ‖x0‖2

2
∥
∥y0 − x0

∥
∥

− (
y0, e

)
)

=
θ3

3

(
ρ2 − σ2

)
.

(3.19)

The above equality is true since

∥
∥y0 − x0

∥
∥2 +

∥
∥y0

∥
∥2 − ‖x0‖2 − 2

∥
∥y0 − x0

∥
∥
∥
∥y0

∥
∥ = 0. (3.20)

So f(θ) = 0, consequently f(τ) = 0 for some τ, 0 ≤ τ ≤ θ. Therefore, x(τ) = y(τ). Further, by
(3.6), u(t) = v(t) at τ < t ≤ θ. Then

x(θ) = x(τ) +
∫θ

τ

(θ − s)u(s)ds

= y(τ) +
∫θ

τ

(θ − s)v(s)ds = y(θ),
(3.21)

and the proof of the lemma is complete.

4. Main Result

Now consider the game (2.9). We will solve the optimal pursuit problem under the following
assumption.
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Assumption 4.1. There exists a nonzero vector p0 such that (y0 − xi0, p0) ≥ 0 for all i ∈ I.
Let

γ = inf

⎧
⎨

⎩
l ≥ 0 : H

⎛

⎝y0, σ

(
θ3

3

)1/2
⎞

⎠ ⊂
∞⋃

i=1

H

⎛

⎝xi0, ρi

(
θ3

3

)1/2

+ l

⎞

⎠

⎫
⎬

⎭
. (4.1)

Theorem 4.2. If Assumption 4.1 is true and σ ≤ ρi + γ(3/θ3)
1/2 for all i ∈ I, then the number γ

given by (4.1) is the value of the game (2.9).

Proof of the above theorem relies on the following lemmas.
Consider the sphere S(y0, r) and finitely or countably many balls H(xi0, Ri) and

H(y0, r), where xi0 /=y0 and r and Ri, i ∈ I are positive numbers.

Lemma 4.3 (see [10]). Let

Xi =
{
z ∈ l2 : 2

(
y0 − xi0, z

) ≤ R2
i − r2 +

∥
∥y0

∥
∥2 − ‖xi0‖2

}
, (4.2)

if xi0 /=y0, and

Xi =
{
z ∈ l2 :

(
z − y0, p0

) ≤ Ri

}
, (4.3)

if xi0 = y0. If Assumption 4.1 is valid and

H
(
y0, r

) ⊂
⋃

i∈I
H(xi0, Ri), (4.4)

thenH(y0, r) ⊂
⋃
i∈I Xi.

Lemma 4.4 (see [10]). Let infi∈IRi = R0 > 0. If Assumption 4.1 is true and for any 0 < ε < R0 the
set

⋃
i∈I H(xi0, Ri − ε) does not contain the ballH(y0, r), then there exists a point y ∈ S(y0, r) such

that ‖y − xi0‖ ≥ Ri for all i ∈ I.

Proof of Theorem 4.2. We prove this theorem in three parts.
(1)Construction of the Pursuers’ Strategies. We introduce counterfeit pursuers zi, whose

motions are described by the equations

żi = (θ − t)wε
i , zi(0) = xi0,

(∫θ

0

∥
∥wε

i (s)
∥
∥2
ds

)1/2

≤ ρi(ε) = ρi + γ
(

3
θ3

)1/2

+
ε

ki

(
3
θ3

)1/2

,
(4.5)

where ki = max{1, ρi} and ε, 0 < ε < 1, is an arbitrary positive number. It is obvious that the
attainability domain of the counterfeit pursuer zi at time θ from an initial state xi0 is the ball
H(xi0, ρi(ε)(θ

3/3)1/2) = H(xi0, ρi(θ3/3)
1/2 + γ + ε/ki).
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The strategies of the counterfeit pursuers zi are defined as follows: if xi0 = y0, then we
set

wε
i (t) = v(t), 0 ≤ t ≤ θ, (4.6)

and if xi0 /=y0, then we set

wε
i (t) = v(t) − (v(t), ei)ei + ei

(
3
θ3

(θ − t)2
(
ρ2i (ε) − σ2

)
+ (v(t), ei)2

)1/2

, 0 ≤ t ≤ τi, (4.7)

where ei = (y0 − xi0)/‖y0 − xi0‖, and

wε
i (t) = v(t), τi < t ≤ θ, (4.8)

where τi, 0 ≤ τi ≤ θ, is the time instant at which zi(τi) = y(τi) for the first time if it exists.
Note that τi need not to exist in [0, θ].

Now let us show that the strategies (4.6), (4.7), and (4.8) are admissible. If xi0 = y0 and
0 ≤ t ≤ θ, then

∫θ

0

∥
∥wε

i (s)
∥
∥2
ds =

∫θ

0
‖v(s)‖2 ds ≤ σ2

≤
(

ρi + γ
(

3
θ3

)1/2
)2

≤
(

ρi + γ
(

3
θ3

)1/2

+
ε

ki

(
3
θ3

)1/2
)2

= ρ2i (ε).

(4.9)

If xi0 /=y0 we have

∫θ

0

∥
∥wε

i (s)
∥
∥2
ds =

∫ τi

0

∥
∥wε

i (s)
∥
∥2
ds +

∫θ

τi

∥
∥wε

i (s)
∥
∥2
ds

=
∫ τi

0
‖v(s)‖2 ds + 3

θ3

(
ρ2i (ε) − σ2

)∫ τi

0
(θ − s)2 ds +

∫θ

τi

‖v(s)‖2 ds

≤
∫θ

0
‖v(s)‖2 ds + 3

θ3

(
ρ2i (ε) − σ2

)∫θ

0
(θ − s)2 ds ≤ σ2 + ρ2i (ε) − σ2 = ρ2i (ε).

(4.10)

The strategies of the pursuers xi are defined as follows:

ui(t) =
ρi
ρi
wi(t), 0 ≤ t ≤ θ, (4.11)
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where ρi = ρi(0) = ρi + γ(3/θ
3)1/2 and wi(t) = w0

i (t); that is, wi(t) is given by (4.6), (4.7), and
(4.8) with ε = 0 and the same τi.

(2)The value γ is guaranteed for the pursuers. Let us show that the above-constructed
strategies of the pursuers satisfy the inequalities

sup
v(·)

inf
i∈I

∥
∥y(θ) − xi(θ)

∥
∥ ≤ γ. (4.12)

By the definition of γ,we have

H

⎛

⎝y0, σ

(
θ3

3

)1/2
⎞

⎠ ⊂
∞⋃

i=1

H

⎛

⎝xi0, ρi

(
θ3

3

)1/2

+ γ +
ε

ki

⎞

⎠. (4.13)

By Assumption 4.1 the inequality (y0 − xi0, p0) ≥ 0 holds for all i ∈ I. Then it follows from
Lemma 4.3 that

H

⎛

⎝y0, σ

(
θ3

3

)1/2
⎞

⎠ ⊂
∞⋃

i=1

Xε
i , (4.14)

where

Xε
i =

⎧
⎪⎨

⎪⎩
z : 2

(
y0 − xi0, z

) ≤
⎛

⎝ρi

(
θ3

3

)1/2

+ γ +
ε

ki

⎞

⎠

2

− σ2 θ
3

3
+
∥
∥y0

∥
∥2 − ‖xi0‖2

⎫
⎪⎬

⎪⎭
, (4.15)

if xi0 /=y0, and

Xε
i =

⎧
⎨

⎩
z :

(
z − y0, p0

) ≤ ρi
(
θ3

3

)1/2

+ γ +
ε

ki

⎫
⎬

⎭
, (4.16)

if xi0 = y0. Consequently, the point y(θ) ∈ H(y0, σ(θ3/3)
1/2) belongs to some half-space

Xε
s, s = s(ε) ∈ I.

By the assumption of the theorem, ρi(ε) > σ; then it follows from Lemma 3.1 that if
zi uses the strategy (4.6), (4.7), and (4.8), then zs(θ) = y(θ). By taking account of (4.11) we
obtain

∥
∥y(θ) − xs(θ)

∥
∥ = ‖zs(θ) − xs(θ)‖

=

∥
∥
∥
∥
∥

∫θ

0
(θ − t)

(

wε
s(t) −

ρs
ρs
ws(t)

)

dt

∥
∥
∥
∥
∥

≤
∫θ

0
‖(θ − t)(wε

s(t) −ws(t))‖dt +
∫θ

0

∥
∥
∥
∥
∥
(θ − t)

(

ws(t) −
ρs
ρs
ws(t)

)∥
∥
∥
∥
∥
dt.

(4.17)
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Now we put aside the right-hand side of the last inequality. Let us show that

lim
ε→ 0

sup
i∈I

∫θ

0

∥
∥(θ − t)(wε

i (t) −wi(t)
)∥
∥dt = 0. (4.18)

Indeed, if xi0 = y0, then by (4.6), wε
i (t) = wi(t) = v(t), and the validity of (4.18) is

obvious. Now let xi0 /=y0. If there exists τi ∈ [0, θ],mentioned in (4.7) and (4.8), then

∫ τi

0

∥
∥wε

i (t) −wi(t)
∥
∥2
dt =

∫ τi

0

((
3
θ3

(θ − t)2
(
ρ2i (ε) − σ2

)
+ (v(t), ei)2

)1/2

−
(

3
θ3

(θ − t)2
(
ρ2i − σ2

)
+ (v(t), ei)2

)1/2
)2

dt

≤
∫ τi

0

((
3
θ3

(θ − t)2
(
ρ2i (ε) − σ2

))1/2

−
(

3
θ3

(θ − t)2
(
ρ2i − σ2

))1/2
)2

dt

≤
∫θ

0

((
3
θ3

(θ − t)2
)1/2((

ρ2i (ε) − σ2
)1/2 −

(
ρ2i − σ2

)1/2
))2

dt

=
((

ρ2i (ε) − σ2
)1/2 −

(
ρ2i − σ2

)1/2
)2

=

⎛

⎝

(

2
ρiε

ki

(
3
θ3

)1/2

+
3
θ3

(
ε

ki

)2

+ ρ2i − σ2

)1/2

−
(
ρ2i − σ2

)1/2

⎞

⎠

2

≤ 2
ρiε

ki

(
3
θ3

)1/2

+
3
θ3

(
ε

ki

)2

≤
(

2
(

3
θ3

)1/2

+
6γ
θ3

+
3
θ3

)

ε.

(4.19)

In the last inequality, we have used the facts that 0 < ε < 1, ki ≥ 1 and the inequality

ρi
ki

=
ρi
ki

+
γ
(
3/θ3

)1/2

ki
≤ 1 + γ

(
3
θ3

)1/2

. (4.20)

So

∫θ

0

∥
∥(θ − t)(wε

i (t) −wi(t)
)∥
∥dt =

∫ τi

0

∥
∥(θ − t)(wε

i (t) −wi(t)
)∥
∥dt

≤
(∫ τi

0
(θ − t)2 dt

)1/2(∫ τi

0

∥
∥wε

i (t) −wi(t)
∥
∥2
dt

)1/2

≤ Kε,
(4.21)

where K is some positive number.
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For the second integral in (4.17) we have

∫θ

0

∥
∥
∥
∥
∥
(θ − t)

(

1 − ρs
ρs

)

ws(t)

∥
∥
∥
∥
∥
dt =

(

1 − ρs
ρs

)∫θ

0
‖(θ − t)ws(t)‖dt

≤
(

1 − ρs
ρs

)(∫θ

0
(θ − t)2 dt

)1/2(∫θ

0
‖ws(t)‖2 dt

)1/2

=

(

1 − ρs
ρs

)(
θ3

3

)1/2

ρs = γ.

(4.22)

Then it follows from (4.17) that ‖y(θ) − xs(θ)‖ ≤ γ +Kε.
Thus if the pursuers use the strategies (4.11), the inequality (4.12) is true.
(3)The value γ is guaranteed for the evader. Let us construct the evader’s strategy

ensuring that

inf
u1(·),...,um(·),...

inf
i∈I

∥
∥y(θ) − xi(θ)

∥
∥ ≥ γ, (4.23)

where u1(·), . . . , um(·), . . . are arbitrary admissible controls of the pursuers. If γ = 0, then
inequality (4.23) is obviously valid for any admissible control of the evader. Let γ > 0. By
the definition of γ, for any ε > 0, the set

∞⋃

i=1

H

⎛

⎝xi0, ρi

(
θ3

3

)1/2

+ γ − ε
⎞

⎠, (4.24)

does not contain the ball H(y0, σ(θ3/3)
1/2). Then, by Lemma 4.4 there exists a point y ∈

S(y0, σ(θ3/3)
1/2), that is, ‖y − y0‖ = σ(θ3/3)1/2 such that ‖y − xi0‖ ≥ ρi(θ3/3)

1/2 + γ. On the
other hand

‖xi(θ) − xi0‖ ≤
(
θ3

3

)1/2(∫θ

0
‖ui(t)‖2 dt

)1/2

= ρi

(
θ3

3

)1/2

. (4.25)

Consequently

∥
∥y − xi(θ)

∥
∥ ≥ ∥

∥y − xi0
∥
∥ − ‖xi(θ) − xi0‖ ≥ ρi

(
θ3

3

)1/2

+ γ − ρi
(
θ3

3

)1/2

= γ. (4.26)

Now by using the control

v(t) = σ
(

3
θ3

)1/2

(θ − t)e, 0 ≤ t ≤ θ, e =
y − y0

∥
∥y − y0

∥
∥
, (4.27)
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we obtain

y(θ) = y0 +
∫θ

0
(θ − s)v(s)ds

= y0 +
∫θ

0
(θ − s)2σ

(
3
θ3

)1/2

e ds

= y0 + σ

(
θ3

3

)1/2

e = y.

(4.28)

Then the value of the game is not less than γ, and inequality (4.23) holds. The proof of the
theorem is complete.

5. Conclusion

Apursuit-evasion differential game of fixed durationwith countablymany pursuers has been
studied. Control functions satisfy integral constraints. Under certain conditions, the value of
the game has been found, and the optimal strategies of players have been constructed.

The proof of the main result relies on the solution of an auxiliary differential game
problem in the half-space. Such method was used by many authors (see, e.g., [5, 6]), but the
method used here for this auxiliary problem is different from those of others and requires
only basic knowledge of calculus.

It should be noted that the condition given by Assumption 4.1 is relevant. If this
condition does not hold, then, in general, we do not have a solution of the pursuit-evasion
problem even in a finite dimensional space with a finite number of pursuers.

The present work can be extended by considering higher-order differential equations
instead of (2.1). Then differential game can be reduced to an equivalent game, described by
(2.1), with θ − t replaced by another function.
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