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The numerous technical applications in electronic and optoelectronic devices, such as lasers,
diodes, and sensors, demand high-quality silicon carbide (SiC) bulk single crystal for industrial
applications. We consider an SiC crystal growth process by physical vapor transport (PVT), called
modified Lely method. We deal with a model for the micro- and macroscales of the sublimation
processes within the growth apparatus. The macroscopic model is based on the heat equation
with heat sources due to induction heating and nonlocal interface conditions, representing the
heat transfer by radiation. The microscopic model is based on the quantum interatomic potential
and is computed with molecular dynamics. We study the temperature evolution in the apparatus
and reflect the growth behavior of the microscopic model. We present results of some numerical
simulations of the micro- and macromodels of our growth apparatus.

Copyright q 2009 J. Geiser and S. Irle. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The motivation for this study comes from the technical demand to simulate a crystal growth
apparatus for SiC single crystals. The single crystals are used as a high-valued and expensive
material for optoelectronics and electronics (cf. [1]). We concentrate on a deterministic
model for simulating crystal growth; alternative models are discussed with comprehensive
probabilistic modeling (see [2]).

The silicon carbide (SiC) bulk single crystals are produced by a growth process
through physical vapor transport (PVT), called modified Lely method. The modeling for the
thermal processes within the growth apparatus is done in [3, 4]. In this paper, we propose one
step more in the modeling of the macroscopic and microscopic parts. The idea is to exchange
results from the macroscopic to the microscopic scale to obtain a feedback to control the
growth process of the SiC bulk. Here the benefits are an acceleration of solving interactive
growth processes of the crystal with their underlying temperature in the apparatus. Using
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only standard codes, which are decoupled, a simple parameter exchange of temperature and
pressure in the deposition region cannot resolve the growth problem accurately. We propose
a first framework of a combined model, which is based on the authors’ knowledge of a novel
work and a first approach to a coupled solver method.

2. Macroscopic Model: Heat-Flux

In the following, we discuss the macroscopic model, which is based on continuum equations
for the heat-flux.

2.1. Mathematical Model

The underlying equations of the model are given as follows.
(a) In this work, we assume that the temperature evolution inside the gas region Ωg

can be approximated by considering the gas as pure argon (Ar). The reduced heat equation
is

ρg∂tUg − ∇ ·
(
κg∇T

)
= 0, (2.1)

Ug = zArRArT, (2.2)

where T is the temperature, t is the time, and Ug is the internal energy of the argon
gas. The parameters are given as ρg being the density of the argon gas, κg being the
thermal conductivity, zAr being the configuration number, and RAr being the gas constant
for argon.

(b) The temperature evolution inside the region of solid materials Ωs (e.g., inside the
silicon carbide crystal, silicon carbide powder, graphite, and graphite insulation) is described
by the heat equation

ρs∂tUs − ∇ ·
(
κs∇T

)
= f, (2.3)

Us =
∫T

0
cs(S)dS, (2.4)

where ρs is the density of the solid material, Us is the internal energy, κs is the thermal
conductivity, and cs is the specific heat.

The equations hold in the domains of the respective materials and are coupled by
interface conditions, for example, requiring the continuity for the temperature and for the
normal components of the heat flux on the interfaces between opaque solid materials. On the
boundary of the gas domain, that is, on the interface between the solid material and the gas
domain, we consider the interface condition

κg∇T ·ng + R − J = κs∇T ·ng, (2.5)

where ng is the normal vector of the gas domain, R is the radiosity, and J is the irradiosity.
The irradiosity is determined by integrating R along the whole boundary of the gas domain
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(cf. [5]). Moreover, we have

R = E + Jref,

E = σεT4 (Stefan-Boltzmann equation),

Jref = (1 − ε)J,

(2.6)

where E is the radiation, Jref is the reflexed radiation, ε is the emissivity, and σ is the
Boltzmann radiation constant.

The density of the heat source induced by the induction heating is determined by
solving Maxwell’s equations. We deal with these equations under the simplifying assumption
of an axisymmetric geometry, axisymmetric electromagnetic fields, and a sinusoidal time
dependence of the involved electromagnetic quantities, following [6]. The considered system
and its derivation can be found in [3, 4, 7].

In this paper, we focus on the discretization and material properties, which are
important for realistic simulations. Our underlying software tool WIAS-HiTNIHS (cf. [4])
allows us a flexibility in the grid generation and for the material parameters.

In the next section, we describe the used discretization.

2.2. Discretization

For the discretization of the heat equation (diffusion equation), we apply the implicit Euler
method in time and the finite volume method for the space discretization (cf. [3, 4, 8]). We
consider a partition T = (ωi)i∈I of Ω such that, for m ∈ {s,g} (with s solid, g gas) and i ∈ I,
ωm,i := ωi ∩ Ωm defines either a void subset or a nonvoid, connected, and open polyhedral
subset of Ω. By integrating the corresponding heat equation (2.1) or (2.3) overωm,i, we derive
the following nonlinear equations for the temperature variables,

ρm

∫

ωm,i

(
Um

(
Tn+1) −Um

(
Tn

))
r dx −Δtn+1

∫

∂ωm,i

κm
(
Tn+1)∇Tn+1 ·nωm,i r ds = Δtn+1

∫

ωm,i

fmr dx,

(2.7)

where the time interval is Δtn+1 = tn+1 − tn. The temperature is given as Tn+1 = T(tn+1, x),
where x represents cylindrical coordinates. For the right-hand sides, we demand fs := f ≥ 0
and fg = 0.

More details of the discretization and of dealing with the interface conditions are
presented in [3, 4, 9, 10].

In the next section, the properties of the materials in the crystal growth apparatus are
described.

2.3. Material Properties

For the technical realization of the apparatus, we implement the axisymmetric geometry
given in [11], which is presented in Figure 1. Furthermore, the properties of the materials
are specified in [3, 9, 12].
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Within the following specific material functions and parameters for the processes,
the thermal conductivity κ is given in W/(m K), the electrical conductivity σc is given in
1/(Ohm m), the mass density ρ is given in kg/m3, the specific heat csp is given in J/(K kg),
the temperature T is given in K, and the relative gas constantRAr is given in J/(K kg). Further,
the emissivity ε and relative magnetic permeability μ are given dimensionless.

(i) For the gas phase (argon), we have

κAr(T) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.83914 10−4 T0.800404 T ≤ 500,

−7.128738 + 6.610288 10−2 T − 2.440839 10−4 T2

+4.497633 10−7 T3 − 4.132517 10−10 T4 + 1.514463 10−13 T5 500 ≤ T ≤ 600,

4.1944 10−4 T0.671118 600 ≥ T,

(2.8)

where σc,Ar = 0.0, ρAr = 3.73 10−3, μAr = 1.0, zAr = 3/2, RAr = 2.081308 10−2.
(ii) For graphite felt insulation, we have

κIns(T) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8.175 10−2 + 2.485 10−4 T T ≤ 1473,

−1.1902 102 + 0.346838 T − 3.9971 10−4 T2 + 2.2830 10−7 T3

−6.46047 10−11 T4 + 7.2549 10−15 T5 1473 ≤ T ≤ 1873,

−0.7447 + 7.5 10−4 T 1873 ≥ T,
(2.9)

where εIns = 0.2, σc,Ins(T) = 2.45 102 + 9.82 10−2 T , ρIns = 170.00, μIns = 1.00, csp,Ins = 2100.00.
(iii) For the graphite, we have

κGraphite(T) = 37.715 exp
(
− 1.96 10−4 T

)
,

εGraphite(T) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.67 T ≤ 1200,

3.752 − 7.436 10−3 T + 6.4163 10−6 T2

−2.3366 10−9 T3 − 3.0833 10−13 T4 1200 ≤ T ≤ 2200,

0.79 2200 ≥ T,

(2.10)

where σc,Graphite= 104, ρGraphite = 1750.0, μGraphite = 1.0, csp,Graphite(T) = 1/(4.411 102 T−2.306 +
7.97 10−4 T−0.0665).

(iv) For the SiC crystal, we have κSiC-C(T) = exp(9.892 + (2.498 102)/T − 0.844 ln(T)),
εSiC-C = 0.85, σc, SiC-C= 105, ρSiC-C = 3140.0, μSiC-C = 1.0, csp, SiC-C(T) = 1/(3.91 104 T−3.173 +
1.835 10−3 T−0.117).

(v) For the SiC powder, we have κSiC-P(T) = 1.452 10−2 + 5.47 10−12 T3, εSiC-P = 0.85,
σc, SiC-P = 100.0, ρSiC-P = 1700.0, μSiC-P = 1.0, csp, SiC-P = 1000.0.

The functions are programmed in our flexible software package WIAS-HiTNIHS.
In the next section, we discuss the microscopic model.
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Figure 1: The growth apparatus’ dimensions: rmin = 0, rmax = 8.4 cm, zmin = 0, zmax = 25.0 cm, the coil
rings’ dimensions: rmin = 4.2 cm, rmax = 5.2 cm, zmin = 0, zmax = 14.0 cm.

2.4. Coupling Method for Macroscopic and Microscopic Models:
Operator Splitting

Often simple coupling via the parameters (e.g., target-temperature and growth velocity of
the bulk) is enough for the problem.

Here we propose a new idea of coupling the model equations together, on the one
hand the heat equations and on the other hand the kinetic equations for molecules.

For a first idea, we deal with abstract operators, which include the heat- and the
kinetics equations.

Using our two standard codes of the macro- and micromodels, we could implement a
coupled model, by a so-called iterative operator-splitting method. Such a proposed method
couples the two physical processes of the thermal situation in the growth apparatus and
their important geometrical differences at the deposition layer with the kinetic molecular
model. The benefits are a numerical algorithm, that exchanged the underlying operators
of the thermal situation and the kinetic molecular situation, which are computed by each
software code independently and coupled via an iterative solver step; see a detailed coupling
analysis in [13].

In the following algorithm, an iteration method is proposed, with fixed splitting
discretization step-size τ .

Due to the underlying multiscale problem of kinetics and heat processes, we have to
solve fine time scales of kinetic equations and coarse time scales for heat equations. On a time
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interval [tn, tn+1] that is sufficiently small to yield accurate kinetics, we solve the following
subproblems consecutively for i = 0, 2, . . . , 2m (cf. [14, 15]):

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = cn, i = 1, 2, . . . , j, (2.11)

∂ci(t)
∂t

= Aci−1(t) + Bci(t), with ci+1(tn) = cn, i = j + 1, j + 2, . . . , m, (2.12)

where we assume that the operator A has a large time scale (macroscopic model) and B has
a small time scale (microscopic model). Further c0(tn) = cn, c−1 = 0, and cn are initialization
and starting conditions.

In the following, we give an overview to the accuracy of the method, which is given
in the convergence and the rate of the convergence.

Theorem 2.1. Let us consider the abstract Cauchy problem in a Banach space X:

∂tc(t) = Ac(t) + Bc(t), 0 < t ≤ T,
c(0) = c0,

(2.13)

whereA,B,A+B : X → X are given linear operators being generators of theC0-semigroup and c0 ∈ X
is a given element. Then the iteration process (2.11)-(2.12) is convergent. The rate of convergence is
of higher order and given as O(τ2m

n ), where the iterations are i = 1, 3, . . . , 2m + 1.

The proof is given in [15].
In the next subsection, we present the methods for the microscopic model.

3. Microscopic Model: Quantum Chemical Molecular Dynamics
(QM/MD) of SiC Condensation (Methodology)

The density-functional tight-binding (DFTB) method is employed as the quantum inter-
atomic potential in our molecular dynamics (MD) simulations, using atomic and diatomic
parameters obtained from density functional theory; see [16]. DFTB is an approximate
density functional theory method based on the tight binding approach, and utilizes an
optimized minimal LCAO Slater-type all-valence basis set in combination with a two-center
approximation for Hamiltonian matrix elements. Parameter sets for Si-Si and Si-C were taken
from [17]. Energies and gradients are evaluated direct (on the fly) during the dynamic
simulation. As in our previous simulations of carbon cap [18] and subsequent nanotube
formation [19] on the C- and Si-faces of SiC(000-1) surfaces during sublimation evaporation,
we have not included charge- or spin-polarization in the present work. Further, we will
consider in a next model electrokinetic effect on heat transfer in parallel-plate microchannels,
hydrodynamic focusing effects, and nanoeffect as done in [20–23].

For time propagation we employed a velocity Verlet integrator with a time step of
1.209 fs (50 atomic units) and used a Nose-Hoover chain thermostat to generate a canonical
ensemble for target temperature Tt; see [24]. The thermostat was employed uniformly in the
reaction system.
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Figure 2: Optimized geometry of the C-face of the (000-1) SiC surface as initial starting point for QM/MD
simulations. Blue spheres correspond to silicon atoms, purple spheres correspond to carbon atoms, and
white spheres correspond to hydrogen atoms terminating the slab model in bulk direction. The model is
the unit cell used in periodic boundary calculations with infinite surface extension.

Regarding the atomistic structure of the employed surface model systems, we have
chosen the C-face of the same square SiC(000-1) slab unit cell as in our previous study,
[19] consisting of two SiC layers terminated by hydrogen atoms to mimic bulk effect in
the direction away from the surface. Periodic boundary conditions were employed with a
unit cell size of 1000 Å in the direction perpendicular to the surface and 16.0 Å and 15.4 Å in
the other two surface-directions to achieve two-dimensional slab periodicity. The geometry
optimized structure of this surface model is shown in Figure 2.

During MD simulations, the movements of hydrogen terminating atoms were frozen.
Using such an approach, we have effectively introduced a steep temperature gradient from
the deepest bulk-side SiC layer to the atoms lying above on the surface. The slab model was
then annealed at Tt = 2000 K for 1.20 picoseconds, and 3 structures were selected as initial
starting geometries at t = 0.60 picosecond (trajectory A50), t = 0.72 picosecond (trajectory
A60), and t = 0.86 picosecond (trajectory A80). In the vicinity of the surface, 10 SiC molecules
were randomly distributed in the gas phase. Since these molecules are nonbonded to the
surface, they are subsequently thermostated at Tt. Gas phase molecules approaching the
surface will experience immediate cooling, which will drive the condensation process during
these simulations.

In the microscopic model, we can derive the growth rate v of the seed surface
in dependence on temperature and pressure. Based on these growth rates, we can adapt
the geometry for the macroscopic model. Such modification helps to give more accurate
temperature differences in the macroscopic model and understand the growth process.

In the next section, we present results of our numerical experiments.

4. Numerical Experiments

We present in the following our macro- and microscopic simulations, where the microscopic
simulations take into account the target temperature of the macroscopic model.

4.1. Macroscopic Model: Simulation of the Temperature
Field in the Apparatus

For the numerical results, we apply the parameter functions in Section 2.3. We consider the
geometry shown in Figure 1, using a constant total input power of 10 kW (cf. [11]). The
numerical experiments are performed using the software WIAS-HiTNIHS (cf. [4]) based
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Figure 3: Transient results for the temperature differences Tbt and Tss.

on the software package pdelib (cf. [25]) which uses the sparse matrix solver PARDISO
(cf. [26]). We compute the coupled system consisting of the heat equations and Maxwell’s
equations. For the growth process, the temperature difference Tss = T(rsource, zsource) −
T(rseed, zseed) (with the coordinates (rsource, zsource) = (0, 0.143) and (rseed, zseed) = (0, 0.158),
corresponding to the points Tsource and Tseed in Figure 1) is crucial. On the other hand,
in the physical growth experiments, usually only the temperatures T(rbottom, zbottom) and
T(rtop, ztop) (with the coordinates (rbottom, zbottom) = (0, 0.028) and (rtop, ztop) = (0, 0.173),
corresponding to the points Tbottom and Ttop in Figure 1) are measurable and their difference
Tbt = T(rbottom, zbottom)−T(rtop, ztop) is often used as an indicator for Tss. In Figure 3, we present
the temperature differences Tss and Tbt. As a result of our computations, the temperature
difference Tbt can only restrictively be used as an indicator for the temperature difference Tss

(cf. the discussions in [5, 9]).
The further computations are based on the stationary case, dealing with (2.1) by

discarding the terms with a time derivative. For this case, the results are virtually equal to
the one in the transient case with t > 15000 seconds. For the stationary results, we focus on
the error analysis for the space dimension by applying the grid refinement. The solutions for
the heat equation are computed at the points T(rbottom, zbottom) and T(rtop, ztop) for successive
grids. For the error analysis, we apply the following error differences:

εabs =
∣∣T̃j+1(r, z) − T̃j(r, z)

∣∣, (4.1)

where T̃j(r, z) and T̃j+1(r, z) are solutions evaluated at the point (r, z) which has been
computed using the grids j and j + 1, respectively. The elements of the grid j + 1 are
approximately 1/4 of the elements of the grid j. The results are presented in Table 1.

The result of the refinement indicates the reduction of the absolute difference as it is
demanded for the convergence of the discretization method. The method is stabilized in the
presented refinement by reducing the differences.
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Table 1: Computations on different grids for the errors analysis with absolute differences (cf. (4.1)).

Grid Grid point (0, 0.028) (Tbottom) Grid point (0, 0.173) (Ttop)

Level Number
of nodes

Solution
T [K]

Absolute
difference T [K]

Solution
T [K]

Absolute
difference T [K]

0 1532 2408.11 2813.29
1 23017 2409.78 1.67 2812.78 1.01
2 91290 2410.35 0.57 2811.79 0.49
3 364225 2410.46 0.11 2811.60 0.19

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
300 3300

50

Stationary temperature field

Radius = 8.4 cmT (K)

ΔT (K) between isolines

Height = 25 cm

Tmin = 537.517 K
Tmax = 3312.53 K
ΔTmax = 0 K

Heating power in crucible = 7811.89 W
heating power in coil = 2188.11 W

Prescribed power = 10000 W
Frequency = 10000 Hz

Coil:
5 rings
Top = 0.18 m
Bottom = 0.02 m

Figure 4: Temperature field for the apparatus simulated for the stationary case with 23017 nodes.

In Figure 4, the temperature field is presented for the stationary case. The temperature
increases from the bottom to the middle of the graphite pot, and decreases from the middle
to the top of the graphite pot.

4.2. Microscopic Model: Atomistic QM/MD Simulations of
SiC Condensation on the C-face of Si(000-1)

The total time of the three condensation simulations was 24.02 picoseconds. This is
admittedly a time too short for the study of crystal growth, which would ideally require
annealing simulations on the order of several 100 nanoseconds, but this study is focusing
on the initial stages of SiC aggregation and tries to identify key features in the condensation
process. As such, this is at present rather a preliminary study exploring the applicability
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Figure 5: Simulation of the addition of 10 SiC atoms on the C-face of the (000-1) SiC surface from
Figure 2. Blue spheres correspond to silicon atoms, purple spheres correspond to carbon atoms, and white
spheres correspond to hydrogen atoms terminating the slab model in bulk direction. Times are given in
picoseconds (ps), indicating that the moment the snapshots were taken during the dynamics simulations.

of QM/MD simulations for SiC crystal growth. We have first concentrated on the polar C-
surface of SiC (0001) since it has a maximum of dangling bonds with highest reactivity.
The Si-face and other nonpolar surfaces are much less reactive; see [27]. Since our seed
crystal surface slab model contains only two SiC layers, we are also unable to address the
issue of polymorphism at present, although it should be noted that our model system rather
resembles the cubic 3C than the hexagonal polytypes.

Tt was chosen as 2000 K for all simulations, and representative snapshots from
trajectory A50 are given in Figure 5. We find that under the present conditions with a
relatively high density of SiC gas molecules, several of them attach very quickly to the surface
(2 after 0.10 picosecond). Also, SiC molecules can react with each other to form dimers,
preferably with C-C bonds. Eventually, an average of 5.3 SiC molecules become attached to
the surface in the three simulations, with the other molecules being lost to the vacuum layer.

Once attached, the Si atoms on the surface prove to be highly mobile, as their bond
radius is larger than the case of carbon, and the binding energies are lower [18]. The carbon
atoms on the surface tend to form C2 units, and behave similar to “wobbling C2” entities that
we had observed for high-temperature simulations of pure carbon; see [28]. It seems from our
simulations at this stage that the system tries to reach an equilibrium with a constant number
of C-C in the new layers, and that the Si atoms are more isolated, becoming occasionally
attacked by a C2 dimer. In particular, C2 units are oriented mainly perpendicular to the
surface, while the more visible Si2 dimers do not show such an alignment preference. The
surface itself retains the structure of alternating Si–C units. A new layer of Si–C units is being
deposited with a somewhat inhomogeneous structure containing C2 and Si2 units at first, and
gradually becoming more homogeneous due to annealing.

5. Summary

We have presented a model for the heat transport inside a technical apparatus for crystal
growth of SiC single crystals. We introduce the heat equation and the radiation of the
apparatus and the coupled situation of the different materials. The equations are discretized
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by the finite volume method and the complex material functions are embedded in this
method. Transient and stationary results are presented leading to some information about
the processes within the technical apparatus. We present numerical results for the stationary
case to support the accuracy of our solutions. We also presented atomistic quantum chemical
molecular dynamics (QM/MD) simulations based on the density-functional tight-binding
(DFTB) method for initial reactions of gaseous SiC on the polar C-face of SiC(000-1). In
our future work, we concentrate on further implementations and numerical methods for a
crystal growth model and use kinetic data obtained from more accurate microscopic model
simulations in the simulation of the heat transport. Once longer and a larger number of
trajectories are obtained in our microsimulations, it will be possible to deduct an accurate
QM/MD-based estimate for the bulk growth, in dependence on the temperature to our
macrosimulations. This data will then enter the iterative solution of the heat and kinetics
equations of the coupled macroscopic and microscopic models.
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