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1. Introduction

We motivate our studying on simulating a low-temperature low-pressure plasma that can
be found in chemical vapor deposition (CVD) processes. In the last years the research and
optimization in producing high-temperature films by depositing low-pressure processes
have increased by using simulation tools, see [1, 2]. Theoretical models exist for deposition
processes and can be modeled by coupled transport and flow equations, see [3, 4]. Further
interest on standard applications to deposit titanium-nitrogen (TiN) and titanium-carbon
(TiC) on metallic layers are immense, see [5]. Recently more and more focus on deposition
with new material classes known as MAX-phases are becoming important, see [6, 7]. The
MAX-phase are nanolayered terniar metal-carbides or -nitrids, where M is a transition metal,
A is an A-group element (e.g., Al, Ga, In, Si, etc.) and X is C (carbon) or N (nitride), see [8].
Such materials combine ceramic and metallic behavior and can be implanted in the metallic
bipolar plates to obtain a new material with noncorrosive and good metallic conductivity
behavior.
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We discuss a model for low-temperature and low-pressure plasma that can be used
to implant or deposit thin layers of important materials, see [9]. This model is used for the
implantation process. First, we present the process in the plasma-reactor that transport the
contaminants to the wafer surface, see [10]. We deal with a continuous flow model, while we
assume a vacuum- and a diffusion-dominated processes. Second, the process at the wafer-
surface is modeled by the heavy particles problem with underlying drift. This model deals
more with the atomic behavior and we do not allow p = 0, see [10].

To solve such optimization problems, we present a PID-controller (proportional,
integral, differential) to control our deposition process, see [11]. We improved heuristic
methods of deriving the PID parameters, while we discuss the posteriori error estimates
respecting the time-step size control. Our contribution is a modified automatically step-size
control and a best approximation is obtained with the time-dependent control method based
on the Chien-Hrones-Reswick algorithm, see [12].

Numerical methods are described in the context of time- and spatial-discretization
methods for the mesoscopic-scale model. We discussed different experiments and their
convergence rates.

For the simulations we apply analytical and also numerical methods to obtain results
to control the grow of thin layers.

The paper is outlined as follows. In Section 2 we present our mathematical model and a
possible reduced model for the further approximations. In Section 3 we discuss the theoretical
background for the simulation of CVD processes. The optimal control and their control paths
based on the PID-control approach are discussed in Section 4. The software and program-
tools are discussed in Section 5. The numerical experiments are given in Section 6. In the
contents that are given in Section 7, we summarize our results.

2. Mathematical Model

In the following, the models are discussed in two directions of far-field and near-field
problems:

(1) reaction-diffusion equations, see [13] (far-field problem);

(2) Boltzmann-Lattice equations, see [9] (near-field problem).

The modeling is considered by the Knudsen Number (Kn), which is the ratio of the mean free
path λ over the typical domain size L. For small Knudsen numbers Kn ≈ 0.01 − 1.0, we deal
with a Navier-Stokes equation or with the convection-diffusion equation, see [5, 14], whereas
for large Knudsen numbers Kn ≥ 1.0, we deal with a Boltzmann equation, see [4].

2.1. Modeling with Partial Differential Equations

Dynamic processes with modifications in time and space will be reshaped by partial
differential equations. There is (i) the PDE-formula itself which describes the physical laws
of nature that influence the process and (ii) initial and boundary conditions in which specific
characteristics of the process, like boundary behavior, can be coded.

There are two types of boundary conditions, namely, Dirichlet and Neumann
boundary. With the Dirichlet type the exact value of the boundary is known, however, with
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Figure 1: Dirichlet and Neumann boundary conditions.

Neumann boundaries the spatial derivation of the boundary values in normal direction is
known, see an example of the boundary conditions in Figure 1.

2.2. Model for Optimal Control of the Layer

We will concentrate us on a continuum model of mass transportation and assume that the
energy and momentum is conserved, see [13]. Therefore, the continuum flow of the mass can
be described as diffusion reaction equation given as

∂tc − ∇D∇c − Rg = 0, in Ω × [0, T], (2.1)

c(x, 0) = c0(x), on Ω, (2.2)
∂c(x, t)
∂n

= c1(x, t), on ∂Ω × [0, T], (2.3)

where c is the molar concentration, D is the diffusion parameter, and Rg is the reaction and
source term.

We modify our model equation (2.1) to a control problem with an additionally right-
hand side source:

∂tc − ∇D∇c = csource, in Ω × [0, T],
c(x, 0) = c0(x), on Ω,

∂c(x, t)
∂n

= c1(x, t), on ∂Ω × [0, T],

(2.4)

where csource(x, t) = Rg is the discontinuous or continuous source term of the concentration c
and we neglect a reaction term of this concentration.

We assume an optimal concentration at the layer

copt(x, t), (2.5)
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Figure 2: Spatial-discretization.

where the layer is given as x ∈ Ωlayer and our constraints are given as

csource,min ≤ csource ≤ csource,max. (2.6)

Additionally, we have to solve the minimization problem:

min(J(c, csource)) :=
1
2

∫
T

∫
Ωlayer

∣∣c(x, t) − copt(x, t)
∣∣2dx dt + λ

2

∫
T

∫
Ω

∣∣csource(x, t)
∣∣2dx dt, (2.7)

where T is the time period of the process.

Remark 2.1. We choose the L2-error to control our minimization problem. In literature, see
[15, 16], there exists further control-errors, which respect the time behavior.

In a first part, we only solve the transport equation with UG software-tool (unstructed
grid software, see [17]) and try to find out the optimal control of the sources to obtain the
best homogeneous layer.

In a second part, we consider the optimal control problem and solve also the backward
problem.

3. Theoretical Background for Simulation of Diffusive CVD Processes

In what follows we discuss the approximation methods and errors for the simulation of the
CVD processes.

3.1. Approximation and Discretization

For the numerical solutions we need to apply approximation methods, for example, finite-
difference methods and iterative solver methods for the nonlinear differential equations, see
[18, 19].
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The finite-element discretization is based on Ωh the variational boundary value
problem reduces to find uh ∈ Vh satisfying the initial condition uh(0) such that

∫
Ωh

(
∂uh
∂t

vh +D∇uh · ∇vh
)
dx = 0, ∀vh ∈ Vh. (3.1)

We define the minimal length of triangle which we get from the spatial-discretization with
Δx.

This leads to the following linear semidiscretized system of ordinary differential
equations:

M
du∗

dt
+Au∗ = 0, (3.2)

where M is the mass and A the M-matrix.
Here we have taken into account the Courant-Friedrichs-Levy- (CFL-) condition,

which is given as

CFL = 2Dmax
Δt

mine∈EΔx2
e

, (3.3)

where Dmax is the maximal diffusion parameter, E is the set of the edges of the discretization.
We restrict the CFL-condition to 1, if we use an explicit time-discretization and can lower the
condition, if we use an implicit discretization.

For the explicit time-discretization, we apply explicit Euler or Runge-Kutta methods.
We use the explicit lower-order Runge-Kutta methods:

0
1
2

1
2
0 1

(3.4)

Furthermore we use the following Heun method (third-order):
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The implicit time-discretization is done with implicit Euler or Runge-Kutta methods.
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Here, we use the implicit trapezoidal rule:
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Furthermore we use the following Gauss Runge-Kutta method:
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Remark 3.1. We apply implicit time-discretization methods for the pure diffusion part, where
we apply explicit time-discretization methods for the pure convection part. Here we have to
respect the CLF-condition, see [20].

3.2. Errors and Convergence Rate

For studying the errors and the convergence-rates in our test example, we have to define the
following norm in two space-dimensions:

(i) discrete Lmax-norm:

errLmax,Δx,Δt =
p

max
i=1

∣∣cnum(xi, T) − cref(xi, T)
∣∣, (3.8)

(ii) discrete L1-norm:

errL1,Δx,Δt =
p∑
i=1

Δx2∣∣cnum(xi, T) − cref(xi, T)
∣∣, (3.9)

(iii) discrete L2-norm:

errL2,Δx,Δt =

√√√√ p∑
i=1

Δx2
∣∣cnum(xi, T) − cref(xi, T)

∣∣2, (3.10)

where Δx is the spatial-step of the discretization, Δt is the time-step of the discretization,
and T is the end-time of the computation. p is the number of grid points in the discretization
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method. cnum is the numerical solution and cref is the reference solution, computed at fine
spatial- and time-grids.

The numerical convergence rate are given as follows.

(i) For the spatial error, we define

ρL2,Δx1,Δx2,Δt =
log
(
errL2,Δx1,Δt/errL2,Δx2,Δt

)
log(Δx1/Δx2)

, (3.11)

where Δx1 is the coarse, Δx2 is the fine spatial grid-step, and Δt is the time-grid
step for both results.

(ii) For the time error, we define

ρL2,Δx,Δt1,Δt2 =
log
(
errL2,Δx,Δt1/errL2,Δx,Δt2

)
log(Δt1/Δt2)

, (3.12)

where Δt1 is the coarse, Δt2 is the fine-time-step, and Δx is the spatial-grid step for
both results.

We often use Δx2 = Δx1/2. In this case, we have ρL2,Δx1,Δx2,Δt = ρL2,Δx1,Δt. Further we
have to choose Δx1 with respect to the Δt ∈ I = [0,Δtmax], which have maximal ρ. Thus we
define Arg Max(Δx):

Arg Max(Δx) := arg max
Δt∈I

ρL2,Δx,Δx/2,Δt. (3.13)

4. Optimal Control Methods

Here we discuss the control of a diffusion equation with a feedback based on a PID-controller.

4.1. Forward Controller (Simple P-Controller)

The first controller we discuss is the simple P-controller, see [11]. A first idea is to control
linearly the error of the solved PDE.

In Figure 3, we present the P-controller.
Our control problem is given with the control of the error to the optimal concentration

of the layer and correct the source-flux:

∂tc − ∇D∇c = csource, in Ω × [0, T],
c(x, 0) = c0(x), on Ω,

∂c(x, t)
∂n

= c1(x, t), on ∂Ω × [0, T],

(4.1)

where csource(x, t) is a discontinuous source flow of the concentration c.
We assume an optimal concentration at the layer with the concentration copt(x, t),

where the layer is given as x ∈ Ωlayer and 0 elsewhere.
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Forward step:

Solve PDE: Cn

Input: C∗

Control step:

err(Cn,Cn−1,Cn−2)< tol

No Yes

Backward step:

Csource = Csource + λ(Cn − Copt)

C∗ = Csource + Cn

Figure 3: P-controller for the solution C.

Linear optimal constraint
copt

tdelay tcontrol

Figure 4: Linear constraint copt for the deposition process. x-axis: Time, y-axis: c (concentration).

Our constraints are bounded as

csource,min ≤ csource ≤ csource,max. (4.2)

Remark 4.1. Taken into account the hysteresis of the deposition process, we apply a linear
increase of csource,max in the optimal control with respect to time, see Figure 4.

4.2. PID-Controller

The PID-controller is used to control temperature, motion, and flow. The controller is
available in analog and digital forms, see [16]. The aim of the controller is to get the output
(velocity, temperature, position) in the area of the constraint output, in a short time, with
minimal overshoot, and with small errors.
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KP · err(T)

KI

∫T
0 err(t)dt

KD
d err(t)
dt

[T]

Structure of PID-control

Figure 5: PID-control. Effect on control system: the main influence in a control loop, KP reduces a large
part of the overall error. KI reduces the final error in a system. Summing even a small error over time
produces a drive signal large enough to move the system toward a smaller error. KD counteracts the KP

and KI terms when the output changes quickly. This helps reduce overshoot and ringing.

We have three elements in the PID-control, where P is the proportional part, I the
integral part, and D is the derivative part of the controller, see [16].

These terms describe three basic mathematical functions applied to the error signal,
error = Coptimal − Ccomputed.

The errors represented the difference between constraint (optimal set) and computed
results in the simulation.

To accelerate a PID-controller means to adjust the three multipliers KP , KI , and KD

adding in various amounts of these functions to get the system to behave the way you want,
see [11].

Figure 5 summarizes the PID terms and their effect on a control system.

Initialization of the PID-Controller

The algorithm of the initialization of the PID-control (i.e., search KP,KI,KD) is given as in
Algorithm 4.2 (see [15]).

Algorithm 4.2. (1) We initialize the P-controller: KI = 0.0, KD = 0.0.
(2) The amplifying factor KP is increased till we reached the permanent oscillations as

a stability boundary of the closed control system.
(3) We obtain for KP the critical value KP,crit..
(4) The period-length of the permanent oscillation is given as Tcrit.
(5) We obtain the parameters from Table 1.

Further we compute the rest parameters as KI = KP/Tn,KD = KP ∗ Tv, see [21].

4.3. Adaptive Time-Control

Often the heuristic assumptions of the PID-parameters are too coarse.
One can improve the method by applying an adaptive step-size control.
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Table 1: Heuristic derivation of the control parameters (Nichols-Ziegler).

Controller KP Tn Tv

P 0.5KP,crit

PI 0.45KP,crit 0.85Tcrit

PID 0.6KP,crit 0.5Tcrit 0.12Tcrit

We discuss the step-size control with respect to our underlying error, that is, given by
the computed and optimal output of our differential equation.

Based on the adaptive control, we can benefit to accelerate the control problem.
According to Hairer and Wanner [22], we apply the automatic control problem with a

PID-controller.
The automatically step-size is given as (see [11])

Δtn+1 =
(
en−1

en

)KP
(

tol
en

)KI
(

e2
n−1

enen−2

)KD

Δtn, (4.3)

where tol is the tolerance, en is the error of the quantities of interest in time-step Δt.
We can control the step-size with respect to our heuristically computed KP , KI , and

KD parameters. Initialization of the adaptive control can be seen in Algorithm 4.3.

Algorithm 4.3. (1) Define Tolerance, Min and Max of the concentration.
(2) Apply the parameters: KP,KD,KI form a first run.
(3) Optimize the computations with a first feedback.

4.4. Identification of the Control Path

In the forward problem, we computed a PDE to simulate the CVD process in the underlying
domain. For our control problem, we have the behavior of two points in the underlying
domain, Csource our source and Cx the source restricted to the response of the controlled
system. To analyze the differences between given source the Csource and the computed source
in the control process Cx, we study the step response from our system:

xa(t) :=
{
Cx(t) | CSource(t) = xe0

}
. (4.4)

Algorithm 4.4. (1) We determine the model of the control path, for example, PT1 (Proportional
time 1), PT2 (Proportional time 2), see [16]. For that purpose we investigate the step response
xa, his first and second derivate [16, pages 117 and 331].

(2) We determine the parameters of our model: Kp, T1, T2.
(3) Our goal is to control the system with a controller. Also we have to determine the

control-parameter [16, page 405].
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Identification of the Control Path

With the step response xa, we identify the control path as a PT2 element.
Because limt→∞xa(t) = constant (also /= 0 nor∞), the basic behavior of our element is

P (and neither D nor I). Now we have to determine the number of time delays in the control
path.

Identification of the Parameters

For such control path which has PT2 behavior, there exists a model as ordinary differential
equation. Here a generalization can be obtained with four parameters and be divided by a0

a normed form with three parameters ω0 = angular frequency, A = attenuation, and KS =
proportional factor:

a2 · ẍa(t) + a1 · ẋa(t) + a0 · xa(t) = b0 · xe0,

1
ω2

0

· ẍa(t) +
2A
ω0
· ẋa(t) + xa(t) = KS · xe0.

(4.5)

The solution of the differential equation results in the characteristic equation:

α2

ω2
0

+ 2A · α
ω0

+ 1 = 0 with α1,2 = −A ·ω0 ±ω0 ·
√
A2 − 1. (4.6)
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So that we have the analytical solution for the normed step response:

xa(t)
xe0

= KS ·
[

1 − T1

T1 − T2
· e−t/T1 +

T2

T1 − T2
· e−t/T2

]
,

with α1 = − 1
T1
, α2 = − 1

T2
.

(4.7)

We go now the inverse way to identify the system. We start with the step response. Using the
inflected tangent at (tw, xw, ẋa(tw)) and the limit xa(t → ∞), we obtain our parameters.

Firstly, we have KS = xa(t → ∞)/xe0, tg = KS · (xe0/ẋa(tw)), and tu = tw − tg ·
(xa(tw)/xa(t → ∞)), see Figure 6. In the second step, we obtain T1 and T2 by the following
formulas:

tu
tg

=
αα/(1−α) · (α · ln(α) + α2 − 1)

α − 1
− 1,

tg

T1
= αα/(1−α), α =

T2

T1
. (4.8)

Control Parameters

The parameter occurrence also in the transfer function G(s), which is the Laplace
transformation of the differential equation. Our first choice to determine the control
parameter is here the PT2 element. Alternatively, we use an approximation to a PT1 element,
but here we have additional a scan-time parameter:

G(s) =
KS

(1 + T1s)(1 + T2s)
PT2 element,

G(s) ≈ KS ·
e−Tus

1 + s · Tg
PT1 element.

(4.9)



Mathematical Problems in Engineering 13

Table 2: Derivation of the control parameters (Chien-Hrones-Reswick and Takahashi).

PID (PO) = 0 (PO) = 20 Takahashi

KR 0.6 ·
tg

tu ·KS
0.95 ·

tg

tu ·KS

1, 2 · tg
Ks · (tu + T)

Tn 1.0 · tg 1.35 · tg
2 · (tu + T/2)2

tu + T

Tv 0.5 · tu 0.47 · tu 0.5(tu + T)

Table 3: MATLAB-toolbox pdetool.

MATLAB function Description Enhancement

Parabolic Solve parabolic PDE (heat equation)

In the future we plan to use
academical code to compute the
PDE-solutions (e.g., θ-method).
Furthermore we will use
Comsol/Femlab

Pdetool
MATLAB toolbox to create the
geometry of the FEM-structure and
the boundary conditions

We have also implemented an
alternative mesh, with orthogonal
triangles. MATLAB always uses
equilateral triangles

Refine
This function refines the geometry of
the mesh. All triangles, were replaced
with four new triangles

For convergence rate calculations we
must guarantee that the geometry near
the points, which are changed in the
backward step (source), are similar

Guide MATLAB toolbox to create graphical
user interfaces (gui)

Independent from the behavior which is being wished, we obtain values for the parameters
KP ,KI , andKD, respectively.KR = KP , Tn and Tvare of the PID-controller. In Table 2 are given
the values in dependence to the percentage overshoot (PO). There are the values of PO = 0,
respectively, PO = 20. The rest can be determined by linear interpolation. An alternative
schema is given by Takahashi. Here we have in addition the parameter scan-time T . This is a
general form of the Nichols-Ziegler method (see Table 1). Further are KP = KR, KI = KP/Tn,
and KD = KP ∗ Tv.

5. Software and Program-Tools

MATLAB Functions

We use the MATLAB-toolbox pdetool for the time- and spatial-discretizations, where we
have a finite-element method with P1-elements and an implicit Euler method for the time-
discretization.

DEPOSIT-PID Toolbox

The PID-controller is also programmed in MATLAB. Our combined code is given in
the DEPOSIT-PID toolbox and described in what follows. The DEPOSIT-PID toolbox is
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Figure 8: Backward step.

manipulated by a graphical user interface, by which simulation- and control-models are
chosen and corresponding parameters can be manually adjusted.

The objective is to simulate the diffusion and deposition of the vapor in the apparatus
and to obtain the optimal vapor concentration at the measuring point.

We can divide the process into three phases, namely, forward step, control step,
backward step, which have a cyclic repetition. In the forward step, the diffusion takes place,
which can be simulated by a time-step of the heat equation.

After that, in the control step, the actual concentration at the under boundary (0,−1)
can be measured (shown by computed in the graph) and compared with the optimal value
(shown by optimal).

The control step is followed by the backward step: from the error in control step
and the control model, the optimal alteration of the source can be computed. The vapor
flows through the source point (0, 0) in the apparatus and this value is shown by the
SourceOutput in Figure 12. This will be simulated through the addition of SourceOutput to
actual concentration at the source point (see Figure 8). Further, as a simplification, we set
the concentration at the under boundary to zero, because here the gas transforms into solid
matter .

In Section 4 we introduced some fundamentals in order to control the apparatus. The
models and corresponding parameters can be altered by the Gui.

The Layout of the DEPOSIT-PID Gui

This Gui contains the following:

(1) short-time plot (2D) of computed, optimal, and SourceOutput;

(2) long-time plot (2D);

(3) listbox with names parameters:

(a) textbox with actual value of the parameter chosen in [12],
(b) textbox to change the value of the parameter chosen in [12];

(4) listbox with names parameters:

(a) textbox with actual value of the parameter chosen in [23],
(b) textbox to change the value of the parameter chosen in [23];
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Figure 9: Layout of the DEPOSIT-PID Gui.

(5) 3D plot of distribution;

(6) 3D grid plot of distribution;

(7) listbox with names of parameters:

(a) checkbox with actual value of the parameter chosen in [24];

(8) push button: save;

(9) push button: reset;

(10) radio button: start.

KONTOOL

Another software-tool, KONTOOL, is programmed to compute the numerical convergence
rates of the applications. The software-tool has implemented the errors and convergence rates
defined in Section 3.2. An error-analysis based on successive refinement of space and time is
done and the resulting errors and convergence rates are computed. Optimal convergence
rates with respect to balance the time- and spatial-grids are calculated, see Algorithm 5.2.

Remark 5.1. The software-tool can be modified and applied to arbitrary spatial- and time-
discretization methods. The interface of KONTOOL needs at least the parameters of the
spatial- and time-grid and the starting parameters of the underlying methods.

Algorithm 5.2 (The algorithm of the computation of the numerical convergence tableau).
(1) We compute reference solutions: (a) numerically: fine time and spatial steps or (b)
analytically (if there exists an analytical solution).

(2) We apply one spatial discretization of step Δx and apply all time discretization
with steps Δt, where the coarsest Δt is given by the CFL condition or till first non-numerical
results as oscillations. We compute the error cnum − cref in the L2-norm.

(3) We continue the next fine spatial steps, for example, Δx/2.
(4) We compute the convergence tableau with time and space.

In the next section, we discuss the numerical experiments.
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Figure 10: Convergence diagram tool.

6. Experiment for the Plasma Reactor

In this section, we present our numerical experiments for the CVD processes in a plasma
reactor.

6.1. Simulation of a Diffusion Equation with Analytical Solution
(Neumann Boundary Conditions)

Here we simulate a diffusion equation with Neumann boundary conditions and right-hand
side 0. Our control problem has only the forward problem to solve and we consider the
accuracy of our simulations.

We have the following equation:

∂tc − β2(∂xx + ∂yy)c = 0, in Ω × [0, T],
c(x, y, 0) = cos(2x) + cos(2y), on Ω,

∂nc(x, y, t) = 0, on ∂Ω × [0, T],
(6.1)

where c is the molar concentration, Ω = [−1, 1] × [−1, 1], and t ∈ (0, T). D = β2 is the diffusion
parameter of the diffusion equation.

We have the following analytical solution:

cana(x, y, t) = sin(2) +
∞∑
n=1

An exp(−β2n2π2t)(cos(nπx) + cos(nπy)), (6.2)
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Figure 11: 2D experiment of the diffusion equation at the end-time T = 12.0, β = 0.1. x-axis: x-coordinate,
y-axis: y-coordinate and z-axis: c (concentration).

Table 4: Offset convergence (Δt = 0.1, time-step = 100, β = 0.61644).

Δx offset(analy.) max(num.) min(num.) L1-error L2-error
0.20 0.909297426826 0.902108407643 0.902108381295 7.189e–3 5.17e–5
0.10 0.909297426826 0.907514994036 0.907514987008 1.782e–3 3.18e–6
0.05 0.909297426826 0.908858511500 0.908858509666 4.389e–4 1.93e–7

where An = (−1)n(−4 sin(2)/(n2π2 − 4)). We apply the diffusion coefficient D = 0.01,
respectively, β = 0.1. We obtain the following result after time T = 12.0, see Figure 11.

We see that for large Δx the numerical solution converge faster to the stable constant
endsolution (offset) than solution for smaller Δx and the analytical solution. The error
between the constant analytical endsolution (offset, sin(2) = 0.9093) is also greater than for
smaller Δx. The L2-error is given in Table 4.

Remark 6.1. We test for the pure diffusion equation our underlying discretization methods
and apply finite elements for the spatial-discretization and implicit Runge-Kutta methods for
the time-discretization. In the results, we obtain decreasing errors for the different time- and
spatial-steps.
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Figure 12: 2D experiment of the diffusion equation and control of a single point.

6.2. Simulation of an Optimal Control of a Diffusion Equation with
Heuristic Choise of the Control Parameters

Here we simulate a first example of a diffusion equation and control the concentrations in the
deposition process.

We have the following equation:

∂tc − ∇D∇c = f(t), in Ω × [0, T],
c(x, 0) = c0(x), on Ω,

∂c(x, t)
∂n

= c1(x, t), on ∂Ω × [0, T],

(6.3)
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where c is the molar concentration, D is the diffusion parameter of the diffusion equation,
and f(t) is the right-hand side or diffusion source. We have the following constraint:
coptimal(xpoint, ypoint) = 0.5, where (xpoint, ypoint) is the control point in our domain. The
parameters are given as D = 0.01 and f(t) = at + b, so we deal with a linear source, a = 0.2
and b = 0.1 are constants. In the following tests, we propose the 3 possibilities to control the
optimal temperature:

(i) P-control with constant optimal constraint,

(ii) PID-control with constant optimal constraint,

(iii) PID-control with Linear optimal constraint.

The results for the control methods are given in Figure 12.

6.3. Preliminary Remark for Simulations for the Convergence Order

To determine the function Arg Max, firstly, we have to determine a practicable interval I for

Arg Max(Δx) := arg max
Δt∈I

ρL2,Δx,Δx/2,Δt. (6.4)

One possibility is the interval

ICFL := (0,ΔtCLF], (6.5)

with ΔtCFL := Δs2/2Dmax from the CFL-condition. In the experiments, we find another
interval, where the convergence rate function is relative stable convex:

Istable := (0,Δtstable], (6.6)

where

Δtstable := max
Δt
{ρ : (0,Δt) −→ R is convex}. (6.7)

It is clear that we can in Istable take some restrictions to a subinterval Isub := [Δtsmin,Δtsmax] ⊂
Istable, when we know that some Δt ∈ Isub with ρ(Δt) > ρ(Δtsmin), ρ(Δtsmax).

The function of the numerical convergence rate is discrete in the spatial-discretization
variable Δx since we get a finer discretization with a bisection of Δx. With a finer
discretization, a triangle is replaced by four subtriangles.

In the temporal discretization variable Δt, we are in contrast not restricted to such
conditions and Δx could be chosen to any arbitrary value above 0. To get a first glance, we
have selected the methods of bisection. Subsequently, we consider finer discretizations in
intervals which are of special interest.
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Table 5: Numerical results for the P-controller for different spatial-steps withD = 0.1 and λ = 1.0 as P-value
for the controller.

Δx Δt err = |unum,Δx,Δt − unum,fineΔx,Δt| Convergence rate

0.1 0.1 0.077007 3.2531

0.1 0.05 0.016153 4.0077

0.1 0.025 0.0020085 3.9447

0.1 0.0125 0.00026087 1.8276

0.1 0.00625 0.00014699 0

0.05 0.1 0.27873 2.8591

0.05 0.05 0.076833 3.7481

0.05 0.025 0.011437 4.052

0.05 0.0125 0.001379 3.7776

0.05 0.00625 0.00020111 0

0.025 0.1 0.6564 2.4552

0.025 0.05 0.23939 3.2449

0.025 0.025 0.050505 4.008

0.025 0.0125 0.0062781 3.9999

0.025 0.00625 0.00078482 0

0.0125 0.1 1.04 2.1424

0.0125 0.05 0.4711 2.7173

0.0125 0.025 0.14327 3.7251

0.0125 0.0125 0.021668 4.0516

0.0125 0.00625 0.0026133 0

0.00625 0.1 1.2092 1.586

0.00625 0.05 0.80554 2.4179

0.00625 0.025 0.30148 3.2179

0.00625 0.0125 0.064803 4.005

0.00625 0.00625 0.0080726 0

6.4. Simulations for the Convergence Order

We consider the convergence rate ρ as a function in dependent of Δx and Δt. This function
also depends on some parameters, for instance, the diffusion coefficient D and the control
parameter λ. We now present the results of two chosen experiments. For the first experiment,
the parameters are D = 0.1 and λ = 1, while we increase the propagation velocity in such a
way that we increase D to 1 for the second experiment.

We observe that, for instance, in the case of spatial-discretization Δx = 0.05 and x =
0.25, the maximal convergence rate lies between Δt = 0.05 and Δt = 0.0125. The maximum
itself lies close to 0.025. To determine the precise value of Δt = Arg Max(Δx), we refine our
method in these interesting intervals.

In Figure 13, we observe that there is a relatively stable convex area starting at 0. This
area then switches over to an area with strong fluctuations. We now compare the stable area
with the CFL-condition. The area where CFL < 1 lies in the stable convex area of the function
(ΔtCFL < Δtstable). For Δx = 0.05, D = 0.1, the CFL-area ends at ΔtCFL = 0.0125, the stable
convex area range to about Δtstable = 0.2. For our convergence diagram, we try to find for
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Figure 13: ρ for a P-controller, D = 0.1.
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Figure 14: Convergence diagram (KONTOOL). We can see in the loglog-plot Arg Max(Δx) linear
dependence.

every Δx the value Δt, where the convergence rate becomes maximal (ArgMax). It is clear
that we only use Δt at which the convergence rate function is stable: Δt < Δtstable.

Remark 6.2. The experiment shows the linear convergence rate of the P-controller with
different λ values. So we obtain a stable method with respect to the P-controller. In the
examples, we apply heuristic methods to derive the control parameters for the P- and PID-
controller. We show that we have reached the linear order of the underlying finite element
discretization method. We have higher control errors if we did not compute the correct
control parameters and the numerical errors are smaller than our control error. To prohibit
this problem, we have to compute in the next example the control parameters by a feedback
equation, see [25].
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Figure 15: Convergence diagram (KONTOOL). The loglog-plot Arg Max(Δx) with linear dependence.

Table 6: The associated Δt, which have maximal convergence rate (Arg Max), for Δx = 0.1, 0.05, 0.025,
0.0125.

Δx Arg Max − log(Max)
.10000 .65000 0.62
.05000 .19000 2.4
.02500 0.04 4.64
.01250 .01000 6.64

Table 7: The associated Δt, which have maximal convergence rate (Arg Max), for Δx = 0.1, 0.05, 0.025,
0.0125.

Δx Arg Max − log(Max)
.10000 0.0700 3.84
.05000 0.0170 5.88
.02500 0.0040 7.97
.01250 0.0010 9.97

6.5. Simulation of an Optimal Control of a Diffusion Equation with
Adaptive Control

In the second example, we simulate the diffusion equation and control the temperature with
and adaptive control based on a PID-controller, see [11].

We have the following equation:

∂tc − ∇D∇c = f(t), in Ω × [0, T],
c(x, t) = c0(x), on Ω,

∂c(x, t)
∂n

= c1(x, t), on ∂Ω × [0, T],

(6.8)

where c is the molar concentration, D is the diffusion parameter of the diffusion equation,
and f(t) is the right hand side or source.
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Figure 16: ρ for a P-controller, D = 1.

We have the following constraint:

coptimal(xpoint, ypoint) = 0.5, (6.9)

where (xpoint, ypoint) = (0,−1) is the control point in our domain.
The automatically step-size is given as (see [11])

Δtn+1 =
(
en−1

en

)KP
(

tol
en

)KI
(

e2
n−1

enen−2

)KD

Δtn, (6.10)

where tol = 1 is the tolerance, en is the error of the quantities of interest in time-step Δt.
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Figure 18: Adaptive PID with modified parameters.

The errors are given as

en =
||un − un−1||
||un||

, (6.11)

where un is the result at time-step tn.
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Figure 19: Error of the time-step control.

Table 8: Convergence of λ with bisection.

λ a(max) a(min) Time-step
790.000 0.031267612875889 0.031262218711872 2
592.500 0.017928791447504 0.018012608268341 3
493.750 0.009755520357640 0.009663115651239 4
444.375 0.005011636633412 0.005007035757358 5
419.687 0.002464209438841 0.002504970973550 6
407.343 0.001131628414131 0.001182533773415 7
401.171 0.000466907455284 0.000465794576191 8
398.085 0.000109260068267 0.000189637255604 9
397.314 0.000080312399314 0.000043201893613 11
396.928 0.000041628241361 0.000012118492674 12
396.735 0.000002923384293 0.000006047318776 13
396.729 18
396.723 −0.000017536337301 −0.000000444521435 17
396.711 −0.000016718130883 −0.000004912794617 16
396.687 −0.000002204413679 −0.000022279535981 15
396.639 −0.000015370659931 −0.000016743767093 14
396.542 −0.000042906107641 −0.000015117641002 10
395.000 −0.000163960451645 −0.000164998927189 1

The parameters are given as D = 0.1, Pkrit = 15, Tkrit = 5, Δt (PID-control), tol =
1 (adaptive PID-control), Δtmax = 0.1 (adaptive PID-control), Δtmin = 0.01 (adaptive PID-
control) (see Figure 17).

Furthermore, we change the parameter tol = 1 to tol = 0.1 and Δtmin = 0.01 to Δtmin =
0.0001 (see Figure 18).

Remark 6.3. In Figures 17 and 18, we see an oscillating time interval at the beginning of the
automatically step-size control. In the first experiments, we had only taken into account a
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Figure 20: Exponential regression of min and max. Behavior of λ.
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Figure 21: Δt dependence parameters determined by Nichols-Ziegler.

previous heuristically computation of the control parameters KP , KI , and KD before the step-
size control for the whole time-interval 0, T . The optimal control parameters are given to the
whole time-interval 0, T . A modified algorithm to compute the control parameters for the
initialization time-interval 0, tbegin and the whole time-interval 0, T overcome the oscillation
problems.
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Figure 22: Δt dependence parameters determined by Chien-Hrones-Reswick with PO = 0, . . . , 20.

A modified automatically step-size control, which minimize the oscillations is given
in the following algorithm.

Algorithm 6.4. (1) We compute the reference control parameters KP,global,KI,global and KD,global

for the time-interval 0, T .

(2) We apply the automatically step-size control for the global control parameters with
tolglobal, Δtmax,global and Δtmin,global, which can by chosen large.

(3) We stop the computation till we reach the optimal solution and mark remember
the time toszill.

(4) We compute the local control parameters KP,local, KI,local and KD,local for the time-
interval 0, toszill.
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Figure 23: Δt dependence parameters determined by Takahashi.

(5) We restart the computation with the local control parameters and smaller step-size
parameters tollocal, Δtmax,local and Δtmin,local till we reach toszill and continue the computation
with the global parameters.

(6) We stop the computation if we reach t = T . If we obtain also high oscillation with
the local parameters, we refine the local interval and go to step (3).

Remark 6.5. The modified automatically step-size control had taken into account the local
behavior of the control problem. We could adapt the control parameters KP , KI , and KD with
respect to the local time-intervals. This modified algorithm considers a local time behavior
more accurate and reduces oscillations at the initialization process.
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Figure 24: Parameters chosen by Chien-Hrones-Reswick: Summands of the minimization problem.

6.6. Simulation of an Optimal Control of a Diffusion Equation with Adaptive
Control and Recovering of the Control Parameters

In what follows, we present the adaptive control based on Algorithm 6.4.
To be more precise the computation of global control parameters KP,global = KP (Δt),

KI,global = KI(Δt), and KD,global = KD(Δt) can be automatized in an interval Δt ∈ (0, T).
We improve the automatically step-size, which is given in Section 4.3 to

(Δt)n+1 =
(
en−1

en

)KP (Δt)( tol
en

)KI(Δt)( e2
n−1

enen−2

)KD(Δt)

(Δt)n, (6.12)

where tol is the tolerance, en is the error of the quantities of interest in time-step n.
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Figure 25: Parameters chosen by Chien-Hrones-Reswick: Actual value.

With approximations to each subintervals of (0, T), we derive the control parameters
KP (Δt), KI(Δt), and KP (Δt).

The improved globalized control parameters are computed in the following algorithm.

Algorithm 6.6. Computing of the control parameters KP,global = KP (t), KI,global = KI(t) and
KD,global = KD(t) for the time-interval 0, T .

(1) Compute the critical control function with the minima and maxima. Based on the
optimal oscillated function, we can derive the KP (T/3) for the interval (0, T/3).

(2) Redo the step (1) for the intervals (T/3, 2T/3) and 2T/3, T and approximate the
function KP (t). Based on the KP (t) we can derive the KI(t) and KD(t) function.

(3) The optimal control parameters are used in Algorithm 6.4.

Remark 6.7. Further ideas to determine the time-dependent parameters KP (Δt), KI(Δt), and
KD(Δt) can be done by using our identification method from Algorithm 4.4 in Section 4.4.
There we have discussed two methods to determine the parameters from the control path,
namely, Chien-Hrones-Reswick and Takahashi. Alternatively, we have the method from
Algorithm 4.2 (Nichols-Ziegler) in Section 4.2. For the identification of the control path, we
have only look to the step response. The alternative method demanded to find the critical
P -value.
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Figure 26: Parameters chosen by Chien-Hrones-Reswick: Source.

6.7. Determinate of Critical P with Exponential Regression

To initialize the PID-controller, we have to derive the KP , KD, and KI parameters.
An idea is derived with the step function response, see [15].
This idea has also be included into the time-step control of the PID-controller.
In Figure 19, we can see that the maximum and minimum of the error function, done

with the step function response, have a exponential behavior.
So we use the exponential regression

y = b · exp(a · t) + ε, (6.13)

with ε ∼ N(0, σ2) normal distributed. Via log the exponential regression can be formed in a
linear regression:

y = b · exp(a · t),
log(y) = log(b) + a · t.

(6.14)

Before we have to convert the minima into the positive area.
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Let λ(n) be the actual lambda value, λ(n)+ the next greater λ, and λ(n)− the next
smaller one. Firstly, we use

λ(n + 1) =

⎧⎪⎪⎨
⎪⎪⎩

(λ(n) + λ(n)+)
2

: a(max, n) < 0, a(min, n) > 0 (λ to small),

(λ(n) + λ(n)−)
2

: a(max, n) > 0, a(min, n) < 0 (λ to great).
(6.15)

In the first step and in limit case, we use λ(n + 1) = 2 · λ(n), respectively, λ(n + 1) = λ(n)/2.
In the first experiment, we start with λ = 359, which we have found with manual tests. The
automatic found that the value 396.729 the a-value of λ = 3.59 have 3 zeros, the new less than
five.

Remark 6.8. The adaptive step-size control of the PID-controller had taken into account the
optimization in each local time-interval. We consider a larger time-interval and derive the
optimal control parameters KP,global, KI,global, and KD,global. Based on this parameterization,
we apply the adaptation in time to be optimal in such a large time-interval.

6.8. Results of Our Experiments to Find the Time-Dependent Parameters

To automatize the adaptive time-step algorithm, we have to compute the step response and
derive the KP , KI , and KD parameters of this process. Here, we present the experiments in
Figure 21, which had taken into account the critical values Pcrit and Tcrit to derive the optimal
KP , KD, and KI parameters based on Algorithm 6.6.

A further algorithm to derive the control parameters is done by Chien et al., see [12].
The results are given in Figure 23.
The KP,KD, and KI parameters are derived with Algorithm 6.6.

6.9. Experiments with Time-Dependent Parameters

In these experiments, we concentrate on the Chien-Hrones-Reswick method, see [12].
To automatize the adaptive time-step algorithm, we have to compute the step response

and derive the KP , KI , and KD parameters of this process. The minimization problem is
presented in Figure 24, which had taken into account the critical parameters.

In Figure 25, we see the step function response and the best fit of this function with
the adaptive time control method. Because of the sensitivity to the initial problem, we can
overcome the oscillation with the Chien-Hrones-Reswick method.

In Figure 26, we see the comparison of our different adaptive methods. Here the best
method is the benefit of the time adaptive control method based on Algorithm 6.6.

Remark 6.9. The benefit of the time-dependent control parameters KP (Δt), KD(Δt), and
KI(Δt) are important in the initialization of the control problem. Based on the fine-time scales
globally chosen, parameters neglect the local time behavior. In the experiments, we found out
the accelerated relaxation behavior and the fast control to the optimal value. Such adaptive
algorithms to optimize the control parameters can improve the control methods and had
taken into account the local-time scales.
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7. Conclusions and Discussions

We present a continuous or kinetic model, due to the fare-field or near-field effect of our
deposition process. We discuss the PID-controller to automatize our deposition process.
Due to heuristic methods of deriving the PID parameters, we discuss aposteriori error
estimates to automatize the time-stepping methods. A modified automatically step-size
control is discussed and the best approximations are obtained with the time-dependent
control method based on the Chien-Hrones-Reswick algorithm. For the mesoscopic-scale
model, we discussed different experiments and their convergence rates. In future, we will
analyze the validity of the models with physical experiments.
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