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Train scheduling has been a significant issue in the railway industry. Over the last few years,
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train scheduling as constraint optimization problems. Three heuristics are developed to speed
up and direct the search toward suboptimal solutions in periodic train scheduling problems. The
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data. The results show that these techniques enable MIP solvers such as LINGO and ILOG Concert
Technology (CPLEX) to terminate earlier with good solutions.
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1. Introduction

Railway transportation has played a major role in the economic development of the last
two centuries. It represented a major improvement in land transport technology and has
obviously introduced important changes in the movement of freight and passengers. Over
the last few years, railway traffic has increased considerably, which has created the need to
optimize the use of railway infrastructures. This is, however, a very difficult task. Thanks to
developments in computer science and advances in the fields of optimization and intelligent
resource management, railway managers can optimize the use of available infrastructures,
obtain more robust timetables [1], and obtain useful conclusions about capacity of their
topology [2].

The MOM project is a long-term collaboration between the Polytechnic University of
Valencia (UPV) and the National Network of Spanish Railways (RENFE). The aim of the
project is to offer assistance in the planning of train scheduling, to obtain conclusions about



2 Mathematical Problems in Engineering

the maximum capacity of a line, to identify bottlenecks, to determine the consequences of
changes, to provide support in the resolution of incidents, to provide alternative planning and
real traffic control, and so forth. Besides the mathematical processes, a high level of interaction
with railway experts is required to be able to take advantage of their experience.

In this paper, we propose several problem-oriented heuristics for solving periodic
train scheduling. The problem formulation is (traditionally) translated into a mathematical
model to be solved for optimality by means of mixed integer programming (MIP) techniques.
However, hundred of trains, in different directions, along paths of dozens of stations, with
constraints about departure and arrival times, generate thousands of inequalities and a high
number of variables take only integer values. As is well known, this type of model is far more
difficult to solve than linear programming models.

In our framework, the mathematical model is simplified by heuristics in order to be
solved efficiently. We present two main classes of heuristics.

(1) Heuristics based on linear programming and local search.

(2) A heuristic based on railway topological characteristics and on constraint satisfac-
tion techniques.

The first heuristic shares the following idea:

(i) to execute the linearized problem,

(ii) to obtain the value of decision variables,

(iii) carry out local search techniques guided by the previous result for assigning values
to decision variables such that the entire problem is optimized,

(iv) to execute the simplified linear programming problem.

The second heuristic carries out a study of the railway topological characteristics such
as the distance between stations, the number of tracks, and the railway capacity. This heuristic
is able to identify the set of stations, where a bottleneck is more probable. Thus, based on the
first-fail principle, which can be explained as “To succeed, try first where you are more likely to
fail,” the philosophy of our constraint ordering heuristic (COH) [3] is used in this technique.
In this way, the problem constraints are classified such that the most restricted constraints
are studied first. Then, the problem is partitioned in a set of subproblems such that the
solution of each subproblem will generate a traffic pattern (more information can be found
in http://www.dsic.upv.es/users/ia/gps/MOM).

2. State of the Art

The train scheduling problem has received considerable attention in the literature: [4] is the
first to propose a branch and bound algorithm for train scheduling; [5] defines local search,
tabu search, genetic and hybrid heuristics; [6] illustrates a constructive greedy heuristic.
Periodic timetables for railway networks is usually modeled by Periodic Event Scheduling
Problem (PESP) [7]. It is known that the PESP is NP hard [7]. Approaches to solve PESP
instances cover backtracking strategies in a branch-and-bound context [7], genetic algorithms
[8], and some classes of cutting planes [9]. The PESP model has also been used by Kroon and
Peeters [10], Liebchen [11].

Furthermore, several European companies are also working on similar systems. These
systems include complex stations, rescheduling due to incidents [12], and rail network
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capacities [13]. These are complex problems for which work in network topology and
heuristic-dependent models can offer appropriate solutions.

Many researchers have modeled the problem as a mathematical model. Mathematical
programming methodology was first applied to this problem by Amit and Goldfarb [14].
Cordeau et al. [15] presented a survey of relevant optimization models, although the
mathematical programming approach is not limited to optimization models. There are
studies using heuristic models such as [16]. Optimization models are used in [4, 17–20], and
so forth. However, the related literature has experienced a slow growth and, until recently,
most contributions were dealing with only simplified models or small instances failing to
incorporate the characteristics of real-life applications. Surveys of Assad [21] and Haghani
[22] suggest that optimization models for rail transportation were not widely employed in
practice, instead simulation models were mostly used [17]. In fact, the large size and the
complexity of the problem have hindered the development of optimization models for train
scheduling.

Most of these optimization models are solved by using branch and bound techniques.
Nevertheless, due to the complexity of the problems, it is necessary the use of heuristics
to solve them efficiently. For solving this drawback, we propose some problem-oriented
heuristics for solving periodic train scheduling in a single line. These heuristics make the
problem easier, and branch and bound algorithms can solve the problem more efficiently.

3. The Mathematical Model

In this section, we provide the terminology used by the railway operators of the National
Network of Spanish Railways (RENFE). Furthermore, we present our mathematical model
which can be described as a constraint optimization problem. The objective function is to
minimize the journey time of all trains. Variables are frequencies, arrival, and departure times
of trains at stations and decision variables generated for modeling disjunctive constraints.
Constraints are composed by user requirements, traffic rules, and topological constraints.
These constraints are composed by the parameters defined by user interfaces and database
accesses.

A running map contains information regarding railway topology (stations, tracks,
distances between stations, traffic control features, etc.) and the schedules of the trains that
use this topology (arrival and departure times of trains at each station, frequency, stops,
junctions, crossings, etc.). A sample of a running map is shown in Figure 1, where several
train crossings can be observed. On the left side of Figure 1, the names of the stations
are presented and the vertical line represents the number of tracks between stations (one-
way or two-way). The objective of our system MOM is to obtain a correct and optimized
running map taking into account: (i) traffic rules, (ii) user requirements, and (iii) the railway
infrastructure topology (parameters of trains to be scheduled).

A railway line is basically composed of stations and one-way or two-way tracks. A
dependency can be the following.

Station

Place for trains to park, stop, or pass through. Each station is associated with a unique station
identifier. There are two or more tracks in a station where crossings or overtaking can be
performed.



4 Mathematical Problems in Engineering

Time

Stations

Halts

Tracks

Paths

INFORM RESET

Figure 1: A sample of a running map.
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Figure 2: Constraints related to crossing and overtaking in stations.

Halt

Place for trains to stop, pass through, but not park. Each halt is associated with a unique halt
identifier.

In Figure 1, horizontal dotted lines represent halts, while continuous lines represent
stations. On a rail line, the user needs to schedule the paths of n trains going in one direction
andm trains going in the opposite direction. These trains are of a given type, and a scheduling
frequency is required.

The type of trains to be scheduled determines the time assigned for travel between two
locations on the path. The path selected by the user for a train trip determines which stations
are used and the stop time required at each station for commercial purposes. In order to
perform crossing in a section with a one-way track, one of the trains should wait in a station.
This is called a technical stop. One of the trains is detoured from the main track so that the
other train can cross or continue (Figure 2).
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3.1. Parameters

In the mathematical model the notation mentioned at the end of the paper will be used.

Decision Variables

(i) Variables X’s. A variable Xi−j determines which train (i or j) arrives earlier to the
crossing station. If Xi−j = 0, then train i arrives at the crossing station first and train
j arrives at the same station later:

Xi−j =

{
1, if train j arrives at the crossing station first,
0, if train i arrives at the crossing station first.

(3.1)

(ii) Variables Y ’s. A variable Yi−j; k−k+1 determines the track between station k and
station k + 1 in which train i crosses with train j. If Yi−j; (h−1)−h = 1 for h ≤ k and
Yi−j; p−(p+1) = 0 for p ≥ k then, the crossing between train i and train j is carried out
in station k:

Yi−j; k−(k+1) =

⎧⎨
⎩

1, if Yi−j; (h−1)−h = 1 for h ≤ k,

0, if Yi−j; p−(p+1) = 0 for p ≥ k.
(3.2)

3.2. Objective Function and Constraints

The mathematical model is presented in Algorithm 1. Let us suppose a railway line with r
stations, n trains running in the down direction, and m trains running in the up direction. We
assume that two connected stations have only one line connecting them.

The main complexity of the problem derives in solving the MIP problem due to the
decision variables. If we are able to assign values to these decision variables, the linearized
problem can be solved more efficiently. Therefore, the main goal of our heuristics is to find
values for these decision variables. This assignment will be carried out by means of local
search and railway topological knowledge.

The objective function is devoted to travel time. This function reflects mainly the
users concerns; however, the railway companies are also interested in saving time due to
the more efficient usage of rolling stocks. There are hundreds of studies being undertaken for
evaluating savings in travel time (for a review see [23]). The passengers want to reach the
destination as soon as possible to carry on their activities.

Thus our objective function:

(1) Min
∑i=n

i=1(TiAr − TiD1) +
∑i=m

j=1 (TjA1 − TjDr)

minimizes the travel time of all trains in both directions.
Regarding the constraints, there are three groups of scheduling rules in our railway

system: traffic rules, user requirements rules, and topological rules. A valid running map
must satisfy and optimize the above rules. These scheduling rules can be modeled using the
following constraints:

Traffic rules guarantee crossing, expedition, and reception operations. The main
constraints are the following.
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(1) Min
∑i=n

i=1(TiAr − TiD1) +
∑i=m

j=1 (TjA1 − TjDr);
Subject To
/frequency constraint ∀i = 1 · · ·n, ∀k = 1 · · · r
(2) Ti+1Dk − TiDk = Freq;
/Time constrains ∀i = 1 · · ·n, ∀k = 1 · · · r
(3.1) TiAk+1 − TiDk = Time ik−(k+1);
(3.2) TjAk − TjDk+1 = Time jk−(k+1);
/Stations time constrains ∀i = 1 · · ·n, ∀k = 1 · · · r
(4) TiDk − TiAk − TSik = CSik ;
/Constrains to limit journey time ∀i = 1 · · ·n, ∀j = 1 · · ·m
(5.1) TiAr − TiD1 ≤ (1 + δ/100) ∗ Time i1−r ;
(5.2) TjA1 − TjDr ≤ (1 + δ/100) ∗ Time jr−1;
/Crossing constrains ∀i = 1 · · ·n, ∀j = 1 · · ·m, ∀k = 1 · · · r
(6.1) TjAk − TiDk <= UB ∗ Yi−j;k−(k+1);
(6.2) TiAk+1 − TjDk+1 <= UB ∗ (1 − Yi−j;k−(k+1));
/Expedition time constrains ∀i = 1 · · ·n, ∀j = 1 · · ·m, ∀k = 1 · · · r
(7.1) TjAk − TiDk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 1) + ETi <= 0;
(7.2) TiAk − TjDk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 2) + ETj <= 0;
/Reception time constrains ∀i = 1 · · ·n, ∀j = 1 · · ·m, ∀k = 1 · · · r
(8.1) TiAk − TjAk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 1) + RTi <= 0;
(8.2) TjAk − TiAk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 2) + RTj <= 0;
/Binary constraints
Xi−j ; ∀i = 1 · · ·n, ∀j = 1 · · ·m
Yi−j;k−(k+1); ∀i = 1 · · ·n, ∀j = 1 · · ·m, ∀k = 1 · · · r

Algorithm 1: The mathematical model of the railway scheduling problem.

Crossing Constraints (6.1) and (6.2)

Any two trains going in opposite directions must not simultaneously use the same one-way
track:

(6.1) TjAk − TiDk <= UB ∗ Yi−j;k−(k+1),

(6.2) TiAk+1 − TjDk+1 <= UB ∗ (1 − Yi−j;k−(k+1)).

The crossing of two trains can be performed only on two-way tracks and at stations, where
one of the two trains has been detored from the main track (Figure 2). Several crossings are
shown in Figure 1. Thus, constraints (6.1) and (6.2) that represent the disjunctive constraint
which restricts two trains going in opposite directions require the same section of track at the
same time.

Expedition Time Constraint

At least are required ETi time units at location k between the arrival and departure times of
two trains Tj , Ti going in the opposite direction. Thus, constraints (7.1) and (7.2) that represent
the disjunctive constraint which restricts two trains going in opposite directions require a
buffer time between the arrival and departure times of two trains:

(7.1) TjAk − TiDk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 1) + ETi <= 0,

(7.2) TiAk − TjDk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 2) + ETj <= 0.
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Reception Time Constraint

At least are required RTi time units at location k between the arrival times of two trains
Tj , Ti going in the opposite direction. Thus, constraints (8.1) and (8.2) that represent the
disjunctive constraint which restricts two trains going in opposite directions require a buffer
time between the arrival of two trains:

(8.1) TiAk − TjAk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 1) + RTi ≤ 0,

(8.2) TjAk − TiAk −UB ∗ (Xi−j − Yi−j;k−(k+1) + Yi−j;(k+1)−(k+2) − 2) + RTj ≤ 0.

User Requirements

The main constraints due to user requirements are:

(i) type and number of trains going in each direction to be scheduled,

(ii) path of trains. Locations used in each direction,

(iii) frequency constraint. The frequency constraint specifies the period (Freq) between
departures of two consecutive trains in each direction at the same location. This
constraint is very restrictive because, when crossing is performed, trains must
wait for a certain time interval at stations. This interval must be propagated to all
trains going in the same direction in order to maintain the established scheduling
frequency. The user can require a fixed frequency, a frequency within a minimum
and maximum interval, or multiple frequencies. Thus, constraint (2) restricts that
the time period between departures of two consecutive trains at location k must be
equal to Freq:

(2) Ti+1Dk − TiDk = Freq,

topological railway infrastructure and type of trains to be scheduled give rise to other
constraints to be taken into account. Some of them are what follows.

(i) Number of tracks in stations (to perform technical and/or commercial operations)
and the number of tracks between two locations (one-way or two-way). No
crossing or overtaking is allowed on a one-way track.

(ii) Time constraints determine the necessary time to travel between each two
contiguous stations. Thus, constraints (3.1) and (3.2) represent these constraints:

(3.1) TiAk+1 − TiDk = Time ik−(k+1),

(3.2) TjAk − TjDk+1 = Time jk−(k+1).

(iii) Station time constraints restrict the needed time of each train for technical and/or
commercial purposes. Thus, constraint (4) determines that commercial stop time
is the difference between the departure and the arrival of a train in each station,
minus the technical stop time:

(4) TiDk − TiAk − TSik = CSik.
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(iv) Constraints to limit journey time restrict allowed time for each train to make the entire
travel. Thus, constraints (5.1) and (5.2) determine that the journey time of each train
must be lower than the allowed time plus an allowed margin δ:

(5.1) TiAr − TiD1 ≤ (1 + δ/100) ∗ Time i1−r ,

(5.2) TjA1 − TjDr ≤ (1 + δ/100) ∗ Time jr−1.

In accordance with user requirements, the system should obtain the best solution
available so that all the above constraints are satisfied. Several criteria can exist to qualify
the optimality of solutions: minimize duration and/or number of technical stops, minimize
the total time of train trips (span) of the total schedule, giving priority to certain trains, and
so on.

4. Railway Capacity

Railway capacity has been a significant issue in the railway industry. Many approaches and
tools have been developed to compute railway capacity. However, capacity is a complex and
loosely defined term that has numerous meanings. In general, within a rail concept, capacity
can be described as “a measure of the ability to move a specific amount of traffic over a
defined rail line with a given set of resources under a specific service plan” [24]. This could
mean anything from the number of tons moved, the speed of trains, the on-time-performance,
the available track maintenance time, the service reliability, or the maximum number of trains
per day that the subdivision can handle.

People might ask how a railway section can be full, if a train passes only once every
10 minutes or so. Most of the time, there is nothing to see [25]. Certainly, there exist many
definitions of railway capacity, but there does not yet exist an accepted definition of capacity
on railway line. Kreuger classified the capacity into different kinds: theoretical capacity,
practical capacity, used capacity, and available capacity.

We formalize railway capacity (theoretical capacity) to design heuristic 2 for solving
periodic train scheduling. This technique has been inserted in our system in order to solve
this problem and to be able to obtain as good and feasible running map as possible.

4.1. Our Proposal of Railway Capacity

We will adopt the following definition of railway capacity.

Definition 4.1. Railway capacity is the maximum number of trains that can be scheduled in
the railway in a fixed period of time.

Based on this definition, railway capacity will be subjected to topological restrictions
of the railway (distance between trains, number of lines, speed of trains, etc.). For instance,
if all sections have two-way tracks, railway capacity will be four time higher than in sections
with only one-way tracks. On the contrary, if there are two very distant cities joined by a one-
way track, the railway capacity will be conditioned by this track, because once a train departs
from one station to the other station, no train can depart from the second station until the first
train arrives. These tracks are bottlenecks, and the railway capacity is conditioned by these
tracks. This is the explanation of why there are so few trains visible on the track (the question
above).
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t2: time (seg); d: distance (m) tanα =
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Figure 3: Journey time for a round trip.

In this section, we formalize the distance that trains must maintain to guarantee
a feasible schedule. This distance will determine railway capacity. Thus, our aim is to
geometrically study each train with tracks between stations.

We assign to each type of train and to each track an angle that represents the speed of
this train on this track. As we maintain the distance of each track (d) and the journey time for
each train-track (t2) in our database, the angle α can be deduced straightforwardly (Figure 3
up).

In this way, we define the angle α as arc tangent of distance (in meters) divided by
time (in seconds). This angle is bounded between 0 and 90 as can be intuitively observed in
the running map. Thus an angle α → 0 means that the train has traveled a very short distance
in a long period of time. Alternatively, an angle α → 90 means that the train has traveled a
very long distance in a short period of time.

Once, we have bounded the speed in the interval [0, 90], we will study railway
capacity by means of the minimum safety distance for each track. We will focus on periodic
trains and one-way tracks. Thus, all trains in each direction are of the same type.

For each track of distance “d” between two contiguous stations and each pair of trains
going in opposite directions, the total time (tt) of both journeys (up direction and down
direction) is tt = h + t1 + t2 = h + d · (cotα + cot β), where h = mrt +met + ε is the sum of the
minimum reception time (mrt) of the train that arrives plus the minimum expedition time (met) of
the train that departs and the security time (ε). These values (t1 and t2) are trigonometrically
obtained as can be seen in Figure 3.

By applying this formula to each of the k tracks of the line, the railway capacity
(denoted by C) for a time period tp is:

C = 2 ·
⌊

tp

Max
{
hi + di ·

(
cotαi + cot βi

)}
i=1···k

⌋
. (4.1)

It must be taken into account that the bottleneck of the railway will occur in the station
that satisfies Max

{
hi + di ·

(
cotαi + cot βi

)}
i=1···k. Thus, the minimal frequency must be greater

than the bottleneck.
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Theorem 4.2. Given a railway R with one-way tracks with capacity C in a period tp, no additional
train can be scheduled.

Proof (proof by contradiction). Assume to the contrary that there is a new train T that can
be scheduled in R. Given the capacity C and the period tp, we can obtain the track j
with maximum total time. Due to the fact that track j is a one-way track and train T is
scheduled on this track, to avoid crossing, this train can only arrive or depart from the
critical station (all trains join) in the temporal interval h, that is, between the arrival of the
predecessor train and the departure of the successor train. In this case, tt = h + t1 + t2,
where h is the sum of mrt plus met plus ε, plus the necessary time for train T to cross the
station (cs). Obviously, cs > 0, so that h = mrt + met + ε + cs. However, we define h =
mrt+met+ε → cs = 0.Number of contradiction. Therefore, any new train can be scheduled in
railway R.

5. Filtering Process: Heuristics

Given the mathematical model presented in Algorithm 1, the problem turns into an MIP
problem, in which thousands of inequalities have to be satisfied and a high number of
variables only take integer values. As is well known, this type of model is far more difficult
to solve than linear programming models.

Here, we present two different types of heuristics that have been inserted in the
system with the aim of reducing the number of variables and the complexity of the complete
mathematical model.

5.1. Heuristic 1

Given the mathematical model, heuristic 1 works on the decision variables defined in
Section 3.

5.1.1. Heuristic 1.0

Heuristic 1.0 is also called complete. This heuristic carries out a filtering over the set of
constraints from the mathematical model presented in Algorithm 1. Many constraints of
types (6), (7), and (8) can be removed according to their departure times and maximum
slacks. If a train going in the down direction arrives at the destination before a train going in
the up direction departs, then both trains will not cross each other. Thus, a huge number
of constraints and decision variables we can eliminate. The original problem maintains
n ∗ m ∗ r decision variables (Y ’s ) and n ∗ m decision variables (X’s ). A railway line with
100 stations and 100 trains going in each direction generates 1.01 × 106 decision variables.
This heuristic may significantly reduce the problem size with a reasonable maximum slack
(α ≈ 20%).

Theorem 5.1. Heuristic 1.0 is sound and complete.

Proof. Soundness. Heuristic 1.0 is sound due to the fact that the set of solutions given by
Algorithm 1 subsumes the set of solutions obtained by heuristic 1.0. This is because heuristic
1.0 has removed a set of binary variables, and the constraints in which these variables are
involved.
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Heuristic 1.1
/∗Limit the stations where two trains can be crossed, that is, the number of decision variables∗/
DeterminePossibleCrossing ();
LinearSolution = SolveLinearProblem ();
Crossings = DetectCrossings (LinearSolution);
n = 0;
while (Not Solution)
Solution = SearchCrossingCombination (window,Crossings);
n++;
if (Solution)
FinalSolution = SolveCrossingOrder (Solution);

Algorithm 2: Pseudocode of heuristic 1.1.

Completeness. Heuristic 1.0 does not remove any solution. Thus, this heuristic will find
the same solution as the one obtained by Algorithm 1. Constraints of type (5) make the set
the of removed constraints redundant by heuristic 1.0. By contradiction, we assume that
there is a solution that heuristic 1.0 does not find. Without loss of generality, we assume a
maximum slack of 20%. We can distinguish two different cases. (1) The lost solution falls
into the maximum slack. This is a contradiction because, under this threshold, the restricted
problem is the same as Algorithm 1. (2) The lost solution falls outside the maximum slack.
This solution is not valid because it does not satisfy constraints (5.1) and (5.2). Therefore,
heuristic 1.0 does not lose any solution.

5.1.2. Heuristic 1.1

Heuristic 1.1 is a metaheuristic based on heuristic 1.0. This heuristic carries out a guided
local search over the binary variables. Once many decision variables have been removed by
heuristic 1.0, a new filtering process on the reduced problem can eliminate other decision
variables by means of a guided local search. Instead of assigning a random station as a
crossing station between two opposite trains, heuristic 1.1 performs a linearized execution
where the decision variables have been transformed into continues ones. Thus, the crossing
between two trains may not be assigned in stations but on a track between two stations.
This will be the initial point to start the search to find the station, where the crossing
will finally be performed. The search of each crossing between two opposite trains is
bounded by 2n + 1 contiguous tracks. This interval is composed by n tracks located before
the obtained crossing and n tracks located after the crossing. In this way, the resultant
subproblem can be seen as a combinatorial problem, where all combinations must be
performed for guarantee the best possible solution. If the problem has a solution, heuristic 1.1
studies the arrival order to the crossing station such as the objective function is minimized.
Otherwise, the interval is increased (n++), and the MIP problem is again solved. This
heuristic is useful in anytime environment due to a solution can be found, but heuristic
1.1 tries to find a better solution in the remaining time. To this end, each combination
is labeled with the solution obtained and the heuristic searches neighbor combination
in order to improve the objective function. Algorithm 2 summarizes the pseudocode of
heuristic 1.1.
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Figure 4: First traffic pattern generation.

5.2. Heuristic 2: Railway Capacity-Based Heuristic

The aim of this heuristic is to solve the railway scheduling problem by means of constraint
satisfaction techniques. To this end, the original formulation (MIP problem) is separated into
two different subproblems: first, the crossings are solved and then the running maps are
calculated. Thus, the problem constraints are classified so that most restricted constraints
are studied first [3], based on the principle presented in the introduction. Furthermore, the
study of crossings will be partitioned into a set of subproblems so that the solution of each
subproblem will generate a traffic pattern. The partition is carried out through the stations
that take part in the running map. Each block of the partition is composed by contiguous
stations so that each traffic pattern represents the running map corresponding to each block
of stations.

The main idea of this heuristic is to generate a traffic pattern based on our definition of
railway capacity. Each traffic pattern is generated for each set of stations such that the union
of these traffic patterns determines the journey of each train. Figure 4 shows a possible set of
stations (block).

The block of stations is selected taking into account the speed of the trains, the distance
between stations, and overall the frequency inserted into the problem. Each traffic pattern
covers the block of stations necessary for a train (Train 1) to go from the first station of the
block to the last station of the block and return from the last station to the first station (round
trip). The train making this round trip must arrive to the first station (St. 1) as close as possible
but before, the following train departs (Train 2) (Figure 4). Thus, our objective is to minimize
the remaining time between the frequency and the round trips. Each possible round trip will
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Figure 5: Periodic pattern generation.

involve a different set of constraints. The round trip that minimizes the remaining time will
be selected as the pattern. This traffic pattern will be composed by a higher number of stations
than the rest of feasible round trips.

Once the first traffic pattern has been generated, the block of stations involved in
this traffic pattern is temporarily removed in order to study the following pattern with
the remaining stations. Figure 4 shows the generation of the second pattern using the same
strategy.

Therefore, when the second traffic pattern is generated, heuristic 2 studies the
following traffic patterns until there is no station left. In Figure 5, we can observe an example
of a running map with three complete traffic patterns and some stations without traffic
patterns. However, it is common for there to be some stations left. These stations are not
involved in any traffic pattern. We must take into account that the best traffic pattern in a
block of stations implies starting the following block of stations in the last station of the
previous block. We must check all the traffic patterns together in order to obtain the best
journey. Moreover, the first combination of traffic patterns may not be the best solution due
to the existence of some combinations of traffic patterns. This combination depends on the
number of stations that are not involved in a traffic pattern.

Figure 5 shows an example in which three stations (St. 11,12,13) are not involved in
any traffic pattern. Therefore, some combinations are possible, and they are restricted to the
set of stations involved in the first traffic pattern. Thus, these three stations can be sorted
between the first and the last traffic patterns. In this way, the first traffic pattern may start at
the second station and the last traffic pattern may finish at the last station, in the second to the
last station or in the third to the last station. However, due to the efficient use of resources, or
depending on the importance of the station, it is more appropriate for the first traffic pattern
(last traffic pattern) to start (finishes) at the first (last) station. Algorithm 3 summarizes the
pseudocode of heuristic 2. There are two modules.

(i) GenerateTheBestPatterns. The procedure generates several combinations of traffic
patterns, each one starts on a different station. It selects the combination with minor
remaining time. The patterns indicate the crossing stations.

(ii) GenerateTheRunningMap. It generates a schedule for every possible combination in
the arrival order of trains to their crossing stations and selects the schedule that
minimize the journey time.
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Generate-RunningMap (Frequency, Information of Stations, Information of Trains)
SetOfPatterns = GenerateTheBestPatterns ();
RunningMap = GenerateTheRunningMap (SetOfPatterns);

GenerateTheBestPatterns ();
n = CalculateStationsOfBeginning ();
for i = 1 to n

RemainingTime = PatternGeneration (i);
SelectBetterPattern ();
i = i + 1;

GenerateTheRunningMap (SetOfPatterns)
for each CrossingStation

Schedule = CalculateSchedule(i);
SelectBetterSchedule();

Algorithm 3: Pseudocode of heuristic 2.
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Figure 6: General scheme of our tool.

5.3. General System Architecture

The general outline of our system [26] is presented in Figure 6. It shows several steps, some
of which require the direct interaction with the human user to insert requirement parameters,
parameterize the constraint solver for optimization, or modify a given schedule. First of all,
the user should require the parameters of the railway line and the train type from the central
database (Figure 6).

This database stores the set of locations, lines, tracks, trains, and so forth. Normally,
this information does not change, but authorized users may desire to change this information.
With the data acquired from the database, the system generates the mathematical model.
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According to the quality of the required solution and the problem size, the optimiza-
tion process is carried out in the following ways.

(1) Complete. The process is performed taking into account the entire problem. This
decision is carried out when the number of trains and stations is low, or the running
time is not a important. In this case, heuristic 1.0 will be selected.

(2) Incremental. The process performs an incremental coordination of trains. It can be
useful in anytime systems, where the number of trains and stations is not very high.
In this case, heuristics 1.0 and 1.1 are the most appropriate due to the fact that as
the number of combinations is checked, the quality of the solution is better.

(3) Topological. The solution is obtained by replicating a pattern found in each block
of stations. It is very useful in huge problems with thousand of variables and
constraints (hundred of trains and stations) and in real-time systems. Heuristic 2
solves these types of problems efficiently in a short period of time.

However, the system can also automatically recommend or select the appropriate
choices depending on different parameters and the complexity of the problem.

If the mathematical model is not feasible, the user must modify the parameters, mainly
the most restrictive ones. If the running map is consistent, the graphic interface plots the
scheduling. Afterwards, the user can graphically interact with the scheduling to modify the
arrival or departure times. Each interaction is automatically checked by the constraint checker
in order to guarantee the consistency of changes. The user can finally print out the scheduling,
to obtain reports with the arrival and departure times of each train in each location, or
graphically observe the complete scheduling topology.

6. Evaluation

The application and performance of this system depends on several factors: railway topology
(locations, distances, tracks, etc.), number and type of trains (speeds, starting and stopping
times, etc.), frequency ranges, initial departure interval times, and so forth.

In this section, we compare the performance of our heuristics using some well-
known branch and bound techniques included in CPLEX and LINGO solvers, because they
are the most appropriate tools for solving these types of problems. Thus, each instance
was evaluated by a single branch and bound algorithm (B&B), a branch and bound-based
algorithm included in CPLEX filtered by heuristic 1.0 and heuristic 1.1, a branch and bound-
based algorithm included in LINGO filtered by heuristic 1.1, and our topological algorithm
(heuristic 2).

This empirical evaluation was carried out on a real railway infrastructure that joins
two important Spanish cities (“La Coruña” and “Vigo”). The journey between these two cities
is currently divided by 40 dependencies between stations (23) and halts (17).

In our empirical evaluation, each set of instances was defined by the 3-tuple 〈n, s, f〉,
where nwas the number of trains in each direction, swas the number of stations/halts, and f
was the frequency. The problems were generated by modifying these parameters. Thus, each
of the tables shown sets two of the parameters and varies the other one in order to evaluate
the algorithm performance when this parameter increases. It must be taken into account that
runtime of the form “> xh.” represents that the problem did not finish in x hours, and the
best solution found up to date is presented in the journey time column.
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Figure 7: System interface solving and plotting instance 〈10, 40, 90〉.

System interface solving and plotting instance 〈10, 40, 90〉.
In Table 1, we present the runtime and the journey time in problems, where the

number of trains was increased from 5 to 50, and the number of stations/halts and the
frequency were set at 40 and 90, respectively, 〈n, 40, 90〉. The results show that as the number
of trains increased, the runtime of B&B, heuristics 1.0 and 1.1, was worse. Heuristic 1.0
obtained the optimal solution for 5,10,15 and 20 trains. However for 50 trains, heuristic 1.0
was aborted in 5 hours, and the best solution was similar than that obtained by heuristic 2.
However, heuristic 2 had a lower runtime, due to this, heuristic is independent of the number
of trains. Figure 7 shows the system interface executing our heuristic 2 with the instance
〈10, 40, 90〉. The first window shows the user parameters, the second window presents the
best solution obtained at that point, the third window presents data about the best solution
found, and finally the last window shows the obtained running map.
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Table 1: Runtime and journey time in problems with different number of trains.

B&B CPLEX (B&B) LINGO (B&B) TOPOL.
〈n, 40, 90〉 Heuristic 1.0 Heuristic 1.1 Heuristic 1.1 Heuristic 2

Trains Run Run Journey Run Journey Run Journey Run Journey
time time time time time time time time time

5 6” 5” 2:19:48 4” 2:29:33 6” 2:30:54 2” 2:21:54
10 337” 8” 2:20:19 8” 2:26:04 12” 2:31:37 3” 2:22:08
15 601” 13” 2:20:29 12” 2:26:18 19” 2:31:51 3” 2:22:08
20 1065” 16” 2:20:34 16” 2:26:25 25” 2:31:58 3” 2:22:08
50 >5 h. 55” 2:20:43 43” 2:31:09 1098” 2:32:11 7” 2:22:08

Table 2: Runtime and journey time in problems with different number of stations.

B&B CPLEX (B&B) LINGO (B&B) TOPOL.
〈10, s, 90〉 Heuristic 1.0 Heuristic 1.1 Heuristic 1.1 Heuristic 2

Stations Run Run Journey Run Journey Run Journey Run Journey
time time time time time time time time time

10 3” 2” 0:25:06 2” 0:25:06 4” 0:25:06 1” 0:25:06
20 303” 3” 1:04:11 5” 1:04:11 8” 1:04:11 2” 1:04:11
30 >1 h. 15” 1:45:38 6” 1:45:08 14” 1:45:38 3” 1:45:08
40 2131” 56” 2:20:10 56” 2:23:36 21” 2:24:36 6” 2:20:22
60 >3 h. 340” 3:33:15 217” 3:39:30 180” 3:40:30 15” 3:30:58

Table 2 shows the runtime and the journey time in problems, where the number of
stations was increased from 10 to 60, and the number of trains and the frequency was set
at 10 and 90, respectively, 〈10, s, 90〉. In this case, only stations were included to analyze the
behavior of the techniques. It can be observed that heuristic 2 was better than the others
obtaining optimal solutions for 10,20, and 40 stations and better solutions for 30 and 60
stations. Up to 30 stations, heuristic 1.1 has better behavior than heuristic 1.0 (complete
heuristic). The B&B technique maintained the worst running time. It is important to note
the difference between the instance 〈10, 40, 90〉 of the Table 1 and the instance 〈10, 40, 90〉
in Table 2. They represent the same instance; however in Table 2, we only used stations
(no halts), so the number of possible crossing between trains was much larger. This item
reduced the journey time from 2:22:08 to 2:20:22, but the number of combinations increased
the running time from 3” to 6”.

In Table 3, we present the runtime and the journey time in problems, where the
frequency was decreased from 140 to 60, and the number of trains and the number of stations
were set at 20 and 40, respectively, 〈20, 40, f〉. As the frequency decreased, the process solving
become harder. The quality of the solutions depends mainly of the line topology. For this
reason, heuristic 2 obtained better journey times with frequencies of 100 and 75 minutes,
and worse journey time with other frequencies. It can be observed that depending on the
problem topology, one heuristic may be better than the others. Therefore, it may be useful for
the system to automatically select the appropriate heuristic.
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Table 3: Runtime and journey time in problems with different frequencies.

B&B CPLEX (B&B) LINGO (B&B) TOPOL.
〈20, 40, f〉 Heuristic 1.0 Heuristic 1.1 Heuristic 1.1 Heuristic 2

Frequency Run Run Journey Run Journey Run Journey Run Journey
time time time time time time time time time

140 15” 17” 2:16:19 15” 2:20:18 24” 2:16:19 4” 2:18:35
120 156” 16” 2:16:17 14” 2:16:17 23” 2:18:47 4” 2:18:55
100 >5 h. 18” 2:22:55 15” 2:23:10 28” 2:22:55 4” 2:19:09
90 1065” 17” 2:20:34 15” 2:26:25 28” 2:31:58 4” 2:22:08
75 >1 h. >1 h. 2:29:18 >1 h. — 25” 2:24:16 6” 2:23:30
60 >1 h. >1 h. 2:21:23 >1 h. — >1 h. — 46” 2:32:11

7. Conclusions

We have reported the design and development of heuristics for solving periodic train
scheduling, which is a project in collaboration with the National Network of Spanish
Railways (RENFE), Spain. We have formulated the train scheduling as constraint optimiza-
tion problems. Three heuristics are developed to speed up and direct the search towards
suboptimal solutions. The feasibility of our algorithms and heuristics is confirmed with
experimentation using real-life data. These heuristics has been inserted into the system to
solve periodic timetables more efficiently. This system, at a current stage of integration,
supposes the application of methodologies of Artificial Intelligence in a problem of great
interest and will assist railway managers in optimizing the use of railway infrastructures and
will also help them in the resolution of complex scheduling problems.

Notation

r: Number of stations
n: Number of trains running in the down direction
m: Number of trains running in the up direction
Freq: Frequency between departures of two consecutive trains
TiAk: Represents that train i arrives at station k
TiDk: Means that train i departs from station k
Time ik−(k+1): The journey time of train i to travel from station k to k + 1
δ: Is the allowed percentage for a train to arrive at destination
TSik: The technical stop times of train i in station k
CSik: The commercial stop times of train i in station k
ETi: The expedition time of train i
RTi: The reception time of train i
UB: The upper bound of the travel train for this line.
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