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Frozen orbits of the Hill problem are determined in the double-averaged problem, where short and
long-period terms are removed by means of Lie transforms. Due to the perturbation method we
use, the initial conditions of corresponding quasi-periodic solutions in the nonaveraged problem
are computed straightforwardly. Moreover, the method provides the explicit equations of the
transformation that connects the averaged and nonaveraged models. A fourth-order analytical
theory is necessary for the accurate computation of quasi-periodic frozen orbits.
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1. Introduction

Besides its original application to the motion of the Moon [1], the Hill problem provides
a good approximation to the real dynamics of a variety of systems, encompassing the
motion of comets, natural and artificial satellites, distant moons of asteroids, or dynamical
astronomy applications [2—4]. Specifically, the Hill model and its variations [5-9] are useful
for describing the motion about planetary satellites. In addition, the Hill problem is an
invariant model that does not depend on any parameter, thus, giving broad generality to the
results, whose application to different systems becomes a simple matter of scaling. Note that
Hill’s case of orbits close to the smaller primary is a simplification of the restricted three-body
problem, which in turn is a simplification of real models.

A classical result shows that low eccentricity orbits around a primary body are
unstable for moderate and high inclinations due to third-body perturbations [10]. Almost
circular orbits close to the central body remain with low eccentricity in the long-term only
when the mutual inclination with the perturbing body is less than the critical inclination of
the third-body perturbations I = 39.2° (see [11] and references therein). Because of their
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low eccentricity, high inclination orbits are precisely the candidate orbits for science missions
around natural satellites. Therefore, a good understanding of the unstable dynamics of the
Hill problem is required.

The study of the long-term dynamics is usually done in the double-averaged problem.
After removing the short- and long-period terms, and truncating higher-order terms, the
problem is reduced to one degree of freedom in the eccentricity and the argument of the
periapsis. As the double-averaged problem is integrable and the corresponding phase space
is a compact manifold, the solutions are closed curves and equilibria. The latter are orbits
that, on average, have almost constant eccentricity and fixed argument of the periapsis, and
are known as frozen orbits.

To each trajectory of the double-averaged problem it corresponds a torus of
quasiperiodic solutions in the nonaveraged problem. The accurate computation of initial
conditions on the torus requires the recovery of the short- and long-period effects that
were eliminated in the averaging. This is normally done by trial and error, making iterative
corrections on the orbital elements, although other procedures can be applied [12].

Our analytical theory is computed with Deprit’s perturbation technique [13]. The
procedure is systematic and has the advantage of providing the explicit transformation
equations that connect the averaged analysis with proper initial conditions of the
nonaveraged problem. A second-order truncation of the Hamiltonian shows that there are
no degenerate equilibria and, therefore, it is sufficient to give the qualitative description of
the reduced system. However, the second-order truncation introduces a symmetry between
the direct and retrograde orbits that is not part of the original problem, and a third-order
truncation is required to reveal the nonsymmetries of the problem.

While, in general, the third-order theory provides good results in the computation
of quasiperiodic, frozen orbits, its solutions are slightly affected by long-period oscillations.
This fact may adversely affect the long-term evolution of the frozen orbits and it becomes
apparent in the computation of science orbits about planetary satellites, a case in which small
perturbations are enough for the unstable dynamics to defrost the argument of the periapsis.
Then, the orbit immediately migrates along the unstable manifold with an exponential
increase in the eccentricity.

We find that a higher-order truncation is desirable if one wants to use the analytical
theory for computing accurate initial conditions of frozen orbits. The computation of the
fourth-order truncation removes almost all adverse effects from the quasiperiodic solutions,
and shows a high degree of agreement between the averaged and nonaveraged models even
in the case of unstable orbits.

Whereas the third-body perturbation is the most important effect in destabilizing
science orbits around planetary satellites, the impact of the nonsphericity of the central body
may be taken into account. The previous research including both effects has been limited
up to third-order theories (see [14] and references therein), but from the conclusions of this
paper it may worth to develop a higher-order theory including the inhomogeneities of the
satellite’s gravitational potential.

2. Double-Averaged Hill Problem to the Fourth-Order

The equations of motion of the Hill problem are derived from the Hamiltonian

H = (%) X-X)-—w-(xxX)+W(x), W= (“’72> <r2 —3x2> - % (2.1)
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where, in the standard coordinate system of Hill’s model, x = (x, y, z) is the position vector,
X = (X,Y, Z) is the vector of conjugate momenta, r = ||x||, and both the rotation rate of the
system w = ||w|| and the gravitational parameter p of the primary are set to 1 in appropriate
units.

The problem is of three degrees of freedom, yet admitting the Jacobi constant
H = —C/2. Despite its nonintegrability, approximate solutions that explain the long-term
dynamics can be found by perturbation methods. Close to the central body the Hill problem
can be written as the perturbed two-body problem

2

& = (%)(XZ +Y? 4 22) - (%) —e (x Y-y X)+ <%> (r*-3x%), (2.2)

where the first three terms of Hamiltonian (2.2) correspond to the Keplerian motion in the
rotating frame and e is a formal parameter introduced to manifest the importance of each
effect. Thus, the Coriolis term is a first order effect and the third-body perturbation appears
at the second-order .

To apply perturbation theory, we formulate the problem in Delaunay variables
(¢,8,h,L,G,H), where ¢ is the mean anomaly, g is the argument of the periapsis, h the
argument of the node in the rotating frame, L = ,/j a is the Delaunay action, G = L V1 - % is
the modulus of the angular momentum vector, H = G cos [ is its polar component, and g, e, I,
are usual orbital elements: semimajor axis, eccentricity, and inclination.

Our theory is based on the use of Lie transforms as described by Deprit [13, 15].
It has the advantage of connecting the averaged and original problems through explicit
transformation equations. After removing the short- and long-period terms we get the
transformed Hamiltonian

g2 e et
K= Ko,o + EKO,l + 3>K0,2 + g)Ko,g, + (ﬂ)KoA/ (23)

where ¢ = L3,

1
Kop=——=,
00" 212

Ko1 = Koy 20,

_ 1 2 2 2.2
Ko, = KO'O<Z) [<2+3€ ) (2 -3s ) + 15e°s cosZg],

27

Koz = K0'0<_2 0[232 + <50 - 17sz>e2 + 15e%s? cos Zg],

_ 3 44 1n2 _ 2 _ 2\ 2] 2
Ko4 = Kop 51 3285s"e” cos4g — 12573996 — 2940s 4582 — 40355 )e”|e” cos 2g

+ 8(784 — 7085 — 9s4> ~ 144 <926 —9418% + 244s4>e2

+ 9(10728 ~ 1520852 + 500754) et }
(2.4)
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and 0 = H/L = cn, 1 = V1 - ¢? is the eccentricity function, and we use the abbreviations
s = sinl, ¢ = cosl. Details on the perturbation method and expressions to compute the
transformation equations of the averaging are given in the appendix.

The double-averaged Hamiltonian (2.3) depends neither on the mean anomaly nor
on the argument of the node. Therefore, the corresponding conjugate momenta, L and H,
are integrals of the reduced problem and the Hamiltonian (2.3) represents a one degree
of freedom problem in g and G. The equations of motion are computed from Hamilton
equations dg/dt = 0K/0G, dG/dt = -0K/0g,

i—f = 2[502 - 112 -5 <02 - 712> cos Zg] + ZZéG [502 + 11712 -5 <c2 - 112> cos 2g]
+ é;zc {21136 - 3285¢" + (3915 + 9165¢ )2 + (1581 + 7791% ) *
— 4[802¢? - 1095¢* + (19 +2565¢* )2 - (547 + 1744¢% ) "] cos 28
+ 1095¢%s> <c2 - 712> cos 4g}, @5)
Ccll_ct; = —Zez 52{5(8 +9¢0) sin2g

+ g—; (2509 - 1095¢2 + (547 + 4035¢* ) 1| sin 2g ~ 1095€%s? sin 42 ) }

Once g and G are integrated for given initial conditions, the secular variations of ¢ and h
are computed from simple quadratures derived from Hamilton equations dh/dt = 0X/0H,
dé/dt =0X/0L,

h=ho+ f aiHJC(g(t),G(t);H, L)dt, C=0+ I a%)((g(t),G(t);H,L)dt. (2.6)

3. Qualitative Dynamics

The flow can be integrated from the differential equations mentioned previously, (2.5).
However, since the system defined by (2.5) is integrable, the flow is made of closed curves
and equilibria, and it can be represented by contour plots of Hamiltonian (2.3). Thus, for
given values of the dynamical parameters L and H—or ¢ and o—we can plot the flow
in different maps that are function of g, G. Figure 1 shows an example in semiequinoctial
elements (e cos g, esin g), where we note a hyperbolic point corresponding to an unstable
circular orbit, and two elliptic points corresponding to two stable elliptic orbits with e = 0.2
and periapsis at g = +7r/2, respectively.

Delaunay variables are singular for zero eccentricity orbits, where the argument of
the periapsis and the mean anomaly are not defined, and for equatorial orbits, where the
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Figure 1: Flow in the doubly reduced phase space.

argument of the node is not defined. Hence, it is common to study the reduced phase space
in the variables introduced by Coffey et al. [16], see also [8]:

1
X1 =1escosg, X2 =1nessing, X3 = 112 ) (1 + 0'2>, (3.1)
that define the surface of a sphere
1 2
Brarg=7(1-0%) (32)

of radius R = (1/2) (1 - 0?) (the sphere representation misses the case G = H = 0, irrelevant
in astrodynamics.)
Then, after dropping constant terms and scaling, Hamiltonian (2.3) writes

30 2 2
Ko=-top -2, 0 £o<25—24112—02—15 X—§>
o4 1
2
+ 2—4 [3815 +95280% + 90" — 6 (343 + 170902 ) > - 18247* (3.3)

X X2
+6 (293 - 82177 - 14700%) >2 - 3285 —j].
" U
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The flow on the sphere is obtained from Liouville equations y; = {yi; X}, i = 1,2, 3, where the
dot means derivative in the new time scale. Then,

.3 2 2 2 2
T x2{64 <5‘8’1 *50 > 7260 <5_2’7 o0 >
2
+ —Z 1 [3815 — 18247* + 95280” + 90* — 61 (343 + 170902) (34)

X2 2 X2 4
+6<293 — 82112 - 147002) <;) - 3285<E> ] }

V2= _% X1 {60852114 +172[128 + 57620 + £ (343 +17090%)|

(3.5)
X2 2 X2 4
- [320 +360¢ 0 — £ (293 - 147002)] (—) — 1095¢2 <—> ,
1 1
. 3 2 2 2 X2 :
X5 = g X1 X 320 + 3600 — £2 | 293 — 147002 — 8217 — 1095 o , (3.6)

with the constraint y1 Y1 + y2 X2 + x3 X3 = 0, derived from (3.2).

Equations (3.4)—(3.6) show that circular orbits (y1 = y2 = 0, y3 = R, the “north” pole
of the sphere) are always equilibria. Equations (3.5) and (3.6) vanish when y; =0, y» #0, but
(3.4) vanishes only when

1095¢26* — o2 [320 +360e0 + €2 <802 + 256502>] 7
(3.7)
+ [192 - 21660 - £2(362 - 3507) | - 617" = 0.

Equation (3.7) is a polynomial equation of degree 8 in 77, therefore admitting eight roots. Note
that, for the accepted values of ¢ < 1, (3.7) is of the form A — A3 x + A3 x> — A% x* = 0 that
admits a maximum of three real roots, according to Descartes’ rule of signs.

The real roots of (3.7) verified by the dynamical constraint |o] < # < 1 are also
equilibria. The root 77 = 1 marks a change in the number of equilibria due to a “bifurcation”
(17 > 1 could be a root but not an equilibrium). Then, the number of equilibria changes when
crossing the line

o = 4 270 —450° + V5076 + 14730” + 47300* — 273750° (3.8)
- 423 + 76702 + 14700*

obtained setting 7 = 1 in (3.7) that establishes a relation between the dynamical parameters ¢
and o corresponding to bifurcations of circular orbits. Figure 2 shows that this line defines
two regions in the parameters plane with different number of equilibria in phase space.
Circular orbits in the outside region of the curve are stable. When crossing the line given
by (3.8) the number of real roots of (3.7) with dynamical sense increases such that a pitchfork
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Figure 2: Regions in the parameters plane with different numbers of equilibria.
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Figure 3: Bifurcation lines in the parameter plane.

bifurcation takes place: circular orbits change to unstable and two stable elliptic orbits appear
with periapsis, respectively at g = +or/2, as in the example of Figure 1.

Note that the curve given by (3.8) notably modifies the classical inclination limit
cos?I > 3/5 for circular orbits” stability. However, we cannot extend the practical application
of the analytical theory to any value of €. It is common to limit the validity of the Hill problem
approximation to one third of the Hill radius iy = 371/3. Then ¢ < (ry/3)*? = 1/9, including
most of the planetary satellites of interest. Figure 3 shows the bifurcation lines of circular
orbits in the validity region of the parameters plane with the values of ¢ corresponding to
low altitude orbits around different planetary satellites highlighted.

A powerful test for estimating the quality of the analytical theory is to check the
degree of agreement of the bifurcation lines of the analytical theory with those computed
numerically in the nonaveraged problem. To do that we compute several families of three-
dimensional, almost circular, periodic orbits of the Hill (nonaveraged) problem that bifurcate
from the family of planar retrograde orbits at different resonances. For variations of the Jacobi
constant the almost circular periodic orbits evolve from retrograde to direct orbits through the
180 degrees of inclination. At certain critical points, almost circular orbits change from stable
to unstable in a bifurcation phenomenon in which two new elliptic periodic orbits appear.
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Figure 4: Comparison between the bifurcation line of circular, averaged orbits (full line), and the curve of
critical periodic orbits (dots).

Table 1: Initial orbital elements of an elliptic frozen orbit for € = 0.0470573, o = 0.422618.

Theory a (Hill units) e I (deg) g (deg) h 4
Classical 0.130342 0.674094 55.0995 -90 0 0
2nd order 0.130342 0.648065 55.6915 -90 0 0
3rd order 0.130515 0.637316 56.1798 -90 0 0
4th order 0.130538 0.634803 56.2813 -90 0 0

The computation of a variety of these critical points helps in determining stability regions for
almost circular orbits [17].

The tests done show that the fourth-order theory gives good results for ¢ < 0.05. As
presented in Figure 4, the bifurcation line of retrograde orbits clearly diverges from the line of
corresponding critical periodic orbits for higher values of ¢, and it may be worth developing
a higher-order theory that encompasses also the case of Enceladus.

4. Frozen Orbits Computation

Hill’s case of orbits close to the smaller primary is a simplification of the restricted three-
body problem, which in turn is a simplification of real models. Therefore, the final goal of
our theory is not the generation of ephemerides but to help in mission designing for artificial
satellites about planetary satellites, where frozen orbits are of major interest.

For given values of the parameters ¢, 0, determined by the mission, a number of
frozen orbits may exist. A circular frozen orbit, either stable or unstable, exists always and
the computation of real roots |o| < 77 < 1 of (3.7), if any, will provide the eccentricities of
the stable elliptic solutions with frozen periapsis at g = +sr/2. To each equilibrium of the
doubly reduced phase space it corresponds a torus of quasiperiodic solutions in the original,
nonaveraged model. In what follows we present several examples that justify the effort in
computing a fourth-order theory to reach the quasiperiodicity condition in the Hill problem.

4.1. Elliptic Frozen Orbits

We choose ¢ = 0.0470573, o = 0.422618. If we first try the classical double-averaged solution,
the Hamiltonian (2.3) is simplified to Koo + €Ko1 + (€2/2)Kgp, and the existence of elliptic
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Figure 5: Long-term evolution of the orbital elements of the elliptic frozen orbit.

frozen orbits reduces to the case 0® < 3/5, g = £ar/2. The eccentricity of the elliptic frozen

solutions is then computed from 7 = (56%/ 3)1/4 —obtained by neglecting terms in € in (3.7).
Thus, for the given values of ¢ and o, and taking into account that we are free to choose
the initial values of the averaged angles ¢, h, we get the orbital elements of the first row
of Table 1. The left column of Figure 5 shows the long-term evolution of the instantaneous
orbital elements for this case, that we call “classical averaging,” in which we find long-period
oscillations of more than four degrees in inclination, more than fifteen in the argument of
periapsis, and a variation of +0.06 in the eccentricity.

When computing a second-order theory with the Lie-Deprit perturbation method
we arrive exactly at the classical Hamiltonian obtained by a simple removal of the short-
period terms and the classical bifurcation condition that results in the critical inclination
of the third-body perturbations I = 39.2° [10, 11]. However, now we have available the
transformation equations to recover the short- and long-period effects, although up to the
first order only. After undoing the transformation equations we find the orbital elements of
the second row of Table 1, where we see that all the elements remain unchanged except for
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Figure 6: Long-term evolution of the orbital elements of the elliptic frozen orbit.

the eccentricity and inclination. The long-term evolution of these elements is presented in
the right column of Figure 5, in which we notice a significant reduction in the amplitude of
long-period oscillations: 2.5° in inclination, around 10° in the argument of the periapsis, and
+0.04 in eccentricity.

The results of the third- and fourth-order theories are presented in the last two rows
of Table 1 and in Figure 6. The higher-order corrections drive slight enlargements in the
semimajor axis. While both higher-order theories produce impressive improvements, we note
a residual long-period oscillation in the elements computed from the third-order theory (left
column of Figure 6). On the contrary, the orbital elements of the frozen orbit computed with
the fourth-order theory are almost free from long-period oscillations and mainly show the
short-period oscillations typical of quasiperiodic orbits.

4.2, Circular Frozen Orbits

If we choose the same value for € but now o = 0.777146, frozen elliptic orbits do not exist any
longer and the circular frozen orbit is stable. Both the third and fourth-order theories provide
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Figure 7: Long-term evolution of the orbital elements of the circular stable frozen orbit. (a) and (c) third-
order theory. (b) and (d) fourth-order theory.

good results, but, again, the third-order theory provides small long-period oscillations in the
eccentricity whereas the fourth-order theory leads to a quasiperiodic orbit (see Figure 7).

For € = 0.0339919 and o = 0.34202 the circular frozen orbit is unstable. Due to the
instability, a long-term propagation of the initial conditions from either the third or the
fourth theory shows that the orbit escapes following the unstable manifold with exponential
increase in the eccentricity. But, as Figure 8 shows, the orbit remains frozen much more time
when using the fourth-order theory. A variety of tests performed on science orbits close to
Galilean moons Europa and Callisto showed that the fourth-order theory generally improves
by 50% the lifetimes reached when using the third-order theory.

4.3. Fourier Analysis

Alternatively to the temporal analysis mentioned previously, a frequency analysis using the
Fast Fourier Transform (FFT) shows how initial conditions obtained from different orders of
the analytical theory can be affected of undesired frequencies that defrost the orbital elements.
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Figure 8: Long-term evolution of the orbital elements of the circular, unstable, frozen orbit.

Thus, Figure 9 shows the FFT analysis of the instantaneous argument of the periapsis
of the elliptic orbit in the example mentioned previously. Dots correspond to initial conditions
obtained from the double-averaged phase space after a classical analysis—that is equivalent
to the second-order analytical theory—and the line corresponds to initial conditions obtained
from the fourth-order analytical theory after undoing the transformation. While most of the
frequencies match with similar amplitudes, in the magnification of the right plot we clearly
appreciate a very low frequency of ~0.15 cycles/year with a very high amplitude in the
classical theory that is almost canceled out with the fourth-order approach. The semiannual
frequency remains in both theories because it is intrinsic to the problem. It is due to the third-
body perturbation and it cannot be avoided.

Figure 10 shows a similar analysis for the instantaneous eccentricity of the stable
circular orbit mentioned previously. Now, dots correspond to the fourth-order theory and
the line to the third-order one (both after undoing the transformation equations). While the
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Figure 9: (a) FFT analysis of the instantaneous argument of the periapsis of the elliptic solution. (b)
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Figure 10: (a) FFT analysis of the instantaneous eccentricity of the elliptic solution. (b) Magnification over
the low frequencies region.

third-order theory provides good results, reducing the amplitude of the undesired frequency
to low values, the fourth-order theory practically cancels out that frequency.

An FFT analysis of unstable circular orbits has not much sense because of the time
scale in which the orbit destabilizes.

5. Conclusions

Frozen orbits computation is a useful procedure in mission designing for artificial satellites.
After locating the frozen orbit of interest in a double-averaged problem, usual procedures for
computing initial conditions of frozen orbits resort to trial-and-error interactive corrections,
or require involved computations. However, the explicit transformation equations between
averaged and nonaveraged models can be obtained with analytical theories based on the Lie-
Deprit perturbation method, which makes the frozen orbits computations straightforward.

Accurate computations of the initial conditions of frozen, quasiperiodic orbits can
be reached with higher-order analytical theories. This way of proceeding should not be
undervalued in the computation of science orbits around planetary satellites, a case in which
third-body perturbations induce unstable dynamics.
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Higher-order analytical theories are a common tool for computing ephemeris among
the celestial mechanics community. They are usually developed with specific purpose,
sophisticated algebraic manipulators. However, the impressive performances of modern
computers and software allow us to build our analytical theory with commercial, general-
purpose manipulators, a fact that may challenge aerospace engineers to use the safe, well-
known techniques advocated in this paper.

Appendix

Let T : (x,X) — (x,X), where x are coordinates and X their conjugate momenta, be
a Lie transform from “new” (primes) to “old” variables. If W = 3.(e/i!) Wi1(x,X) is
its generating function expanded as a power series in a small parameter €, a function
F = 3,(e'/i!) Fip(x,X) can be expressed in the new variables as the power series (T : ¥) =
>.(e'/i!) Fo;(X,X') whose coefficients are computed from the recurrence

i
Fij = Fij1+ Z ( > {Fr,j-1; Wis1-x}, (A1)
osksi \K

where {Fk,j—l}Wi+1—k} = Vka,]'_l - VxWizik — Vka,]'_l - ViWii1-k, is the Poisson bracket.
Conversely, the coefficients Wi, of the generating function can be computed step by step
from (A.1) once corresponding terms Fy; of the transformed function are chosen as desired.
In perturbation theory it is common to chose the Fy; as an averaged expression over some
variable, but it is not the unique possibility [18]. Full details can be found in the literature
[19, 20].

To average the short-period effects we write Hamiltonian (2.2) in Delaunay variables

62 €3 64
H = Ho,o + €H1,0 + | = Hz/o + | — H3,0 + | — H4,0,
2 6 24 (A.2)

where Hyo = —1/(2L?), Hyg = —H, Hy = r2{1-3[cos(f + g) cos h — csin(f + g) sin h]*}, and
Hj3o = Hyp = 0. Note that the true anomaly f is an implicit function of Z.

Since the radius r never appears in denominators, it results convenient to express
Hamiltonian (A.2) as a function of the elliptic—instead of the true—anomaly u by using the
ellipse relations rsin f = 1 asinu, r cos f = a(cosu —e), r = a(l — ecosu).

After applying the Delaunay normalization [21] up to the fourth-order in the
Hamiltonian, we get

) 62 63 6'4
H = H0,0 + € H0,1 + ? H(),2 + g H(),3 + 2—4 H0,4, (A3)

where, omitting primes,

as

1
2127
Hy1 = Hope2cen,

Hop =~
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Hop = Hop <§> {(4+6€*) (2-35>+ 357 cos2h)
[

+ 15¢%|25% cos 2g + (1 - ¢)* cos(2g — 2h) + (1 + ¢)? cos(2g + Zh)] },

4553 2 2 2
Hos = Hoo —— )e 11[(1 +¢)”cos(2g +2h) — (1 - ¢)” cos(2g - 2h)],

3¢t
Hos = Hop <—m>

x {16(47 +282¢% + 63c4> ~144 (227 +90c? + 59c4>62
~18(227 + 610* - 701c* ) * — 2452[558 + 270¢* + (109 - 555¢? ) e*] e? cos 2g
+2452[216 +56¢> = 8 (161 + 59¢?) e ~ (11 - 701c? ) '] cos 21
—48(1 + ¢)? [338 —90c +90¢? — (91 —185¢ + 185c2)e2]e2 cos(2g +2h)
—48(1 - ¢)? [338 +90c +90c? - (91 + 185¢ + 18502>e2]e2 cos(2g — 2h)
+6s* <56 —472¢% + 701e4> cos4h +1710s*e* cos 4g
- 60s? (18 - 37ez>e2 [(1 +¢)?cos(2g +4h) + (1 - ¢)* cos(2g - 4h)]
+1140s%¢* [(1 +¢)? cos(4g +2h) + (1 - c)? cos(4g - Zh)]

+ 285¢* [(1 +c)* cos(4g +4h) + (1—c)* cos(4g - 4h)] }
(A4)

The generating function of the transformation is W = W, + (1/2) W3, where

)
X {4(2 - 352> [3(:' (5 + 3112> S100 — 96252/0,0 + 6353,0/0]
+ 6s2e[3 <5 + 3112> (S102+ S10-2) —9€(S202 + S20-2) +€*(S302 + 53,0—2)]
+6s%(1+ 11)2 [15eS1,0 — (9 — 67)S2,0 + €S3.20]

+ 652 (1 - 1’1)2 [15651,_2,0 - (9 + 612)52,_2,0 + 653,_2,0]

+3(1+¢)2(1+7)°[15eS122 — (9 = 67) S22 + €S3.5]
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+ 3(1 - C)2(1 + 71)2 [15651/2/_2 - (9 - 61’1) 52/2,_2 + 653/2/_2]
+ 3(1 - C)2(1 — 71)2 [15651,_2,2 — (9 + 67]) SZ,_2,2 + 653,_2,2]

+ 3(1 + C)Z(l — 71)2 [15651/_2,_2 - (9 + 671) 52,_2/_2 + 653,_2,_2] },

e (8)
x {72352 <13 + 3;12) [S102 — Si,2] — 24e2s> <17 + 4112) [S202 — S20,2]

+88e’s%[S302 — S30,-2] — 6€*s*[S402 — Sa,-2]
+36e(1+1) (13 +1+ 8112> [(1 +0)2S10, - (1 - c)ZSLz’_Z]
+36e(1-1) (13 =7+ 87%)[(1 = 0)°S1,20 = (1 +¢)°S1,2,2]
~12(1+1)*(17 =61 - 872) [(1 + ©)*S202 = (1= ©)*$25,2]
~12(1-n)* (17 + 61 -87%) [(1 = S22 = (1+ )12,
+4(1+1) (11 67) [(1+ )*S320 = (1= 0)*S32]
+4(1-n)%e(11 +67) [(1 —¢)2S5. 00— (1+ c)zsg,_z,_z]
=3(1+1m)%e2|(1+)” S4p0 = (1= 0)*Saa2]
- 3(1-1n)% [(1 —)2S40n— (1 + c)254,_2,_2] }

(A.5)

We shorten notation calling S; jx =sin(i u+j g +k h).

The Lie transform of generating function W can be applied to any function of
Delaunay variables F = 3;(¢'/i!) Fi(¢', ¢, W,L',G',H'). Since W; = 0, up to the third-order
in the small parameter recurrence (A.1) gives

2 3
F=F+ <%>{F0;W2}+ <%>{F0;W3}~ (A.6)

Specifically, this applies to the transformation equations of the Delaunay variables
themselves, where Fy € (¢',¢',W,L',G,H') and F; =0 for i > 0.

A new application of the recurrence (A.1) to the Hamiltonian X = Y.,y (€'/i!) Ko,
where Ko = Hy; of (A.3), allows to eliminate the node up to the fourth-order, obtaining
the double-averaged Hamiltonian (2.3). Note that K4 corrects previous results in [22]. The
generating function of the transformationis V = Vi +eV, + (€2/2) Vi3, where, omitting double
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primes,

Vi = <634> [<4+6e )s sin2h +5 (1+C)26251n(2g+2h) 501 —C)2€2511’1(2g Zh)]
v =L< 128) [6c(2 17e )s sin2h +5 (2-9¢) (1 +c)%e?sin(2g + 2h)

+5(1 - c)*(2 +9c)e? sin(2g — 2h)],

9
V=1L <_32768>

x {1657 [456 ~104c? -8 (193 +754¢%) e + (47 + 7831¢%) e4] sin2h
+2s* (232 +416¢2 - 1803e4) sin 4h
~32(1 + ¢)2? [2 (323 — 285¢ + 780c2) - (527 ~1135¢ + 2125c2>e2] sin(2g + 2h)
+32(1 - 0)%e?[2 (323 + 285¢ + 780c?) — (527 +1135¢ +2125¢% ) ¢?| sin (2g — 2h)
+2205%¢*(4 - 116%) (1 + ¢)? sin(2g + 4h) - (1 - )’ sin(2g - 4h)|
+452082%¢* [(1 +c)?sin(4g +2h) — (1 - c)?sin(4g - 2h)]

— 385¢% [(1 +c)*sin(4g +4h) — (1 - c)*sin(4g - 4h)] }
(A7)

The new Lie transform of generating function V can be applied to any function of
Delaunay variables, and, specifically, to the Delaunay variables themselves. For any ¢" €
(¢",¢", 0", L",G",H") the transformation equations of the Lie transform are computed, up

to the third-order, from
2 &
§=8+eon+ (5 o2+ (£ )0 (A.8)

where
={¢" w1},
62 = {&";Va} + {61, V), (A9)
83 = {&"; Va} + {{¢"; Va}; Vi) + {61, Va} + {62, V1 ).
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