
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2009, Article ID 783920, 17 pages
doi:10.1155/2009/783920

Research Article
Two-Step Relaxation Newton Method for
Nonsymmetric Algebraic Riccati Equations
Arising from Transport Theory

Shulin Wu1 and Chengming Huang2

1 School of Science, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
2 School of Mathematics and Statistics, Huazhong University of Science and Technology,
Wuhan 430074, China

Correspondence should be addressed to Shulin Wu, wushulin ylp@163.com

Received 26 February 2009; Accepted 20 August 2009

Recommended by Alois Steindl

We propose a new idea to construct an effective algorithm to compute the minimal positive
solution of the nonsymmetric algebraic Riccati equations arising from transport theory. For a class
of these equations, an important feature is that the minimal positive solution can be obtained
by computing the minimal positive solution of a couple of fixed-point equations with vector
form. Based on the fixed-point vector equations, we introduce a new algorithm, namely, two-step
relaxation Newton, derived by combining two different relaxation Newton methods to compute
the minimal positive solution. The monotone convergence of the solution sequence generated by
this new algorithm is established. Numerical results are given to show the advantages of the new
algorithm for the nonsymmetric algebraic Riccati equations in vector form.

Copyright q 2009 S. Wu and C. Huang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we are interested in iteratively solving the algebraic Riccati equation arising
from transport theory (see, e.g., [1–5] and references therein):

XCX −XE −AX + B = 0, (1.1)

where A,B,C, E ∈ R
n×n are given by

A = Δ − eqT , B = eeT , C = qqT , E = D − qeT . (1.2)

2 Mathematical Problems in Engineering

Here e = (1, 1, . . . , 1)T and q = (q1, q2, . . . , qn)
T with qi = ci/2ωi and

Δ = diag(δ1, δ2, . . . , δn), δi =
1

cωi(1 + α)
,

D = diag(d1, d2, . . . , dn), di =
1

cωi(1 − α)
.

(1.3)

The parameters c and α satisfy 0 < c ≤ 1, 0 ≤ α < 1, and {ci}ni=1 and {ω}ni=1 are sets of the
composite Gauss-Legendre weights and nodes, respectively, on the interval [0, 1] satisfying

0 < ωn < ωn−1 < · · · < ω1, ci > 0 (i = 1, 2, . . . , n),
n∑

i=1

ci = 1; (1.4)

see, for example, [4] for details. Clearly, it holds that

0 < δ1 < δ2 < · · · < δn, 0 < d1 < d2 < · · · < dn,

di = δi for α = 0, di > δi for α/= 0, i = 1, 2, . . . , n.
(1.5)

It has been shown that problem (1.1) has positive solution in the sense of component-
wise; see [2, 4] for details. Since only the minimal positive solution is physically meaningful,
the research in the field of iteration methods centers around the computation of the minimal
positive solution of (1.1); see, for example, [3, 5–12]. For the discussion on more general
nonsymmetric algebraic Riccati equations arising in real world, we refer the interested reader
to [13–17].

In the seminal paper by Lu [9], it was shown that the solutionX of (1.1) can be written
as

X = T ◦
(
uvT
)
=
(
uvT
)
◦ T, (1.6)

where ◦ denotes the Hadamard product, T is the matrix with elements Ti,j = 1/(δi + dj), and
u, v are two vectors satisfying the following vector equations:

f(u, v) =

(
u − [u ◦ (Pv) + e]

v − [v ◦ (Qu) + e]

)
= 0, (1.7)

where P = [Pi,j] = qj/(δi + dj) and Q = [Qi,j] = qj/(δj + di).

Let w = (uT , vT)T ∈ R
2n with wi = ui and wn+i = vi, i = 1, 2, . . . , n, and let g(w) =

(g1(w), g2(w), . . . , g2n(w))T with

gi(w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

Pi,jwn+j for 1 ≤ i ≤ n,

n∑

j=1

Qi−n,jwj for n + 1 ≤ i ≤ 2n.
(1.8)

Mathematical Problems in Engineering 3

Then the vector equations (1.7) can be uniformly rewritten as

w = w ◦ g(w) + e. (1.9)

Based on the vector equations (1.7), Lu [9] investigated the simple iteration (SI)method
to compute the minimal positive solution as follows:

uk+1 = uk ◦ (Pvk) + e,

vk+1 = vk ◦ (Quk) + e,

v0 = 0, u0 = 0.

(1.10)

It was shown that the solution sequence {uk, vk} generated by (1.10) converges monotoni-
cally to the minimal positive solution of (1.7). We note that at each step the SI method costs
about 4n2 flops (for the definition of flops, see, e.g., [18]), while the Gauss-Jacobi (GJ) scheme
defined by Juang [2]

Xk+1 = T ◦ (Xkq + e
)(

XT
k q + e

)T
(1.11)

costs about 6n2 flops. Hence, the SI method is more efficient than the GJ method.
In (1.10), we note that before computing vk+1, we have obtained uk+1, which should be

a better approximation to u than uk. Based on this consideration, Bao et al. [7] constructed
the modified simple iteration method as

uk+1 = uk ◦ (Pvk) + e,

vk+1 = vk ◦ (Quk+1) + e,

v0 = 0, u0 = 0.

(1.12)

It was shown theoretically and numerically that the modified simple iteration procedure
(1.12) is more efficient than the original one (1.10).

Recently, the so-called nonlinear splitting iteration methods defined as

uk+1 = uk+1 ◦ [Pvk] + e,

vk+1 = vk+1 ◦ [Quk] + e,
(1.13a)

uk+1 = uk+1 ◦ [Pvk] + e,

vk+1 = vk+1 ◦ [Quk+1] + e
(1.13b)

were investigated by Bai et al. [6] and independently by Lin [19]. In [6], methods (1.13a) and
(1.13b) were called nonlinear block Jacobi (NBJ) iteration method and nonlinear block Gauss-
Seidel (NBGS) iteration method, respectively, and it was shown that the solution sequence
{uk, vk} generated by the NBJ method and the NBGSmethod converges monotonically to the

4 Mathematical Problems in Engineering

minimal positive solution of (1.7). Moreover, numerical experiments given in [6, 19] show
that the convergence speed of these two methods is higher than that of the SI method (1.10).

In this paper, based on the fixed-point equations (1.7), we present an accelerated
version of the NBJ scheme, namely, two-step relaxation Newton method, to compute the
minimal positive solution. The construction of the new method is based on the relaxation
Newton method introduced by Wu et al. [20, 21]. At each iteration, the new algorithm is
composed of two-steps: we use the NBJ method as a simple relaxation Newton method
to obtain a coarse approximation of the solution of (1.7), and then with this coarse
approximation at handwe use a relative complicated relaxation Newtonmethod to get a finer
approximation. It is shown that the solution sequence generated by this method converges
monotonically to the minimal positive solution of (1.7). We also prove that the new method
is more efficient than the NBJ method and its two-step version.

The remainder of this paper is organized as follows. In Section 2, we introduce the
relaxation Newton method and the its two-step version. Section 3 is concerned with the
monotone convergence of the newmethod. In Section 4, we test some numerical experiments
to compare the performance of the new method with the SI method and the NBJ method
in the sense of iteration number and CPU time. In the end of the work of this paper, we
have constructed another two-step relaxationNewton algorithmwhich performsmuch better
than the SI, NBJ methods; unfortunately, at the moment we cannot theoretically prove the
convergence of this method to the minimal positive solution of the vector equations (1.7).
Therefore, we will just report in Section 4 the numerical results of this method.

2. The Two-Step Relaxation Newton Method

In this section, we focus on introducing the basic idea of the relaxation Newton method
investigated by [20, 21] and its two-step version for the following general nonlinear
equations:

F(x) = 0. (2.1)

2.1. The Relaxation Newton Algorithm

The key idea of the relaxation Newton algorithm is to choose some splitting function F:Rn ×
R

n → R
n which is minimally assumed to satisfy a consistency condition

F(x, x) = F(x) (2.2)

for any x ∈ R
n. Then with an initial guess x0 of the unknown solution x∗, we start with the

previous approximation xk to compute the next approximation xk+1 by solving the following
problem:

F(xk, xk+1) = 0 (2.3)

with some conventional method, such as the classical Newton’s method, quasi-Newton
methods, and Conjugate-Gradient method. Obviously, the generated sequence {xk}∞0 will
upon convergence approach to some value x∗ which satisfies F(x∗, x∗) = 0, that is, F(x) = 0.

Mathematical Problems in Engineering 5

for k = 0, 1, 2,
with a given initial approximation x̃0 of xk+1;
for m = 0, 1, . . . ,M

F2(xk, x̃m)Δx̃m = −F(xk, x̃m),
x̃m+1 = x̃m + Δx̃m,

end
xk+1 = Δx̃M

end

Algorithm 1: The relaxation Newton method.

Wu et. al. [20, 21] used the classical Newton’s method to solve (2.3), which explains the name:
relaxation Newton; the deduced algorithm written compactly is shown in Algorithm 1.

In Algorithm 1 and what follows

F2
(
x, y
)
=

∂F(x, z)
∂z

∣∣∣∣
z=y

. (2.4)

If we set x̃0 = xk and M = 1 in the relaxation algorithm shown in Algorithm 1, by the
consistency condition (2.2), the method can be written as

F2(xk, xk)Δxk = −F(xk), xk+1 = xk + Δxk, k = 0, 1, (2.5)

With a special choice of F, the Jacobi matrix F2(x, x) will be a diagonal or block diagonal
matrix and invertible in R

n, and thus iteration method (2.5) can be processed stably and
simultaneously with less storage compared with the classical Newton’s method. We will see
in the next section how to select the splitting function F such that the Jacobi matrix F2(x, x)
is a diagonal or block diagonal matrix.

2.2. The Two-Step Relaxation Newton Method

Now, suppose that we have two splitting functions F(x, y), G(x, y, z) and an initial
approximation x0 of the solution of (2.1) at hand. We start with the previous approximation
xk to compute a mid-approximation xk+1/2 by solving the equations

F(xk, xk+1/2) = 0, (2.6a)

and then with xk, xk+1/2 at hand we compute xk+1 by solving the equations

G(xk, xk+1/2, xk+1) = 0. (2.6b)

The splitting functions F and G are assumed to satisfy the consistency conditions

F(x, x) = F(x), G(x, x, x) = F(x), ∀x ∈ R
n. (2.7)

6 Mathematical Problems in Engineering

Similar to the relaxation Newton algorithm described above, we use Newton’s method with
a single iteration to solve equations (2.6a), (2.6b), and the deduced iteration scheme is

F2(xk, xk)(xk+1/2 − xk) = −F(xk), (2.8a)

G3(xk, xk+1/2, xk+1/2)(xk+1 − xk+1/2) = −G(xk, xk+1/2, xk+1/2), (2.8b)

where F2 is defined by (2.4), and the Jacobi matrix G3(x, y, z) of the function G is defined by

G3
(
x, y, z

)
=

∂G(x, y, s)
∂s

∣∣∣∣
s=z

. (2.8c)

Throughout this paper, the iteration scheme (2.8a), (2.8b), (2.8c) is called two-step relaxation
Newton (denoted by “TSRN”) algorithm.

Specially, for the vector equations (1.7) we consider in this paper the following
splitting functions:

F(wk,wk+1/2) =

(
uk+1/2 − uk+1/2 ◦ (Pvk) − e

vk+1/2 − vk+1/2 ◦ (Quk) − e

)
, (2.9a)

G(wk,wk+1/2, wk+1) =

(
uk+1 − uk+1 ◦ (Pvk+1/2) − uk+1/2 ◦ [Φ(vk+1 − vk+1/2)] − e

vk+1 − vk+1 ◦ (Quk+1/2) − vk+1/2 ◦ [Ψ(uk+1 − uk+1/2)] − e

)
, (2.9b)

here and hereafter wk+1/2 = (uT
k+1/2, v

T
k+1/2)

T and wk = (uT
k , v

T
k)

T for all k = 0, 1, 2 . . .; Φ and Ψ
are diagonal matrices and their diagonal elements are determined as

Φi,i =

⎧
⎨

⎩
Pi,i, if i is odd,

0, if i is even,
Ψi,i =

⎧
⎨

⎩
Qi,i, if i is even,

0, if i is odd.
(2.10)

Generally speaking, the splitting functionG is a three variables function, but here we consider
a special case—only the second and third variables are involved; see (2.9b). In the end
of Section 4, we will see another TSRN algorithm where the function G is defined with 3
arguments (see (4.5b)).

Define

Dk = diag(e − Pvk), Λk = diag(e −Quk), D̃k = diag(e − Pvk+1/2),

Λ̃k = diag(e −Quk+1/2), Ak = diag(uk+1/2 ◦ [Φe]), Bk = diag(vk+1/2 ◦ [Ψe]).
(2.11)

Then it is clear that

F2(wk,wk) =

[
Dk

Λk

]
, G3(wk,wk+1/2, wk+1/2) =

⎡

⎣
D̃k −Ak

−Bk Λ̃k

⎤

⎦. (2.12)

Mathematical Problems in Engineering 7

Therefore, it follows by substituting the function f defined in (1.7) and the splitting functions
F, G defined in (2.9a), (2.9b) into (2.8a), (2.8b), (2.8c) that

F2(wk,wk)

(
uk+1/2

vk+1/2

)
=

(
e

e

)
, (2.13a)

G3(wk,wk+1/2, wk+1/2)

(
uk+1 − uk+1/2

vk+1 − vk+1/2

)
= −f(uk+1/2, vk+1/2). (2.13b)

We note that with the special splitting functions F and G defined in (2.9a), (2.9b), equations
(2.13a), (2.13b) implies

F(wk,wk+1/2) = 0, G(wk,wk+1/2, wk+1) = 0, k = 0, 1, 2, . . . , (2.14)

while for general splitting functions this is not always true. For diagonal matrices D̃k, Λ̃k, Ak

and Bk, routine calculation yields

[G3(wk,wk+1/2, wk+1/2)]−1 =

⎡
⎢⎣

[
D̃kΛ̃k −AkBk

]−1

[
D̃kΛ̃k −AkBk

]−1

⎤
⎥⎦

⎡

⎣
Λ̃k Ak

Bk D̃k

⎤

⎦. (2.15)

Furthermore, by (2.10)we know that AkBk must be zero matrix for all k = 0, 1, 2 . . .; hence

[G3(wk,wk+1/2, wk+1/2)]−1 =

⎡
⎢⎣

D̃−1
k

[
D̃kΛ̃k

]−1
Ak

[
D̃kΛ̃k

]−1
Bk Λ̃−1

k

⎤
⎥⎦. (2.16)

From (2.9a), (2.9b), (2.10), and (2.16) we obtain the algorithm for implementing the
TSRN method as follows.

Algorithm 1 (Two-step relaxation Newton iteration). Starting with the initial value (u0, v0),
the solution {uk, vk} is defined, for k = 0, 1, 2, . . ., by

(1) computing explicitly in the following elementwise fashion:

uk+1/2,i =
1

1 − [Pvk]i
, vk+1/2,i =

1
1 − [Quk]i

, i = 1, 2, . . . , n; (2.17)

(2) performing for i = 1 to n:
if i is odd

uk+1,i =
1

1 − [Pvk+1/2]i

(
1 −Φiiuk+1/2,ivk+1/2,i +

Φiiuk+1/2,i

1 − [Quk+1/2]i

)
,

vk+1,i =
1

1 − [Quk+1/2]i
,

(2.18)

8 Mathematical Problems in Engineering

else

uk+1,i =
1

1 − [Pvk+1/2]i
,

vk+1,i =
1

1 − [Quk+1/2]i

(
1 −Ψiiuk+1/2,ivk+1/2,i +

Ψiivk+1/2,i

1 − [Pvk+1/2]i

)
;

(2.19)

(3) if ‖f(uk+1, vk+1)‖∞ ≤ Tol, stop iteration; else set uk = uk+1, vk = vk+1 and go to the
first step in Algorithm 1.

Clearly, compared with the Newton-type methods investigated by Lu [10] and Lin
et al. [8], no LU-factorization is needed at each iteration of the TSRN method.

3. Convergence Analysis

For our proof of the monotone convergence of the TSRN method, we need the following
results proved by Lu [9].

Lemma 3.1 (see [9]). With the function g defined in (1.8), one has

(1) u∗ > e, v∗ > e,

(2) max1≤i≤2n{gi(e)} < 1.

The first conclusion can be obtained straightforwardly from (1.7).

Theorem 3.2. Let (u0, v0) = (0, 0) be the initial point of the TSRN method. The solution sequence
{uk, vk}∞k=1 generated by the TSRN method is strictly and monotonically increasing and converges to
the minimal positive solution (u∗, v∗) of the vector equations (1.7); particularly, it holds that

(1) 0 ≤ uk < uk+1/2 < uk+1 < u∗ and 0 ≤ vk < vk+1/2 < vk+1 < v∗, k = 0, 1, 2, . . . ;

(2) limk→+∞uk = u∗ and limk→+∞vk = v∗.

Proof. We first prove the first conclusion of Theorem 3.2 by induction rule and this is
completed in two-steps: first, we prove the correctness of this conclusion for k = 0, and then
under the induction assumption with index k = j, we prove the case for k = j + 1.

(1) It is easy to get (u1/2, v1/2) = (e, e). Hence, from the first conclusion of Lemma 3.1,
it holds u1/2 < u∗ and v1/2 < v∗. By the second conclusion of Lemma 3.1, we get e − Pv1/2 > 0
and e −Qu1/2 > 0. Therefore, from (2.16) we know [G3(w0, w1/2, w1/2)]

−1 > 0. Since

u1/2 ◦ (e − Pv0) − e = 0, v1/2 ◦ (e −Qu0) − e = 0, u1/2 > u0, v1/2 > v0, (3.1)

we have u1/2 ◦ (e−Pv1/2)−e < 0 and v1/2 ◦ (e−Qu1/2)−e < 0, that is, f(u1/2, v1/2) < 0. Hence,
it follows from (2.13b) that w1 = w1/2 − [G3(w0, w1/2, w1/2)]

−1f(u1/2, v1/2) > w1/2. We note
that for any w̃,w,w−, w+ ∈ R

2n it holds

G(w̃,w,w−) = G(w̃,w,w+) +G3(w̃,w,w+)(w− −w+). (3.2)

Mathematical Problems in Engineering 9

Hence, G(w0, w1/2, w
∗) +G3(w0, w1/2, w

∗)(w1 −w∗) = G(w0, w1/2, w1) = 0, that is,

w1 −w∗ = −[G3(w0, w1/2, w
∗)]−1G(w0, w1/2, w

∗), (3.3)

where w∗ =
(

u∗

v∗

)
. It is easy to verify G3(w0, w1/2, w

∗) = G3(w0, w1/2, w1/2) and this implies

[G3(w0, w1/2, w
∗)]−1 > 0. Consider

u∗ ◦ (e − Pv∗) = e, v∗ ◦ (e −Qu∗) = e, (3.4)

u∗ ◦ (e − Pv1/2) − u1/2 ◦Φ(v∗ − v1/2) − u∗ ◦ (e − Pv∗)

= u∗ ◦ [P(v∗ − v1/2)] − u1/2 ◦Φ(v∗ − v1/2),

v∗ ◦ (e −Qu1/2) − v1/2 ◦Ψ(u∗ − u1/2) − v∗ ◦ (e −Qu∗)

= v∗ ◦ [Q(u∗ − u1/2)] − v1/2 ◦Ψ(u∗ − u1/2),

(3.5)

and u1/2 < u∗, v1/2 < v∗, and we know that the right hand of (3.5) is positive, and this implies
G(w0, w1/2, w

∗) > 0. Therefore, from (3.3) we get w1 < w∗. We have proved that the first
conclusion of Theorem 3.2 is correct for k = 0.

(2) Assume that the first conclusion of Theorem 3.2 is correct for k = j, j ≥ 0 and we
will prove that it is also correct for k = j + 1. To this end, we note that under the induction
assumption it holds

e > e −Quj > e −Quj+1/2 > e −Quj+1 > e −Qu∗ > 0,

e > e − Pvj > e − Pvj+1/2 > e − Pvj+1 > e − Pv∗ > 0,
(3.6)

where the inequalities e −Qu∗ > 0 and e − Pv∗ > 0 follow directly from equality (3.4).
Consider

uj+1 ◦
(
e − Pvj+1/2

) − uj+1/2 ◦
[
Φ
(
vj+1 − vj+1/2

)] − uj+1 ◦
(
e − Pvj+1

)

= uj+1 ◦
[
P
(
vj+1 − vj+1/2

)] − uj+1/2 ◦
[
Φ
(
vj+1 − vj+1/2

)]
> 0,

vj+1 ◦
(
e −Quj+1/2

) − vj+1/2 ◦
[
Ψ
(
uj+1 − uj+1/2

)] − vj+1 ◦
(
e −Quj+1

)

= vj+1 ◦
[
Q
(
uj+1 − uj+1/2

)] − vj+1/2 ◦
[
Ψ
(
uj+1 − uj+1/2

)]
> 0,

(3.7)

and since wj+1/2 < wj+1, we get

uj+1+1/2 ◦
(
e − Pvj+1

)
= e = uj+1 ◦

(
e − Pvj+1/2

) − uj+1/2 ◦
[
Φ
(
vj+1 − vj+1/2

)]

> uj+1 ◦
(
e − Pvj+1

)
,

vj+1+1/2 ◦
(
e −Quj+1

)
= e = vj+1 ◦

(
e −Quj+1/2

) − vj+1/2 ◦
[
Ψ
(
uj+1 − uj+1/2

)]

> uj+1 ◦
(
e −Quj+1

)
,

(3.8)

10 Mathematical Problems in Engineering

and this coupled with (3.6) gives

wj+1 < wj+1+1/2. (3.9)

From (3.6) and wj+1 < w∗, we have

uj+1+1/2 ◦
(
e − Pvj+1

)
= e = u∗ ◦ (e − Pv∗) < u∗ ◦ (e − Pvj+1

)

vj+1+1/2 ◦
(
e −Quj+1

)
= e = v∗ ◦ (e −Qu∗) < v∗ ◦ (e −Quj+1

) =⇒
uj+1+1/2 < u∗,

vj+1+1/2 < v∗,
(3.10)

that is, wj+1+1/2 < w∗; this coupled with (3.6) implies e − Pvj+1+1/2 > 0 and e −Quj+1+1/2 > 0.
Hence, we arrive at

[
G3
(
wj+1, wj+1+1/2, wj+1+1/2

)]−1
> 0. (3.11)

From (3.9)we have

uj+1+1/2 ◦
(
e − Pvj+1+1/2

) − e < uj+1+1/2 ◦
(
e − Pvj+1

) − e = 0

vj+1+1/2 ◦
(
e −Quj+1+1/2

) − e < vj+1+1/2 ◦
(
e −Quj+1

) − e = 0
=⇒ f

(
uj+1+1/2, vj+1+1/2

)
< 0;

(3.12)

this coupled with (3.11) gives

wj+2 = wj+1+1/2 −
[
G3
(
wj+1, wj+1+1/2, wj+1+1/2

)]−1
f
(
uj+1+1/2, vj+1+1/2

)
> wj+1+1/2. (3.13)

Next, we prove wj+2 < w∗. To this end, from (3.2) and (2.14) we have

G
(
wj+1, wj+1+1/2, w

∗) +G3
(
wj+1, wj+1+1/2, w

∗)(wj+2 −w∗) = G
(
wj+1, wj+1+1/2, wj+2

)
= 0,
(3.14)

and this implies

wj+2 −w∗ = −[G3
(
wj+1, wj+1+1/2, w

∗)]−1G
(
wj+1, wj+1+1/2, w

∗). (3.15)

From (3.11), we get

[
G3
(
wj+1, wj+1+1/2, w

∗)]−1 =
[
G3
(
wj+1, wj+1+1/2, wj+1+1/2

)]−1
> 0, (3.16)

Mathematical Problems in Engineering 11

where the first equality can be easily verified from (2.9b). Consider (3.4) and the following
relations:

u∗ ◦ (e − Pvj+1+1/2
) − uj+1+1/2 ◦Φ

(
v∗ − vj+1+1/2

) − u∗ ◦ (e − Pv∗)

= u∗ ◦ [P(v∗ − vj+1+1/2
)] − uj+1+1/2 ◦Φ

(
v∗ − vj+1+1/2

)
> 0,

v∗ ◦ (e −Quj+1+1/2
) − vj+1+1/2 ◦Ψ

(
u∗ − uj+1+1/2

) − v∗ ◦ (e −Qu∗)

= v∗ ◦ [Q(u∗ − uj+1+1/2
)] − vj+1+1/2 ◦Ψ

(
u∗ − uj+1+1/2

)
> 0,

(3.17)

and since uj+1+1/2 < u∗, vj+1+1/2 < v∗, we have G(wj+1, wj+1+1/2, w
∗) > 0; this coupled with

(3.15) and (3.16) gives

wj+2 < w∗. (3.18)

By (3.9), (3.13) and (3.18) we have proved the validity of the first conclusion of Theorem 3.2
for k = j + 1. Therefore, by induction rule we have completed the proof of the first conclusion
of Theorem 3.2.

From the first conclusion of Theorem 3.2, it is obvious that there exist positive vectors
û∗ and v̂∗ such that

lim
k→+∞

uk = lim
k→+∞

uk+1/2 = û∗, lim
k→+∞

vk = lim
k→+∞

vk+1/2 = v̂∗. (3.19)

Therefore, it follows from (2.9a), (2.9b), and (2.14) that

û∗ = û∗ ◦ (Pv̂∗) + e,

v̂∗ = v̂∗ ◦ (Qû∗) + e.
(3.20)

This implies that (û∗, v̂∗) is a positive solution of the vector equations (1.7). According to the
minimal property of (u∗, v∗), it must hold û∗ = u∗ and v̂∗ = v∗.

To finish this section, we compare the efficiency of the TSRN method with the NBJ
method. To this end, we rewrite the original NBJ iteration scheme (1.13a) into the following
form:

Uk+1/2 = Uk+1/2 ◦ [PVk] + e,

Vk+1/2 = Vk+1/2 ◦ [QUk] + e,

Uk+1 = Uk+1 ◦ [PVk+1/2] + e,

Vk+1 = Vk+1 ◦ [QUk+1/2] + e.

(3.21)

Clearly, the TSRNmethod will reduce into the two-step version NBJ method (3.21) ifΨ = Φ =
0 in (2.9b).

The following theorem indicates that the TSRN method is more efficient than the NBJ
method.

12 Mathematical Problems in Engineering

Theorem 3.3. Let both the NBJ method and the TSRN method start with the initial value (0, 0), and
{uk, vk}, {Uk,Vk} be the sequences generated by the TSRN method and the NBJ method, respectively.
Then it holds that

Uk+1/2 < uk+1/2,

Vk+1/2 < vk+1/2,

Uk+1 < uk+1,

Vk+1 < vk+1

(3.22)

for k ≥ 2.

Proof. It is easy to get (u1/2, v1/2) = (U1/2,V1/2) = (e, e). Hence, we have

(u1 − U1) ◦ [e − Pe] = u1/2 ◦ [Φ(v1 − v1/2)],

(v1 − V1) ◦ [e −Qe] = v1/2 ◦ [Ψ(u1 − u1/2)].
(3.23)

This coupled with (2.10), the second conclusion of Lemma 3.1, and the first conclusion of
Theorem 3.2 gives

u1,i > U1,i, if i is odd,

u1,i = U1,i, if i is even,

v1,i > V1,i, if i is even,

v1,i = V1,i, if i is odd.

(3.24)

Since P, Q > 0, it follows from (3.24) that

u2+1/2 ◦ [e − Pv1] = e = U2+1/2 ◦ [e − PV1] > U2+1/2 ◦ [e − Pv1],

v2+1/2 ◦ [e −Qu1] = e = V2+1/2 ◦ [e −QU1] > V2+1/2 ◦ [e −Qu1],
(3.25)

where in the last inequality we used the relation (3.6) and the fact established by [6]—the
sequence {Uk,Vk} is strictly and monotonically increasing and converges to the minimal
positive solution (u∗, v∗). From (3.25), we have u2+1/2 > U2+1/2 and v2+1/2 > V2+1/2.

Consider

u3 ◦ [e − Pv2+1/2] − u2+1/2 ◦ [Φ(v3 − v2+1/2)] = e = U3 ◦ [e − PV2+1/2] > U3 ◦ [e − Pv2+1/2],

v3 ◦ [e −Qu2+1/2] − v2+1/2 ◦ [Ψ(u3 − u2+1/2)] = e = V3 ◦ [e −QU2+1/2] > V3 ◦ [e −Qu2+1/2],
(3.26)

Mathematical Problems in Engineering 13

the we arrive at u3 > U3 and v3 > V3. Therefore, the proof of (3.22) can be completed by using
relations (3.25) and (3.26) repeatedly.

Remark 3.4. Since the NBJ method is more feasible than the NBGS method in parallel
environment, in this paper we only focus on comparing the efficiency between the TSRN
and the NBJ methods.

4. Numerical Results

In this section, we compute the minimal positive solution of the vector equations (1.7) by
the TSRN method, in order to compare numerically the feasibility and effectiveness of this
algorithm with the SI method (1.10) and the NBJ method (1.13a) in the sense of number of
iteration (denoted as “IT”) and elapsed CPU time in seconds (denoted as “CPU”). Clearly,
these methods are very suitable to be performed in parallel environment. We remark that the
Newton type methods coupled with LU-factorization [6, 10], NBGS method (1.13b), and the
modified simple iteration (1.12) are sequential methods and not suitable to be implemented
in parallel environment.

In all experiments, the constants ci and ωi, i = 1, 2, . . . , n, are given by the composite
Gauss-Legendre quadrature formula on the interval [0, 1]. More precisely, the interval [0, 1] is
first divided into subintervals of equal length, and the composite Gauss-Legendre quadrature
formula with 4 nodes is then applied to each subinterval (see [14]). In our implementations,
all iterations start with initial value (0, 0) and are terminated once the current residual error
defined as

ERRk = max
{‖uk − uk ◦ (Pvk) − e‖∞, ‖vk − vk ◦ (Quk) − e‖∞

}
(4.1)

satisfies ERRk ≤ 10−13. All codes are performed in MATLAB (version 7.0) on an Intel (R)
Pentium (R) Dual E2110 @ 1.4 GHz PC with memory 1GB.

To make a fair comparison, we rewrite equivalently the SI method (1.10) into two-step
fashion as follows:

uk+1/2 = uk ◦ [Pvk] + e,

vk+1/2 = vk ◦ [Quk] + e,

uk+1 = uk+1/2 ◦ [Pvk+1/2] + e,

vk+1 = vk+1/2 ◦ [Quk+1/2] + e,

(4.2)

and the vectors uk+1/2, vk+1/2 and uk+1, vk+1 are explicitly computed in elementwise as

uk+1/2,i = uk,i[Pvk]i + 1,

vk+1/2,i = vk,i[Quk]i + 1,

uk+1,i = uk+1/2,i[Pvk+1/2]i + 1,

vk+1,i = vk+1/2,i[Quk+1/2]i + 1, i = 1, 2,

(4.3)

14 Mathematical Problems in Engineering

Table 1: Numerical results for n = 32 and different (α, c).

(α, c)
Method (0.1, 0.9) (0.001, 0.995) (10−5, 1 − 2 × 10−5) (10−7, 1 − 10−7) (10−12, 1 − 10−12)

SI 37 181 2377 24405 71486
IT NBJ 20 84 1040 10609 31092

TSRN 20 81 1029 10499 30662
SI 0.018 0.035 0.29 2.7 7.443

CPU NBJ 0.001 0.026 0.210 1.551 3.525
TSRN 0.001 0.015 0.110 1.270 3.063

Table 2: Numerical results for (α, c) = (10−7, 1) and different n.

n

Method 8 16 32 64 128 256 512 1024
SI 70317 71076 71494 71697 71796 71889 71931 72014

IT NBJ 32090 31401 31123 30932 30724 30743 30742 30771
TSRN 30945 30713 30664 30643 30637 30639 30678 30715
SI 5.503 5.971 7.450 12.540 26.587 108.811 466.51 1799.747

CPU NBJ 2.687 2.865 3.441 6.437 11.501 47.355 203.578 751.886
TSRN 2.392 2.525 3.237 5.608 10.568 46.458 201.795 735.711

The NBJ method is also performed in two-step fashion as defined in (3.21) and the vectors
are computed in elementwise as:

uk+1/2,i =
1

1 − [Pvk]i
,

vk+1/2,i =
1

1 − [Quk]i
,

uk+1,i =
1

1 − [Pvk+1/2]i
,

vk+1,i =
1

1 − [Quk+1/2]i
, i = 1, 2,

(4.4)

Example 4.1. In Table 1, for the fixed problem size n = 32 but different pairs of (α, c), and in
Table 2 for the fixed (α, c) = (10−7, 1) but different problem size n, we list ITs and CPUs for
the SI, NBJ and TSRN methods, respectively.

We see clearly in Table 1 that with fixed problem size, the TSRN method converges
faster than the SI and NBJ methods, and as α converges to 0 and c converges to 1, the
advantages of the TSRNmethod aremore significant. Moreover, for each pair (α, c), the TSRN
method needs less CPU time than the SI and NBJ methods, even through the former needs a
little more flops at each iteration. When the parameters α and c are fixed, as the problem size
n becomes large, the performance of the TSRN method and the NBJ method becomes close,
as shown in Table 2.

Mathematical Problems in Engineering 15

Table 3: Numerical results for n = 256 and different (a,c).

(α, c)
Method (0.01, 0.99) (10−6, 1 − 3 × 10−6) (10−7, 1 − 10−7) (10−8, 1 − 10−9) (10−9, 1 − 10−9)

NBJ 61 2417 10514 29465 29536
IT TSRN 60 2411 10489 29339 29310

TSRN∗ 46 1976 8612 24106 24114
NBJ 0.109 3.783 16.058 45.401 47.972

CPU TSRN 0.098 3.581 15.121 43.948 44.770
TSRN∗ 0.065 2.981 13.242 36.725 36.845

Table 4: Numerical results for (α, c) = (5 × 10−9, 1 − 3 × 10−9) and different n.

n

Method 8 16 32 64 128 256 384 960
NBJ 28552 27834 27476 27329 27276 27275 27234 27211

IT TSRN 27409 27205 27146 27130 27133 27143 27158 27196
TSRN∗ 23071 22659 22466 22363 22333 22325 22322 22342
NBJ 2.278 2.827 3.107 5.081 12.481 42.595 95.803 480.821

CPU TSRN 2.115 2.447 2.997 4.758 10.921 40.984 92.919 472.829
TSRN∗ 1.778 1.971 2.503 3.958 8.750 33.970 76.889 441.720

Example 4.2. In the end of the work of this paper, we have constructed another two-step
relaxation Newton algorithm (denoted as TSRN∗ for themoment)with the splitting functions
F and G defined as

F(wk+1/2, wk) =

(
uk+1/2 − uk+1/2 ◦ [Pvk] − e

vk+1/2 − vk+1/2 ◦ [Quk] − e

)
, (4.5a)

G(wk,wk+1/2, wk+1) =

(
uk+1−uk+1 ◦ [Pvk]−(uk+1/2 ◦ [P(vk+1/2−vk)]+Q(uk+1/2−uk))−e
vk+1−vk+1 ◦ [Quk]−(vk+1/2 ◦ [Q(uk+1/2−uk)]+P(vk+1/2−vk))−e

)
.

(4.5b)

With these two splitting functions, we list in Table 3, for fixed problem size n = 256 but
different (α, c), and in Table 4 for fixed (α, c) = (5 × 10−9, 1 − 3 × 10−9) but different problem
size, ITs and CPUs for the NBJ, TSRN and TSRN∗ methods (from the numerical results given
in the previous example we believe that the NBJ and TSRN, methods converge faster than the
SI method, and thus at the moment we omit the comparison of the TSRN∗ method with the
SI method).

For each problem size n and (α, c) tested in Tables 3 and 4, it holds that

max{‖UTSRN −UTSRN∗‖∞, ‖VTSRN − VTSRN∗‖∞} ≤ 10−14, (4.6)

whereUTSRN, VTSRN andUTSRN∗ , VTSRN∗ are the converged vectors generated by the TSRN and
TSRN∗ methods, respectively. Therefore, the TSRN∗ method really converges to the minimal
positive solution of the vector equations (1.7). Moreover, from the numerical results listed

16 Mathematical Problems in Engineering

in Tables 3 and 4, we see clearly that the TSRN∗ method performs much better than the
TSRN and NBJ methods. Unfortunately, at the moment we cannot prove theoretically the
convergence of the TSRN∗ method to the minimal positive solution of the vector equations
(1.7).

Acknowledgments

This work was supported by the NSF of China (no. 10971077) and by the program for NCET,
the State Education Ministry of China.

References

[1] R. Bellman and G. M. Wing, An Introduction to Invariant Imbedding, JohnWiley & Sons, New York, NY,
USA, 1975.

[2] J. Juang, “Existence of algebraic matrix Riccati equations arising in transport theory,” Linear Algebra
and Its Applications, vol. 230, pp. 89–100, 1995.

[3] J. Juang and I. Chen, “Iterative solution for a certain class of algebraic matrix Riccati equations arising
in transport theory,” Transport Theory and Statistical Physics, vol. 22, no. 1, pp. 65–80, 1993.

[4] J. Juang and W.-W. Lin, “Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices,”
SIAM Journal on Matrix Analysis and Applications, vol. 20, no. 1, pp. 228–243, 1999.

[5] J. Juang and Z. T. Lin, “Convergence of an iterative technique for algebraic matrix Riccati equations
and applications to transport theory,” Transport Theory and Statistical Physics, vol. 21, no. 1-2, pp. 87–
100, 1992.

[6] Z.-Z. Bai, Y.-H. Gao, and L.-Z. Lu, “Fast iterative schemes for nonsymmetric algebraic Riccati
equations arising from transport theory,” SIAM Journal on Scientific Computing, vol. 30, no. 2, pp. 804–
818, 2008.

[7] L. Bao, Y. Lin, and Y. Wei, “A modified simple iterative method for nonsymmetric algebraic Riccati
equations arising in transport theory,” Applied Mathematics and Computation, vol. 181, no. 2, pp. 1499–
1504, 2006.

[8] Y. Q. Lin, L. Bao, and Y.Wei, “AmodifiedNewtonmethod for solving non-symmetric algebraic Riccati
equations arising in transport theory,” IMA Journal of Numerical Analysis, vol. 28, no. 2, pp. 215–224,
2008.

[9] L.-Z. Lu, “Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in
transport theory,” SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 3, pp. 679–685, 2005.

[10] L.-Z. Lu, “Newton iterations for a non-symmetric algebraic Riccati equation,”Numerical Linear Algebra
with Applications, vol. 12, no. 2-3, pp. 191–200, 2005.

[11] P. Nelson, “Convergence of a certain monotone iteration in the reflectionmatrix for a non-multiplying
half-space,” Transport Theory and Statistical Physics, vol. 13, no. 1-2, pp. 97–106, 1984.

[12] A. Shimizu and K. Aoki, Application of Invariant Embedding to Reactor Physics, Academic Press, New
York, NY, USA, 1972.

[13] Z.-Z. Bai, X.-X. Guo, and S.-F. Xu, “Alternately linearized implicit iteration methods for the minimal
nonnegative solutions of the nonsymmetric algebraic Riccati equations,”Numerical Linear Algebra with
Applications, vol. 13, no. 8, pp. 655–674, 2006.

[14] C.-H. Guo and A. J. Laub, “On the iterative solution of a class of nonsymmetric algebraic Riccati
equations,” SIAM Journal on Matrix Analysis and Applications, vol. 22, no. 2, pp. 376–391, 2000.

[15] C.-H. Guo, “Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-
matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 1, pp. 225–242, 2001.

[16] X.-X. Guo, W.-W. Lin, and S.-F. Xu, “A structure-preserving doubling algorithm for nonsymmetric
algebraic Riccati equation,” Numerische Mathematik, vol. 103, no. 3, pp. 393–412, 2006.

[17] C.-H. Guo, B. Iannazzo, and B. Meini, “On the doubling algorithm for a (shifted) nonsymmetric
algebraic Riccati equation,” SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 4, pp. 1083–
1100, 2007.

[18] G. H. Golub and C. F. van Loan,Matrix Computations, Johns Hopkins University Press, Baltimore, Md,
USA, 3rd edition, 1996.

Mathematical Problems in Engineering 17

[19] Y. Q. Lin, “A class of iterative methods for solving nonsymmetric algebraic Riccati equations arising
in transport theory,” Computers & Mathematics with Applications, vol. 56, no. 12, pp. 3046–3051, 2008.

[20] S. Wu, C. M. Huang, and Y. Liu, “Newton waveform relaxation method for solving algebraic
nonlinear equations,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 553–560, 2008.

[21] S. L. Wu, B. C. Shi, and C. M. Huang, “Relaxation Newton iteration for a class of algebraic nonlinear
systems,” International Journal of Nonlinear Science. In press.

