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1. Introduction

It is known that various problems in fluid mechanics (dynamics, elasticity) and other areas
of physics lead to fractional partial differential equations. Methods of solutions of problems
for fractional differential equations have been studied extensively by many researchers (see
[1–11]).

The variational iteration method (VIM), which was proposed by He (see, e.g., [12–
21]), was successfully applied to autonomous ordinary and partial differential equations and
other fields. He [15] was the first research who applied the VIM to fractional differential
equations. Odibat and Momani [22] extended the application of this method to provide
approximate solutions for initial value problems of nonlinear partial differential equations
of fractional order. VIM [23–25] is relatively a new approach to provide an analytical
approximation to linear and nonlinear problems which is particularly valuable tools for
scientists and applied mathematicians. Yulita et al. [26] used the VIM to obtain analytical
solutions of fractional heat- and wave-like equations with variable coefficients. In the
Ashyralyev et al. [27], the mixed boundary value problem for the multidimensional fractional
hyperbolic equation is considered. The first order of accuracy in t and the second order of
accuracy in space variables for the approximate solution of problem were presented. The



2 Mathematical Problems in Engineering

stability estimates for the solution of this difference scheme and its first- and second-order
difference derivatives were established. A procedure of modified Gauss elimination method
[28] was used for solving this difference scheme in the case of one-dimensional fractional
hyperbolic partial differential equations.

In this paper, we apply variational iteration method to fractional hyperbolic partial
differential equations and then we compare the results with those obtained using modified
Gauss elimination method [27].

2. Definitions

Definition 2.1. A reel function f(x), x > 0, is said to be in the space CM, M ∈ R, if there exists
a real number p(> M), such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞), and it is said to be
in the space Cm

M if fm ∈ CM, m ∈N.

Definition 2.2. If f(x) ∈ C[a, b] and a < x < b, then

Iαa+f(x) =
1

Γ(α)

∫x
a

f(t)

(x − t)1−α dt, (2.1)

where −∞ < α <∞ is called the Riemann-Liouville fractional integral operator of order α.

Definition 2.3. For 0 < α < 1, we let

Dα
a+f(x) =

1
Γ(1 − α)

d

dx

∫x
a

f(t)
(x − t)α

dt, (2.2)

which is called the Riemann-Liouville fractional derivative operator of order α.

3. Variational teration Method

In the present paper, the mixed boundary value problem for the multidimensional fractional
hyperbolic equation

∂2u(x, t)
∂t2

−
m∑
r=1

(ar(x)uxr )xr +D
1/2
t u(x, t) = f(x, t),

x = (x1, . . . , xm) ∈ Ω, 0 < t < 1,

u(x, 0) = 0, ut(x, 0) = 0, x ∈ Ω,

u(x, t) = 0, x ∈ S

(3.1)

is considered. Here Ω is the unit open cube in the m-dimensional Euclidean space R
m : Ω =

{x = (x1, . . . , xm) : 0 < xj < 1, 1 ≤ j ≤ m} with boundary S, Ω = Ω ∪ S, ar(x), (x ∈ Ω), and
f(x, t) (t ∈ (0, 1), x ∈ Ω) are given smooth functions and ar(x) ≥ a > 0.
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The correction functional for (3.1) can be approximately expressed as follows:

un+1(x, t) = un(x, t) +
∫ t

0
λ

[
∂2u(x, s)
∂s2

−
m∑
r=1

(ar(x)ũxr )xr +D
1/2
s ũ(x, s) − f(x, s)

]
ds, (3.2)

where λ is a general Lagrangian multiplier [29] and ũ is considered as a restricted variation
as a restricted variation [21], that is, δũ = 0, and u0(x, t) is its initial approximation. Using the
above correction functional stationary and noticing that δũ = 0, we obtain

δun+1(x, t) = δun(x, t) +
∫ t

0
δλ

[
∂u2

n(x, s)
∂s2

]
ds,

δun+1(x, t) = δun(x, t) −
∂λ

∂s
δun(x, s)

∣∣∣∣
s=t

+ λ
∂

∂s
δun(x, s)

∣∣∣∣
s=t

+
∫ t

0

∂2λ(t, s)
∂s2

δun(x, s)ds = 0.

(3.3)

From the above relation for any δun, we get the Euler-Lagrange equation:

∂λ2(t, s)
∂s2

= 0 (3.4)

with the following natural boundary conditions:

1 − ∂λ(t, s)
∂s

∣∣∣∣
s=t

= 0,

λ(t, s)|s=t = 0.

(3.5)

Therefore, the Lagrange multiplier can be identified as follows:

λ(t, s) = s − t. (3.6)

Substituting the identified Lagrange multiplier into (3.2), following variational iteration
formula can be obtained:

un+1(x, t) = un(x, t) +
∫ t

0
(s − t)

[
∂2u(x, s)
∂s2

−
m∑
r=1

(ar(x)uxr )xr +D
1/2
s u(x, s) − f(x, s)

]
ds.

(3.7)

In this case, let an initial approximation be u0(x, t) = u(x, 0) + tut(x, 0). Then approximate
solution takes the form u(x, t) = limn→∞un(x, t).
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3.1. The Difference Scheme

The discretization of problem (3.1) is carried out in two steps. In the first step, let us define
the grid space

Ω̃h =
{
x = xr = (h1r1, . . . , hmrm), r = (r1, . . . , rm), 0 ≤ rj ≤Nj, hjNj = 1, j = 1, . . . , m

}
,

Ωh = Ω̃h ∩Ω, Sh = Ω̃h ∩ S.
(3.8)

We introduce the Banach space L2h = L2(Ω̃h) of the grid functions ϕh(x) = {ϕ(h1r1, . . . , hmrm)}
defined on Ω̃h, equipped with the norm

∥∥∥ϕh
∥∥∥
L2(Ω̃h)

=

⎛
⎝∑

x∈Ωh

∣∣∣ϕh(x)
∣∣∣2h1 · · ·hm

⎞
⎠

1/2

. (3.9)

To the differential operator Ax generated by problem (3.1), we assign the difference operator
Ax
h

by the formula

Ax
hu

h
x = −

m∑
r=1

(
ar(x)uhxr

)
xr ,jr

(3.10)

acting in the space of grid functions uh(x), satisfying the conditions uh(x) = 0 for all x ∈ Sh.
It is known that Ax

h is a self-adjoint positive definite operator in L2(Ω̃h). With the help of Ax
h

we arrive at the initial boundary value problem

d2vh(x, t)
dt2

+Ax
hv

h(x, t) +D1/2
t vh(x, t) = fh(x, t), 0 ≤ t ≤ 1, x ∈ Ωh,

vh(x, 0) = 0,
dvh(x, 0)

dt
= 0, x ∈ Ω̃

(3.11)

for an finite system of ordinary fractional differential equations.
In the second step, applying the first order of approximation formula

(1/
√
π)
∑k

m=1(Γ(k − m + 1/2)/(k − m)!)((u(tk) − u(tk−1))/τ1/2) for D1/2
t u(t) and using
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the first order of accuracy stable difference scheme for hyperbolic equations (see [30]), one
can present the first order of accuracy difference scheme:

uh
k+1(x)− 2uh

k(x) + u
h
k−1(x)

τ2
+Ax

hu
h
k+1 +

1√
π

k∑
m=1

Γ(k −m + 1/2)
(k −m)!

(
uhm − uhm−1

)

τ1/2
= fhk (x), x ∈ Ω̃h,

fhk (x) = f(xn, tk), tk = kτ, 1 ≤ k ≤N − 1, Nτ = 1,

uh1(x) − u
h
0(x)

τ
= 0, uh0(x) = 0, x ∈ Ω̃h

(3.12)

for the approximate solution of problem (3.1). Here Γ(k −m + 1/2) =
∫∞

0 t
k−m−1/2e−tdt.

3.2. Example 1

For the numerical result, the mixed problem

D2
t u(x, t) −D

1/2
t u(x, t) − uxx(x, t) = f(x, t),

f(x, t) =

(
2 − 8t3/2

3
√
π

+ (πt)2

)
sinπx, 0 < t, x < 1,

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1

(3.13)

for solving the one-dimensional fractional hyperbolic partial differential equation is
considered.

According to the formula (3.7), the iteration formula for (3.13) is given by

un+1(x, t) = un(x, t) +
∫ t

0
(s − t)

[
∂u2

n(x, s)
∂s2

−D1/2
s un(x, s) −

∂u2
n(x, s)
∂x2

−
(

2 − 8s3/2

3
√
π

+ (πs)2

)
sin(πx)

]
ds.

(3.14)

Now we start with an initial approximation:

u0(x, t) = u(x, 0) + tut(x, 0). (3.15)
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Using the above iteration formula (3.14), we can obtain the other components as

u0(x, t) = 0,

u1(x, t) =

(
− 128

420
√
π
t7/2 +

π2t4

12
+ t2
)

sin(πx),

u2(x, t) =
1

41580
√
π

sin(πx)t5/2[512π2t3 + 12672t − 693
√
πt5/2]

+
128

10395
sin(πx)t11/2π3/2 − 1

360
π4 sin(πx)t6 − 1

12
π2 sin(πx)t4

+
1

420
√
π

[
−128t7/2 + 35π5/2t4 + 420t2

√
π
]

sin(πx),

...

(3.16)

and so on; in the same manner the rest of the components of the iteration formula (3.14) can
be obtained using the Maple package.

3.3. Example 2

We consider one-dimensional fractional hyperbolic partial differential equation as follows:

D2
t u(x, t) +D

1/2
t u(x, t) − uxx(x, t) + u(x, t) = f(x, t),

f(x, t) =
(
2
(
1 − x − exp(−x)

))
+

8t3/2

3
√
π

(
1 − x − exp(−x)

)
+ (1 − x)t2x, 0 < t, x < 1,

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1) = 0, 0 ≤ t ≤ 1.

(3.17)

The iteration formula for (3.17) is given by

un+1(x, t) = un(x, t) +
∫ t

0
(s − t)

[
∂u2

n(x, s)
∂s2

+D1/2
s un(x, s) −

∂u2
n(x, s)
∂x2

+ u(x, s)

−
[(

2
(
1 − x − exp(−x)

))

+
8t3/2

3
√
π

(
1 − x − exp(−x)

)
+ (1 − x)t2

]]
ds.

(3.18)
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Figure 1: The surface shows the exact solution u(x, t) for (3.13).
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Figure 2: Difference scheme solution [27] for (3.13).
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Figure 3: Variational iteration method for (3.13).
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Figure 4: The surface shows the exact solution u(x, t) for (3.17).

When an initial approximation is u0(x, t) = u(x, 0) + tut(x, 0), we have the other components
as

uo(x, t) = 0,

u1(x, t) =
(
1 − x − exp(−x)

)( 32
105

t7/2 + t2
)
+
t4

12
(1 − x),

u2(x, t) =
(
1 − x − exp(−x)

)( 32
105

t7/2 + t2
)
+
t4

12
(1 − x)

+
1

420
[
128t7/2(−1 + x + exp(−x)

)
+ 35t4(x − 1) + 420t2

(
−1 + x + exp(−x)

)]

+
1

41580
√
π

[
12672t7/2(−1 + x + exp(−x)

)
+512t11/2(−1 + x) + 693t5

(
−1 + x + exp(−x)

)]

− 1
41580

(
512 exp(−x)t11/2 + 3465t4 exp(−x)

)

+
1

83160
[
1024t11/2(−1 + x + exp(−x)

)
+ 231t6(−1 + x)+ 6930t4

(
−1 + x + exp(−x)

)]

− 1
420
√
π

[
128t7/2(−1 + x + exp(−x)

)
+ 35t4

√
π(−1 + x)

+420t2
√
π
(
−1 + x + exp(−x)

)]
...

(3.19)

and so on. For (3.18), the rest of the components of the iteration formula can be obtained
using the Maple 10 package.
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Figure 5: Variational iteration method for (3.17).

4. Conclusions

Variational iteration method is a powerful and efficient technique in finding exact
and approximate solutions for one-dimensional fractional hyperbolic partial differential
equations. The solution procedure is very simple by means of variational theory, and only
a few steps lead to highly accurate solutions which are valid for the whole solution domain.
The results of applying variational iteration method are exactly the same as those obtained
by modified Gauss elimination method [27]. All Computations are performed by Maple 10
package program.

Figure 1 shows the exact solution of (3.13). Figure 2 shows difference scheme solution
of (3.13). Figure 3 shows approximate solution by VIM for (3.13). Figure 4 shows the exact
solution of (3.17). Figure 5 shows approximate solution by VIM for (3.17).
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