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We present modeling and analysis for the static behavior and collapse instabilities of doubly-
clamped and cantilever microbeams subjected to capillary forces. These forces can be as a result
of a volume of liquid trapped underneath the microbeam during the rinsing and drying process
in fabrication. The model considers the microbeam as a continuous medium, the capillary force
as a nonlinear function of displacement, and accounts for the mid-plane stretching and geometric
nonlinearities. The capillary force is assumed to be distributed over a specific length underneath
the microbeam. The Galerkin procedure is used to derive a reduced-order model consisting of
a set of nonlinear algebraic and differential equations that describe the microbeams static and
dynamic behaviors. We study the collapse instability, which brings the microbeam from its unstuck
configuration to touch the substrate and gets stuck in the so-called pinned configuration. We
calculate the pull-in length that distinguishes the free from the pinned configurations as a function
of the beam thickness and gap width for both microbeams. Comparisons are made with analytical
results reported in the literature based on the Ritz method for linear and nonlinear beam models.
The instability problem, which brings the microbeam from a pinned to adhered configuration
is also investigated. For this case, we use a shooting technique to solve the boundary-value
problem governing the deflection of the microbeams. The critical microbeam length for this second
instability is also calculated.

Copyright q 2009 H. M. Ouakad and M. I. Younis. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and Background

Wet etching of sacrificial layers to release microbeams from the substrate is an important
step in the fabrication of many microelectromechanical systems (MEMS) structures and
devices. During drying, the rinse liquid trapped underneath the microbeams creates strong
capillary forces pulling them toward the substrate. Because of their large surface areas, those
microbeams can permanently get stuck to the substrate if the capillary forces are greater than
their restoring forces. If the resorting force of a microbeam cannot resist the capillary force, it
collapses hitting the substrate. This is similar to the pull-in instability when the microbeam is
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Figure 1: The possible scenarios for the configuration of a cantilever microbeam under the effect of capillary
forces.

actuated by electrostatic forces [1–3]. In order for the microbeam to get stuck to the substrate,
it needs to overcome another critical instability limit, which distinguishes microbeams that
adheres to the substrate when collapsed from those that can pull back to their free position.

To clarify the various instabilities due to capillary forces, we consider as an example
a cantilever microbeam with a volume of liquid trapped underneath it, Figure 1. The
microbeam under the effect of capillary forces can take one of the following three
configurations depending on its stiffness and the capillary force distribution.

(a) Free-standing configuration. The microbeam is not in contact with the substrate,
Figure 1(a). In this case, it deflects and maintains equilibrium with the capillary force.

(b) Pinned configuration. In this case, the capillary force overcomes the stiffness of the
cantilever beam causing it to collapse. One of the possible post-collapse scenarios is that the
microbeam makes a contact with the substrate at its tip, where it is pinned and stuck. At
this instance, the stiffness of the microbeam becomes capable of opposing the capillary force
underneath; hence the microbeam stays in this configuration in equilibrium, Figure 1(b).

(c) Adhered (stuck) configuration. In this case, the capillary force is so strong that it
overcomes the restoring force of the microbeam in configuration (Figure 1(b)) to bring it to
configuration (Figure 1(c)), where part of the microbeam becomes adhered to the substrate.
The contact length of the cantilever beam varies with the microbeam length, stiffness, and
also with the distribution of the capillary force. This paper is concerned with analyzing the
stability of doubly clamped and cantilever microbeams while going from the unstuck to
pinned configuration (Figure 1(a)→ Figure 1(b)) and from the pinned to the adhered one
(Figure 1(b)→ Figure 1(c)) of a cantilever beam.

There has been a major focus in literature on modeling structures under the effect
of capillary forces. Some studies [4–6] attempted to extract the stiction force and predict
microbeams behavior before and after collapse. In-use stictions after the dry process for
microcantilevers were investigated experimentally in several works [4, 7]. Others studies
[8–13] treated the stiction failure phenomena and described several modeling methods and
approaches (surface interaction energy approach [8], vibration and dynamic fracture models
[9], structural analysis methods [10, 11], and experimental models [12, 13]) to overcome
this failure. The adhesion configuration was investigated experimentally [14], in which
the transitions from initially undeformed cantilevers to pinned and adhered beams were
quantified using a nanoindenter machine.

Instabilities that microbeams undergo under the effect of electrostatic forces, which
are similar to those due to capillary forces, were treated in many studies [1, 2, 15, 16].
For example, Knapp and De Boer [15] developed a model of the adhesion problem
of microcantilevers. The collapse problem due to electrostatic forces, called the pull-
in phenomenon, was also investigated in several works for both clamped-clamped and
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cantilever microbeams [1, 2]. Other studies [1, 16] analyzed the instabilities problems due
to electrostatic forces beyond the pull-in phenomenon for simple microcantilevers.

Many studies also dealt with the problem of microstructure stiction under the effect of
humidity. De Boer et al. [17] characterized the adhesion of surface micromachined polysilicon
beams subject to controlled humidity ambient. They studied the effect of the relative
humidity on the adhesion for these beams under equilibrium conditions. They demonstrated
that adhesion increases exponentially with the relative humidity. De Boer and Michalske
[18] demonstrated, using surface micromachined samples, the accurate measurement of
cantilever beam adhesion by using test structures, which are adhered over long attachment
lengths.

The collapse and adhesion problems due to capillary forces have been investigated for
both cantilever and clamped-clamped microbeams [19–22]. Mastrangelo and Hsu [19, 20]
applied energy methods and the Ritz technique on an Euler-Bernoulli beam model to
determine critical lengths of microbeams, such as the pull-in length, in attempts to determine
when a microstructure can collapse and get stuck. In the Ritz method, a single trial function
was used in the model. They used both a linear and a nonlinear beam model, which accounts
for the mid-plane stretching nonlinearity in doubly clamped microbeams. They compared
between their theoretical results and experimental data for critical lengths of doubly clamped
and cantilever microbeams where they showed good agreement among the results except for
some data where the nonlinear behavior is strong. Legtenberg et al. [21] presented linear
models and analysis to study the effect of capillary forces on the microbeams stability.
They used approximate analytical technique (Rayleigh-Ritz method) based on one trial
trigonometric function to study the effect of capillary forces on microbeams and how this
could lead to collapse failures.

This paper focuses on microbeams, particularly doubly clamped (bridges) and
cantilever, because of their common use in MEMS. By reviewing the state of the art, we
can see that the collapse problem due to capillary forces has been investigated for both
cantilever and clamped-clamped microbeams [19–22]. From these significant contributions,
nondimensional numbers, such as the elastocapillary number, as well as critical lengths of
microbeams, such as the pull-in length, were introduced in attempts to determine when a
microstructure can collapse and get stuck and what can be done to improve its design to
prevent stiction. However, the following can be observed on the theoretical work presented
so far.

(i) The models and theoretical analysis were based on approximate analytical
techniques, particularly the Ritz method. In this method, the deflection of the
microbeam is approximated using a series of trial functions.

(ii) In the literature, a single function has been used in the Ritz series. This has been
done without investigating if using a single term in the series leads to converged
and accurate results.

(iii) There has been no investigation to whether the chosen trial function (algebraic or
trigonometric) yields the most accurate prediction or if it is the best choice among
other function types.

In previous works [1, 23, 24], we developed computational approaches (shooting
technique, reduced-order models) to investigate the static and dynamic behavior of
microbeams (clamped-clamped and cantilever) under the actuation of electrostatic loads. In
this work we extend those approaches and reduced-order models to investigate the collapse
problems of doubly clamped and cantilever microbeams due to capillary forces.
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Figure 2: Schematic of the doubly clamped microbeam under the effect of capillary forces.

The organization of this paper is as follows. In Section 2, we study the collapse
problem of a doubly clamped microbeam from the unstuck to the pinned configuration. In
Section 3, we conduct a similar investigation for cantilever microbeams. Section 4 presents a
model and analysis for the static behavior and collapse instability of cantilever microbeams
while going from the pinned to the adhered configuration.

2. The Collapse Problem for a Clamped-Clamped Microbeam

In this section, we study the collapse problem of a doubly clamped microbeam due to
a capillary force. This instability takes the microbeam from the unstuck configuration,
Figure 1(a), to the pinned configuration, Figure 1(b).

2.1. Modeling

Figure 2 shows a doubly clamped microbeam with a droplet of liquid trapped underneath
it inducing a capillary force. This force is partially distributed underneath the beam over its
length between x̃1 and x̃2. The fluid has a surface tension γ and it forms an angle θ with
both the beam and the substrate. Since both the beam and the substrate are made with the
same material and they are considered to be highly hydrophilic surfaces, θ is taken to be
zero for the beam-fluid and fluid-substrate interfaces (perfect wetting condition). The initial
distance separating the microbeam from the substrate is d. The microbeam is modeled as a
linear prismatic Euler-Bernoulli beam of width b, thickness h, length L, Young’s modulus E,
density ρ, cross section area A = bh, and area moment of inertia I = bh3/12. We denote by Ñ
the induced axial load on the beam, which can be due to residual stresses. We let w(x) be the
beam displacement at location x. Note that the Meniscus effects are neglected.

For a given point on the beam-liquid and the liquid-substrate interface, there exists
a local capillary force Fcap of a magnitude proportional to γ cos(θ) (Young-Dupré equation
[25]), and a direction perpendicular to the beam width z [25]. Assuming the microbeam and
the underneath substrate can be treated as two parallel rigid plates; the capillary force per unit
length acting on the microbeam can be expressed as

−→
F =

∫b
0Fcap

−→
dz. In addition, the capillary

force is assumed to satisfy the following [25]:

(i) The capillary force makes an angle θ with the unit vector that is normal to the
surface of the fluid, where θ is the contact angle as shown in Figure 2.
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(ii) The magnitude of the force |−→F | is given by γAc/r, where r is the distance between
the microbeam and the substrate and Ac is the area of contact between the
microbeam and the fluid. Under the action of capillary forces, the microbeam
deflects changing the distance r, which in turns changes the magnitude of the
capillary force. This will cause further deflection of the microbeam. This pattern
continues until equilibrium is reached between the microbeam and the capillary
force. To account for the change in r, we follow Legtenberg et al. [21] and modify
the capillary force expression to become F = 2γb cos(θ)/(d −w).

In addition to these assumptions, we will not assume the volume of fluid trapped
underneath the beam to be constant while the beam is being deflected. This implies that there
will be some leakage of fluid across the beam width during its deflection.

Based on the above, the equation of motion and associated boundary conditions of the
microbeam shown in Figure 2 can be expressed as [21]

EI
∂4w

∂x4
=

[
EA

2L

∫L

0

(
∂w

∂x

)2

dx + Ñ

]
∂2w

∂x2
+

2γb cos θ
(d −w)

[u(x − x̃1) − u(x − x̃2)],

w(0) = w(L) = 0,
∂w

∂x
(0) =

∂w

∂x
(L) = 0,

(2.1)

where u is the Heaviside function.
For convenience, we introduce the following nondimensional variables:

ŵ =
w

d
; x̂ =

x

L
. (2.2)

In nondimensional forms, and while dropping the hats, (2.1) become

∂4w

∂x4
=

[
α1

∫1

0

(
∂w

∂x

)2

dx +N

]
∂2w

∂x2
+

α2

(1 −w)
[u(x − x1) − u(x − x2)], (2.3)

w(0) = 0, w(1) = 0,
∂w

∂x
(0) = 0,

∂w

∂x
(1) = 0, (2.4)

where

α1 = 6
(
d

h

)2

, α2 =
2γb cos(θ)L4

EId2
, N =

ÑL2

EI
, x1 =

x̃1

L
, x2 =

x̃2

L
. (2.5)

Next, (2.3) and (2.4) are discretized using a Galerkin procedure to yield a reduced-
order model (ROM) [23, 24]. First, (2.3) is multiplied by (1 − w). Then we approximate the
microbeam deflection as

w(x) =
n∑
i=1

aiφi(x) (2.6)
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where φi(x) (i = 1, 2, . . . , n) are the normalized mode shapes of the considered microbeam
and ai (i = 1, 2, . . . , n) are nontime varying constant coefficients. Because of the symmetric
nature of a doubly clamped microbeam and the capillary forces, only symmetric (odd) mode
shapes are used.

Substituting (2.6) into the resulting equation, multiplying by φi(x), using the
orthogonality conditions of the mode shapes , and integrating numerically the outcome from
0 to 1, yields the reduced-order model:

∫1

0

{[
1 −

n∑
i=1

aiφi(x)

][
n∑
i=1

ui(t)φiv
i (x)

]
φj(x)dx

}

= α2

∫1

0
φj(x)[u(x − x1) − u(x − x2)]dx + α1

⎛⎝∫1

0

⎧⎨⎩
[

n∑
i=1

aiφ
′
i(x)

]2
⎫⎬⎭dx +N

⎞⎠
×
(∫1

0

{[
1 −

n∑
i=1

aiφi(x)

][
n∑
i=1

aiφ
′′
i (x)

]
φj(x)dx

})
, j = 1, . . . , n.

(2.7)

The obtained ROM contains a system of nonlinear algebraic equations that can be solved
numerically using Newton-Raphson method to obtain ai and hence the static deflection of
the microbeam.

2.2. Results

Next, results are presented for the static deflection of the doubly clamped microbeam due
to capillary forces. First, the convergence of the ROM is examined as the number of modes
is increased, that is, the number of modes needed in (2.6) for convergence is determined.
We consider here a microbeam of 100μm length, 10μm width, 1.5μm thickness, and a gap
width underneath equals to 1.18μm. Young’s modulus is set equal to 169 GPa. The applied
axial load N and the angle formed by the fluid and the microbeam are set equal to zero. The
fluid surface tension is assumed to be equal to 0.073 N/m. Figure 3 shows the normalized
maximum deflection of the considered microbeam using the ROM for different number of
modes (first few) and while varying the capillary force distribution for the case of x1 = x2.
It follows from Figure 3 that the use of three symmetric modes yields converged results. As
seen from Figure 3, the microbeam exhibits collapse instability at a specific threshold of liquid
volume, where the slope of the curve approaches infinity, as predicted by Mastrangelo and
Hsu [19].

Next, we assume complete wetted area underneath the beam and calculate the length
where a microbeam undergoes its first instability from the free to the pinned configuration
(pull-in length). First, a linear beam theory is assumed; hence the nonlinear mid-plane
stretching term in (2.3) is set equal to zero. To estimate the pull-in length, the static deflection
of the microbeam is calculated for various beam lengths (Figure 4). When the slope of the
maximum displacement-length curve approaches infinity, the length of the curve where it
ends is identified as the pull-in length. At this instant, the eigenvalue of the static-problem
approaches zero, similar to the case of electrostatic force [1, 23], indicating reaching the pull-
in length. This procedure is repeated for various values of thicknesses h and gap widths d,
which lumped in the parameter (d2h3)1/4 [19, 21].
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Figure 3: The normalized maximum deflection of the doubly clamped microbeam versus the normalized
liquid distribution using the ROM for different number of modes. In the figure, a symmetric distribution
for the liquid is assumed (x1 = x2). Here α1 = 3.71 and α2 = 220.6.
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Figure 4: The normalized maximum deflection versus the beam length using the ROM (three modes) for
completely wetted beam of 10μm width for the case of (d2h3)1/4 = 2μm5/4. Here α1 is equal to 1.5.

Mastrangelo and Hsu [19] and Legtenberg et al. [21] have derived analytical
expressions for the pull-in length using an energy method, the Ritz method. They found
this expression for the pull-in length Lp = (3E/8γ)1/4(d2h3)1/4. This expression indicates

linear dependence of the pull-in length on the parameter (d2h3)1/4. In Figure 5, we show the
variation of the pull-in lengths using the ROM employing the first three symmetric modes
and compare to those found by Mastrangelo and Hsu [19] and Legtenberg et al. [21]. As
seen from the figure, there is a good agreement among all the results. This indicates that the
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Figure 5: The pull-in length of the doubly clamped microbeam as a function of the parameter (d2h3)1/4

without including the effect of mid-plane stretching.

analytical expression developed by Mastrangelo and Hsu [19] for the elastocapillary number,
which is the base of the pull-in length calculations in [19, 21], yields fairly accurate results
assuming linear behavior for the microbeam.

Next, we include the effect of mid-plane stretching in our model and compare the
pull-in length calculated using the ROM (with one and three modes) with results obtained
using the model of Mastrangelo and Hsu [19], which is based on a nonlinear beam model.
The latter results are calculated by setting the elastocapillary number of Mastrangelo and
Hsu [19], which accounts for mid-plane stretching, equal to unity and solve for the pull-in
length. Figure 6 shows the results. Two cases are examined, one when varying the thickness
of the microbeam while fixing the gap width (Figure 6(a)), and the other when varying the
gap width while keeping the thickness fixed. We note from Figure 6 differences between our
results and those calculated using the model of Mastrangelo and Hsu [19]. This might be
attributed to the fact that using the Ritz method with one single trial function may not lead
to converged results in inherently nonlinear regime. Further studying is needed in the future
to investigate this difference.

Before ending this section, it is worth to comment about the assumption of our model
that the volume of fluid underneath the beam varies such that the values of x1 before the beam
deflects and after it reaches equilibrium are the same. We believe that the actual scenario is
in between this assumption and the assumption of constant volume of fluid underneath the
beam, which allows x1 to expand while the beam deflects (x1 depends on w) to keep the
total volume constant. Such an increase in x1 means that the capillary forces acting on the
microbeam will be in general larger than those used in this model. This will cause earlier
instability and larger deflection of the microbeams compared to what has been predicted
using our model and that of [19, 21]. To model such a problem, a sequential scheme may
need to be built that can update the values of x1 while the beam deflects.
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Figure 6: The pull-in length of the doubly clamped microbeam as a function of the parameter (d2h3)1/4

including the effect of mid-plane stretching.
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Figure 7: Schematic of the cantilever microbeam under the effect of capillary forces.

3. The Collapse Problem for a Cantilever Microbeam

In this section, we study the collapse problem of a cantilever microbeam due to a capillary
force. There are number of differences distinguishing this microbeam from a doubly clamped
one including the absence of mid-plane stretching and induced-residual stress. Those facts
beside its very low stiffness make a cantilever microbeam more susceptible for collapse
problems due to capillary forces.

3.1. Modeling

The cantilever microbeam shown in Figure 7 consists of an elastic beam with a volume of
liquid underneath it, which induces capillary force. We will assume here the same geometric
and physical parameters used to model the doubly clamped microbeam in Section 2.1.
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Figure 8: The normalized maximum deflection of the cantilever microbeam versus the normalized liquid
distribution using the ROM for different number of modes. Here α1 = 0 and α2 = 27.17.

Using the same procedure and assumptions of Section 2.1, we end up with the following
nondimensional equation of motion and its boundary conditions [26]:

∂4w

∂x4
= −α1

6
∂

∂x

[
∂w

∂x

∂

∂x

(
∂w

∂x

∂2w

∂x2

)]
+

α2

(1 −w)
u(x − (1 − x1)), (3.1)

w(0) = 0,
∂w

∂x
(0) = 0,

∂2w

∂x2 (1) = 0,
∂3w

∂x3 (1) = 0, (3.2)

where x1 = 1 − (x̃1/L), α1 and α2 are as defined in (2.5).
Note that the first term on the right side of (3.1) is the cubic nonlinearity that results

from geometry effect of the cantilever microbeam. Next, (3.1) and (3.2) are discretized using
a Galerkin procedure to yield a ROM similar to Section 2.1. Here, we use the first few mode
shapes (symmetric and antisymmetric) in the descritization (2.6).

3.2. Results

Here, we show results for the static deflection of the cantilever microbeam due to capillary
forces. We first examine the convergence of the ROM, same as we did in Section 2.2 for the
doubly clamped microbeam. We consider here a cantilever microbeam of 80μm length, 10μm
width, 2.5μm thickness, and a gap width underneath equals to 1μm.

Figure 8 shows the normalized maximum deflection of the considered microbeam
using the ROM for different number of modes and while varying the capillary force
distribution x1. It follows from Figure 8 that the use of four modes yields converged results.
The nonmonotonic convergence of the ROM observed in Figure 8 might be attributed to the
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nature of the used symmetric and antisymmetric mode shapes. Similar behavior has been
reported for the convergence of a reduced-order model of microbeams under electrostatic
forces [24]. It is also noticed that the microbeam exhibits collapse instability at a specific
threshold of liquid volume, as predicted also by Mastrangelo and Hsu [19] for cantilever
microbeams.
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Next, we study the influence of the geometric nonlinearity of the cantilever beam.
Figure 9 shows a comparison between the linear and the nonlinear models. The figure shows
negligible effect of the geometric nonlinearity on the response of the microbeam. This can
be attributed to the small deflection that the microbeam undergoes, compared to its length,
before collapsing due to capillary forces, which is not enough to make the weak geometric
nonlinearity influential.

Figure 10 shows comparisons between the obtained pull-in lengths using the ROM
employing one and four modes to those found by Mastrangelo and Hsu [19] for the
case of a cantilever microbeam. Using one mode in this case seems to yield reasonable
results, although not accurate as the converged four-mode results. However, Figure 10 shows
differences between the pull-in lengths calculated using the ROM and those calculated using
the model of Mastrangelo and Hsu [19]. This is similar to the observation made in Figure 6.
This might raise a question about the convergence of the Ritz technique of Mastrangelo and
Hsu [19]. More investigation about this point needs to be conducted in future research.
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4. Modeling of the Collapse Instability of a Cantilever Microbeam from
the Pinned to the Adhered Configuration

It is a well known fact in the stiction literature that when a cantilever microbeam collapses
to the substrate, due to shock, capillary, or electrostatic forces, its tip tends first to pin to the
substrate [16–18]. In its new clamped-pinned configuration, if its restoring force can resist
the opposing attractive forces toward the substrate, such as capillary, van der Walls, and
electrostatic, it stays in this configuration. Otherwise, it will collapse, in which case part of the
cantilever adheres to the substrate [16–18]. In this section, we study the collapse problem of a
cantilever microbeam due to a capillary force from the pinned to the adhered configuration.
To the best of the author’s knowledge, this problem has not been analyzed in the literature.
However, similar problems have been studied for the case of cantilever beams actuated by
electrostatic forces, for example [16].

In the next analysis, we will assume that the microbeam has been brought down to
the substrate by the action of a generic force, which can be electrostatic, capillary, or shock
force. No attempt has been made to relate the results of this section to those of Section 3.2.
In other words, we treat the problems of Section 3.2 and Section 4 as two separate problems.
More advanced model is needed to predict the transition from the configuration of Figure 7
to that of Figure 11, which accounts for the change of the shape of fluid trapped underneath
the beam while making the transition and the inertia of the beam.

Because the cantilever beam in this case will be almost in a clamped-pinned
configuration, the effect of the geometric nonlinearity (mid-plane stretching) needs to be
accounted for [27]. Hence, the nondimensional static equation governing the deflection of
the cantilever microbeam under capillary forces in the pinned configuration (Figure 11), and
its boundary conditions are given by

∂4w

∂x4
= α1

∫1

0

(
∂w

∂x

)2

dx
∂2w

∂x2
+

α2

(1 −w)
u(x − (1 − x1)), (4.1)

w(0) = 0,
∂w

∂x
(0) = 0, w(1) = 1,

∂2w

∂x2 (1) = 0, (4.2)

where α1 and α2 are given by (2.5) and x1 = 1 − x̃1/L. In the above model, the effect of the
van der Waals forces in close proximity to the substrate has been neglected.

In this case, we use a shooting technique [1] to solve the nonlinear equation. In this
method, an initial guess is assumed for the displacement, w, from which the integral term
in (4.1), Γ =

∫1
0(∂w/∂x)2dx, is calculated. Then, the nonlinear boundary-value problem, (4.1)

and (4.2), with the constant Γ is solved numerically for w using a finite-difference boundary-
value solver. A new value of Γ is then calculated based on the obtained w. This procedure is
repeated until convergence for the value of Γ is achieved.

As an example, we consider a cantilever microbeam of a gap width underneath and
a thickness equal 1μm for each. The influence of varying the capillary force distribution
and the parameter α2 on the cantilever microbeam profile is illustrated in Figure 12. It is
evident from the figure that when the capillary force distribution x1 and the parameter α2

(i.e., the length of the microbeam) increase, the possibility of the microbeam to undergo
a structural instability from pinned to adhered configuration increases. Hence, either the
length of the microbeam, which is described by the parameter α2, or the volume of trapped
liquid underneath can be taken as a control (bifurcation) parameter in studying the structural
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Figure 14: The cantilever critical lengths from the pinned to adhered configuration as function of the
parameter (d2h3)1/4.

stability of the microbeams. One method to monitor the transition from the pinned to the
adhered configuration is to observe the displacement slope at the microbeam tip when
varying these control parameters. As noticed in Figure 12, as the control parameter increases,
the slope decreases until the microbeam collapses to reach the adhered configuration, where
the slope is equal to zero.
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Figure 13 shows the variation of the cantilever tip slope for different values of α2.
As mentioned previously, the slope at the cantilever tip decreases with the increase of the
capillary force (liquid volume). In the case of completely wetted microbeam (x1 = 1), we
notice that below α2 = 9.5, which corresponds to a length of 31μm, the slope saturates at a
constant value indicating reaching an equilibrium state in the pinned configuration with no
possibility to collapse. This critical beam length separating beams that can withstand capillary
forces in the pinned configuration from those that collapse and adhere to the substrate
Lpinned-adhered is calculated in Figure 14 as the parameter (d2h3)1/4 is varied. We can notice
from this figure that this critical length varies linearly as a function of the beam thickness and
the gap width underneath the microbeam.

5. Summary and Conclusion

We presented modeling and simulations of the collapse instabilities of doubly clamped
and cantilever microbeams under the effect of capillary forces. We modeled this influence
by considering the possible configurations that these microbeams can undergo. The
first collapse instability, which brings the microbeam from its free configuration to its
pinned configuration, was studied using a reduced-order model employing multi-mode
shapes of the beams. The critical lengths of microbeams distinguishing the unstuck from
pinned beams (pull-in length) were calculated as a function of the beam thickness and
gap width underneath. Comparing the reduced-order model results with the analytical
results of Mastrangelo and Hsu [19] yielded good agreement for clamped-clamped
beams behaving linearly and slight deviation for beams behaving nonlinearly. A slight
deviation was also observed for the case of a cantilever beam. This might be attributed
to insufficient convergence of the Ritz method used by Mastrangelo and Hsu [19] based
on a single trial function. However, this issue warrants further investigation in the
future.

We studied also the instability problem of cantilever microbeams from the pinned
to adhered configuration, which represents another structural instability. For this case,
a shooting technique was used to solve the static nonlinear boundary-value problem.
We studied the variation of the slope at the cantilever microbeam tip while varying the
distribution of the capillary force and the beam length. We have seen that the slope tends
to zero as the capillary force or the beam length increases, indicating reaching the second
instability where a microbeam can collapse from the pinned to the adhered configuration.
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