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1. Introduction

In the classical model of the heat equation, the thermal diffusivity and thermal conductivity
of the medium are assumed to be constant. In some media such as gases, these parameters
are proportional to the temperature of the medium giving rise to a nonlinear heat equation of
the following form [1]:

C(x)
∂u

∂t
= λ

∂

∂x

(
ku

∂u

∂x

)
, (1.1)

where C is the conductivity, k is diffusivity, and λ is a constant.
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However, in some situations the diffusivity is proportional to uα, which gives rise to a
more general nonlinear heat equation

C(x)
∂u

∂t
= λ

∂

∂x

(
uα
∂u

∂x

)
. (1.2)

In this paper we investigate the nonlinear heat equation

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
, (1.3)

with f(u) = um, using the Adomian decomposition method. This method was presented
by Adomian to solve algebraic, differential, integrodifferential equations and stochastic
problems [2–5]. In these papers Adomian presented the so-called decomposition method
in which the problem is split into linear (solvable) and nonlinear part. By assuming that
the solution admits a power series representation, the nonlinear contribution to the solution
is obtained in the form of “Adomian polynomials” [6]. Alternative methods of calculating
Adomian polynomials have been discussed by Babolian and Javadi [7] and Wazwaz [8–
11]. For the convergence of the Adomian method, see [12–14]. For a detailed treatment and
applications of the Adomian decomposition method one may refer to [6]. Chiu and Chen [15]
have applied the Adomian method to study fin problem with variable conductivity. Wazwaz
in [10] established an algorithm for calculating Adomian polynomials that depend mainly on
algebraic and trigonometric identities and on Taylor’s expansion. A feature of this method is
that it involves less formulas and is straightforward to implement. The reader is referred to
[10, Section 2] for details of algorithm and its connection with earlier approach of Adomian
[6]. We will use the modified Adomian algorithm given by Wazwaz [10] to find the Adomian
solutions to our models of nonlinear heat equation with temperature dependent diffusivity.

2. Method of Solution

Introducing the operator Lt = ∂/∂t, (1.3) takes the form

Ltu(x, t) =
[
f ′(u)u2

x + f(u)uxx
]
. (2.1)

We solve (2.1) subject to the initial condition

u(x, 0) = g(x). (2.2)

Applying inverse operator L−1
t to both sides of (2.1) yields

u(x, t) = u(x, 0) + L−1
t

[(
f ′(u)u2

x + f(u)uxx
)]
. (2.3)
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The desired series solution by Adomian decomposition method is given by (cf. [2–6] for
details)

u(x, t) =
∞∑
n=0

un(x, t), (2.4)

and u1, u2, u3, . . . are calculated from recursive relation

u0 = u(x, 0),

un+1 = L−1
t [(An)], n ≥ 0,

(2.5)

where An are the Adomian polynomials for the nonlinear operator

F(u(x, t)) = f ′(u)u2
x + f(u)uxx. (2.6)

The formulas that can be used to generate Adomian polynomials are discussed by Adomian
in [6]. Here we employ the algorithm of Wazwaz [10] to calculate Adomian polynomials,
which seems quite natural and suited for implementation by software.

3. Applications and Results

We consider the nonlinear heat equation

∂u

∂t
=

∂

∂x

(
f(u)

∂u

∂x

)
,

u(x, 0) = g(x)

(3.1)

with power nonlinearity f(u) = um. We are interested in investigating the case of power
nonlinearity due to the fact that this assumption is made in most of the applied nonlinear
problems of heat transfer and flows in porous media. For instance, f(u) = u−1/2 corresponds
to fast diffusion processes of plasma diffusion and thermal expulsion of liquid Helium [16–
18]. The diffusivity f(u) = u2 is used to model process of melting and evaporation of metals
[17–19]. For the initial temperature profile, we consider typical cases like g(x) a quadratic
function or g(x) = e−ax

2
or g(x) = sech2x which corresponds to soliton like initial profile.

Case A (g(x) = ax2 + bx + c). The Adomian solution u(x, t) for general a, b, c, and m can
be obtained from authors as Mathematica file. Some particular cases for a, b, c, and m are
considered as follows.

(i) a = b = c = 1 and m = 2.
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The Mathematica code to obtain Adomina solution in this case consists of the
following commands:

f[n ] =
n−1∑
i=0

ui[x]αi +O[α]n,

f1d[n ] =
n−1∑
i=0

∂xui[x]αi +O[α]n,

f2d[n ] =
n−1∑
i=0

∂x,xui[x]αi +O[α]n,

(3.2)

maximum number of polynomials and solution terms:

k = 5 (3.3)

Finding Adomian polynomials:

apoly = mf[k]m−1f1d[k]2//Simplify

bpolynomial = f[k]m f2d[k].
(3.4)

Making vector of admian polynomials:

v = CoefficientList
[
coeffpoly, α

]
. (3.5)

Finding solution u(x,t):

u0[x ] = a ∗ x2 + b ∗ x + c

Do

[
ui[x ] =

∫ t

0
v[[i]]dt, {i, 1, k}

]

u[x , t ] = u0[x]

Do[u[x , t ] = u[x, t] + ui[x], {i, 1, k}]

u[x, t]

a = 1; b = 1; c = 1

m = 2

u[x, t].

(3.6)
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The Adomian solution obtained is

u(x, t)

= 1 + x + x2 + 2t2(1 + x(1 + x))

×
(

24 + 45x + 185x2 + 4x
(

25 + 70x2
)
+ 4

(
2 + 25x2 + 35x4

))
+

1
3
t3(1 + x(1 + x))

×
(

60 + 1860x + 8x
(

1860 + 7995x2
)
+ 2

(
570 + 8370x2

)

+ 8x
(

1665 + 10770x2 + 12825x4
)
+ 4

(
720 + 14490x2 + 29370x4

)

+8
(

75 + 1665x2 + 5385x4 + 4275x6
))

+
1
3
t4(1 + x(1 + x))

×
(

8160 + 11310x + 180390x2 + 4x
(

50610 + 318390x2
)

+ 4
(

13380 + 414000x2 + 1172820x4
)
+ 4x

(
160950 + 1507380x2 + 2417550x4

)

+ 16x
(

20370 + 222060x2 + 585450x4 + 429000x6
)

+ 4
(

17970 + 605070x2 + 2705190x4 + 2807850x6
)

+16
(

600 + 20370x2 + 111030x4 + 195150x6 + 107250x8
))

+
1

60
t5(1 + x(1 + x))

×
(

15120 + 1275120x + 2
(

486360 + 16082040x2
)

+ 8x
(

5172000 + 45672540x2
)
+ 4

(
3226560 + 145378920x2 + 558401640x4

)

+ 8x
(

36485460 + 477387720x2 + 1007253300x4
)

+ 64x
(

8126460 + 123096840x2 + 424022700x4 + 390053400x6
)

+ 8
(

5708700 + 279944820x2 + 1685856660x4 + 2244119100x6
)

+ 32x
(

5402520 + 86621760x2 + 373392000x4 + 591280800x6 + 309309000x8
)

+ 16
(

2417760 + 119127600x2 + 868513680x4 + 1945018800x6 + 1317980400x8
)

+32
(

113400 + 5402520x2 + 43310880x4 + 124464000x6 + 147820200x8 + 61861800x10
))

+ t(1 + x(1 + x))(2 + 2(1 + 5x(1 + x))).
(3.7)

The solutions in Figure 1 increase algebraically as is expected from algebraic behavior of
initial condition and the form of f(u).

(ii) a = b = c = 1 and m = −2 (Figure 2).



6 Mathematical Problems in Engineering

0
1

2
3
×1014

0
1

2
3

4
5 0

0.25

0.5

0.75

1

(a)

0
2.5

5
7.5
10
×1013

−4
−2

0
2

4 0

0.25

0.5

0.75

1

(b)

Figure 1: (a) Graph of Adomian solution for {x, 0, 5}, {t, 0, 1}. (b) Graph Adomian solution for
{x,−5, 5}, {t, 0, 1}.
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Figure 2: Graph of Adomian solution for the range {x,−2, 1}, {t, 0, 1}.

As the diffusivity in this case is decreasing function of u, the solution exhibits the
change in the quadratically increasing initial temperature.

(iii) a = b = c = 1 and m = 1/2 (Figure 3).

Case B (g(x) = e−ax
2
). The Adomian solution for general a,m can be obtained from authors

as Mathematica file. Some particular cases are considered as follows.
(i) a = 2 and m = 2
The Adomian solution is

u(x, t) = e−2x2
+ 4e−6x2

t
(
−1 + 12x2

)
+ 8e−10x2

t2
(

11 − 400x2 + 1200x4
)

+
32
3

e−14x2
t3
(
−315 + 22692x2 − 181552x4 + 291648x6

)

+
32
3

e−18x2
t4
(

16425 − 1947360x2 + 28962720x4 − 115402752x6 + 123607296x8
)

+
128
15

e−22x2
t5
(
−1326840 + 233242200x2 − 5491343520x4 + 38961513344x6

−99063148800x8 + 78562446336x10 + 945
(
−1 + 20x2

))
.

(3.8)
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Figure 3: Graph of Adomian solution for the range {x,−2, 1}, {t, 0, 1}.
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Figure 4: (a) Graph of solution for the range {x,−5, 5}, {t, 0, 1}. (b) Graph of solution for the range
{x,−2, 2}, {t, 0, 1}. (c) Graph for fixed t = 0.5 for the range {x,−1, 1}.

Figure 4 displays how the bell-shaped initial temperature interacts with quadratic depen-
dence of diffusivity.

(ii) a = 2 and m = −2 (Figure 5).
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Figure 5: (a) Graph for the range {x,−.01, .01}, {t, 0, 1}. (b) Graph for the range {x,−1.5, .01}, {t, 0, 1}.

The Adomian solution is

u(x, t) = e−2x2
+ 4e2x2

t
(
−1 − 4x2

)
+ 8e6x2

t2
(
−5 − 96x2 − 144x4

)

+
32
3

e10x2
t3
(
−91 − 4028x2 − 19120x4 − 17600x6

)

+
32
3

e14x2
t4
(
−3287 − 260480x2 − 2523104x4 − 6375936x6 − 4202240x8

)

+
128
15

e18x2
t5
(
−191704 − 23954712x2 − 390296736x4 − 1877037696x6

−3158528256x8 − 1613177856x10 + 945
(
−1 + 20x2

))
.

(3.9)

(iii) a = 2 and m = 1/2 (Figure 6).
The Adomian solution is

u(x, t) = e−2x2
+ 4

(
e−2x2

)3/2
t
(
−1 + 6x2

)
+ 8e−4x2

t2
(

5 − 76x2 + 96x4
)

+
32
3

(
e−2x2

)5/2
t3
(
−219

4
+

3009x2

2
− 4615x4 + 2850x6

)

+
32
3

e−6x2
t4
(

2031
2
− 43365x2 + 233406x4 − 337716x6 + 131760x8

)

+
128
15

(
e−2x2

)7/2
t5
(
−433389

16
+

13476579x2

8
− 27882147x4

2
+ 34527269x6

−30761241x8 + 8579214x10 + 945
(
−1 + 20x2

))
.

(3.10)
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Figure 6: (a) Graph for the range {x,−1, 1}, {t, 0, 1}. (b) Graph for the range {x,−10, 10}, {t, 0, 1}.
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Figure 7: (a) Graph for the range {x,−1, 1}, {t, 0, 1}. (b) Graph for the range {x,−10, 10}, {t, 0, 1}.

Case C (g(x) = sech2x). The Adomian solution for general m can be obtained from authors
as Mathematica file. Some particular cases are considered as follows.

(i) m = 2.
The Adomian solution is

u(x, t)

= sech(x)2 + 2t(−4 + 3 cosh(2x))sech(x)8

+ 3t2(161 − 178 cosh(2x) + 25 cosh(4x))sech(x)14

+ t3(−54900 + 71641 cosh(2x) − 18772 cosh(4x) + 1519 cosh(6x))

× sech(x)20 +
1
4
t4(35318621 − 50550350 cosh(2x) + 18047504 cosh(4x)

−2916178 cosh(6x) + 160947 cosh(8x))

× sech(x)26 +
1

20
t5(−35893153056 + 54495231330 cosh(2x) − 23506173696 cosh(4x)

+ 5488700877 cosh(6x) − 621401568 cosh(8x)

+25573713 cosh(10x))sech(x)32.

(3.11)
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Here the initial condition is soliton like. This is reflected in the Figure 7 as the diffusivity
varies quadratically.

(ii)m = −2 (Figure 8).
The Adomian solution is

u(x, t) = −2t cosh(2x) − t2 cosh (x)2(1 − 2 cosh(2x) + 9 cosh(4x))

− 1
3
t3 cosh (x)4(−44 + 85 cosh(2x) − 76 cosh(4x) + 275 cosh(6x))

− 1
12
t4 cosh (x)6(2865 − 5862 cosh(2x) + 5968 cosh(4x) − 5178 cosh(6x)

+16415 cosh(8x)) − 1
60
t5 cosh (x)8

× (−303864 + 606738 cosh(2x) − 616768 cosh(4x) + 638373 cosh(6x)

−544328 cosh(8x) + 1575369 cosh(10x)) + sech(x)2.

(3.12)

(iii) m = 1/2 (Figure 9).
The Adomian solution is

u(x, t) = sech(x)2 +
3
2
t2(56 − 52 cosh(2x) + 4 cosh(4x))sech(x)8 +

1
8
t4

×
(

5889415
8

− 3750383
4

cosh(2x) + 232028 cosh(4x)

−76417
4

cosh(6x) +
2745

8
cosh(8x)

)

× sech(x)14 + 2t
(
−5

2
+

3
2

cosh(2x)
)

sech(x)4
√

sech(x)2

+
1
2
t3
(
−37917

8
+

86005
16

cosh(2x) − 7163
8

cosh(4x) +
475
16

cosh(6x)
)

× sech(x)8
(

sech(x)2
)3/2

+
1

40
t5

×
(
−22986251157

128
+

31585649589
128

cosh(2x) − 2501116101
32

cosh(4x)

+
2695647273

256
cosh(6x) − 64605399

128
cosh(8x) +

1429869
256

cosh(10x)
)

× sech(x)12
(

sech(x)2
)5/2

.

(3.13)



Mathematical Problems in Engineering 11

−20000

−10000

0

−0.01
−0.005

0
0.005

0.01 0

0.25

0.5

0.75

1

(a)

−2

−1

0
×1010

−1.5

−1

−0.5

0 0

0.25

0.5

0.75

1

(b)

−0.5 −0.4 −0.3 −0.2 −0.1

−30000

−20000

−10000

(c)

Figure 8: (a) Graph for the range {x,−.01, .01}, {t, 0, 1}. (b) Graph for the range {x,−1.5, .01}, {t, 0, 1}. (c)
Graph for fixed t = 0.5 for the range {x,−0.5, 0.01}.
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Figure 9: (a) Graph for the range {x,−1, 1}, {t, 0, 1}. (b) Graph for the range {x,−10, 10}, {t, 0, 1}.

4. Conclusion

The Adomian decomposition method has been applied to obtain solutions of the heat
equation with power nonlinearity in the diffusivity. The solutions are presented for some
typical initial temperature profiles like a quadratic function or or e−ax

2
or sech2x. The
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interaction of the initial temperature with diffusivity is also discussed for different cases of
solutions investigated here.

Acknowledgment

The authors would like to thank King Fahd University of Petroleum and Minerals, Dhahran,
Saudi Arabia, for the support and research facilities provided to complete this work.

References

[1] M. Necati Ozisk, Heat Conduction, John Wiley & Sons, New York, NY, USA, 2nd edition, 1993.
[2] G. Adomian and G. E. Adomian, “A global method for solution of complex systems,” Mathematical

Modelling, vol. 5, no. 4, pp. 251–263, 1984.
[3] G. Adomian, “A new approach to nonlinear partial differential equations,” Journal of Mathematical

Analysis and Applications, vol. 102, no. 2, pp. 420–434, 1984.
[4] G. Adomian and R. Rach, “Polynomial nonlinearities in differential equations,” Journal of Mathematical

Analysis and Applications, vol. 109, no. 1, pp. 90–95, 1985.
[5] G. Adomian, “A review of the decomposition method in applied mathematics,” Journal of

Mathematical Analysis and Applications, vol. 135, no. 2, pp. 501–544, 1988.
[6] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, vol. 60 of Fundamental

Theories of Physics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.
[7] E. Babolian and Sh. Javadi, “New method for calculating Adomian polynomials,” Applied Mathematics

and Computation, vol. 153, no. 1, pp. 253–259, 2004.
[8] A.-M. Wazwaz, “A comparison between Adomian decomposition method and Taylor series method

in the series solutions,” Applied Mathematics and Computation, vol. 97, no. 1, pp. 37–44, 1998.
[9] A.-M. Wazwaz, “A reliable modification of Adomian decomposition method,” Applied Mathematics

and Computation, vol. 102, no. 1, pp. 77–86, 1999.
[10] A.-M. Wazwaz, “A new algorithm for calculating Adomian polynomials for nonlinear operators,”

Applied Mathematics and Computation, vol. 111, no. 1, pp. 53–69, 2000.
[11] A.-M. Wazwaz, “Approximate solutions to boundary value problems of higher order by the modified

decomposition method,” Computers &Mathematics with Applications, vol. 40, no. 6-7, pp. 679–691, 2000.
[12] Y. Cherruault, “Convergence of Adomian’s method,” Kybernetes of Cybernetics and General Systems,

vol. 18, no. 2, pp. 31–38, 1989.
[13] Y. Cherruault and G. Adomian, “Decomposition methods: a new proof of convergence,” Mathematical

and Computer Modelling, vol. 18, no. 12, pp. 103–106, 1993.
[14] D. Lesnic, “Convergence of Adomian’s decomposition method: periodic temperatures,” Computers &

Mathematics with Applications, vol. 44, no. 1-2, pp. 13–24, 2002.
[15] C.-H. Chiu and C.-K. Chen, “A decomposition method for solving the convective longitudinal fins

with variable thermal conductivity,” International Journal of Heat and Mass Transfer, vol. 45, no. 10, pp.
2067–2075, 2002.

[16] L. Dresner, Similarity Solutions of Nonlinear Partial Differential Equations, vol. 88 of Research Notes in
Mathematics, Pitman, Boston, Mass, USA, 1983.

[17] E. A. Saied and M. M. Hussein, “New classes of similarity solutions of the inhomogeneous nonlinear
diffusion equations,” Journal of Physics A, vol. 27, no. 14, pp. 4867–4874, 1994.

[18] E. A. Saied, “The non-classical solution of the inhomogeneous non-linear diffusion equation,” Applied
Mathematics and Computation, vol. 98, no. 2-3, pp. 103–108, 1999.

[19] A.-M. Wazwaz, “Exact solutions to nonlinear diffusion equations obtained by the decomposition
method,” Applied Mathematics and Computation, vol. 123, no. 1, pp. 109–122, 2001.


