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1. Introduction

In most of literatures dealing with inventory problems, either in deterministic or probabilistic
model, lead time is viewed as a prescribed constant or a stochastic variable, and is not
subject to control (see, e.g., Naddor [1], Liberatore [2], Magson [3], Kim and Park [4],
Silver and Peterson [5], Foote et al. [6], Azoury and Brill [7] and Chiu [8]). However, as
pointed out by Tersine [9], lead time usually comprises several components, such as setup
time, process time, wait time, move time, and queue time. In many practical situations,
lead time can be reduced using an added crash cost; in other words, it is controllable.
By shortening the lead time, we can lower the safety stock, reduce the stock-out loss and
improve the service level to the customer so as to increase the competitive edge in business.
Firstly, Liao and Shyu [10] presented a probabilistic model in which the order quantity
is predetermined and the lead time is the only decision variable. Secondly, Ben-Daya and
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Raouf [11] have also extended the model of Liao and Shyu [10] by considering both the lead
time and the order quantity as decision variables and the situation of shortage is neglected.
Subsequently, Ouyang et al. [12] considered an inventorymodel with amixture of backorders
and lost sales to generalized Ben-Daya and Raouf’s [11] model, where the backorder rate is
fixed.

In this study, we consider to allow the backorder rate as a control variable. Under
most market behaviors, we can often observe that many products of famous brands or
fashionable commodities may lead to a situation in which customers prefer their demands to
be backordered while shortages occur. Certainly, if the quantity of shortages is accumulated
to a degree that exceeds the waiting patience of customers, some may refuse the backorder
case. However, the supplier can offer a price discount on the stock-out item in order to
secure more backorders. In the real market as unsatisfied demands occur, the longer the
length of lead time is, the larger the amount of shortages is, the smaller the proportion of
customers can wait, and hence the smaller the backorder rate would be. But, the larger the
backorder discount is, the larger the backorder rate would be. Thus, the backorder rate is
dependent on the amount of shortages and backorder price discounts. Therefore, we also
consider the backorder rate that is proposed by combining Ouyang and Chuang [13] (or
Lee [14]) with Pan and Hsiao [15] to present a new form. In addition, there are many
authors that (Porteus [16–18], Billington [19], Nasri et al. [20], Kim et al. [21], Paknejad et
al. [22], Sarker and Coates [23], Ouyang et al. [24, 25], Moon and Choi [26], Chuang et al.
[27], Lin and Hou [28], and Chang et al. [29]) have investigated the effects of investing
in reducing ordering cost. Hence, we treat the ordering cost as a decision variable in this
study.

Because the demand of different customers is not identical in the lead time, we cannot
only use a single distribution (such as [13]) to describe the demand of the lead time. It is
more reasonable that mixture distribution is applied to describe the lead time demand than
single distribution is used. Besides, in many practical situations, the probability distributional
information of lead time demand is often quite limited. Since Lee et al. [30] consider that
the lead time demand follows a mixture of normal distributions, we relax the assumption
about the form of the mixture of distribution functions of the lead time demand. Therefore,
we consider that any mixture of distribution functions (d.f.s); say F∗ = pF1 + (1 − p)F2,
of the lead time demand has only known finite first and second moments (and hence,
mean and standard deviations are also known and finite) but we make no assumption on
the distribution form of F∗. That is, F1 and F2 of F∗ belong to the class Ω of all single
d.f.s’ with finite mean and standard deviation. Our goal is to solve a mixture inventory
model by using the minimax criterion. This is, the minimax criterion (such as Wu et al.
[31]) for our model is to find the most unfavorable d.f.s F1 and F2 in F∗ for each decision
variable and then to minimize over the decision variables. Finally, one numerical example
is also given to illustrate that when p = 0 or 1, the model considers only one kind of
customers’ demand; when 0 < p < 1, the model considers two kinds of customers’ demand
for the fixed backorder parameters ε and δ. It implies that the minimum expected total
annual costs of two kinds of customers’ demand are larger than the minimum expected
total annual cost of one kind of customers’ demand. Thus, the minimum expected total
annual cost increases as the distance between p and 0 (or 1) increases for the fixed backorder
parameters ε and δ. Hence, if the true distribution of the lead time demand is a mixture
of normal distributions, we use a single distribution (such as [13]) to substitute the true
distribution of the lead time demand then the minimum expected total annual cost will be
underestimated.
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2. Model Formulation

To establish the mathematical model, the notation and assumptions employed throughout
the paper are as follows:

A: odering cost per order,

D: average demand per year,

h: inventory holding cost per item per year,

L: length of lead time,

Q: order quantity,

r: reorder point,

X: lead time demand with the mixtures of distribution function,

β: fraction of the demand backordered during the stock-out period, β ∈ [0, 1],

π0 : gross marginal profit per unit,

πx: back-order price discount offered by the supplier per unit, 0 ≤ πx ≤ π0,

δ, ε: back-order parameters, 0 ≤ δ ≤ 1, 0 ≤ ε ≤ ∞,

p: the weight of the component distributions, 0 ≤ p ≤ 1,

x+: maximum value of x and 0, that is, x+ = max{x, 0},
x−: maximum value of −x and 0, that is, x− = max{−x, 0}:

I(0<x<r) =

{
1, 0 < x < r,

0, o.w.,
(2.1)

B(r) = E(X − r)+: the expected shortage quantity at the end of cycle,

q: the allowable stock-out probability during L,

k: the safety factor which satisfies P(X > r) = q,

μ∗: the mean of lead time demand with the mixture of distributions,

σ∗: the standard deviation of lead time demand with the mixture of distributions,

A0: original ordering cost,

I(A): capital investment required to achieve ordering cost A, 0 < A ≤ A0,

θ: fractional opportunity cost of capital per unit time,

ξ: percentage decrease in ordering cost A per dollar increase in investment I(A).

The assumptions of the model are exactly the same as those in Ouyang and Chuang
[13] who expect the following assumptions: the reorder point r = expected demand during
the lead time + safety stock (SS), and SS = k × (standard deviation of lead time demand), that
is, r = μ∗L+kσ∗

√
L, where μ∗ = pμ1+(1−p)μ2, σ∗ = (1 + p(1 − p)η2)1/2σ, μ1 = μ∗+(1−p)ησ/

√
L,

μ2 = μ∗−pησ/
√
L (it means that μ1−μ2 = ησ/

√
L, η ∈ R), and k is the safety factor. Moreover,

the mixtures of distribution functions are unimodal for all p if (μ1 − μ2)
2 < 27σ2/(8L) (or

η <
√
27/8) (see [32]). Besides, the reorder point must satisfy the following equation which
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implies a service level constraint P(X > r) = q, where q represents the allowable stock-out
probability during L.

In addition, we assume that the capital investment, I(A), in reducing ordering cost is
a logarithmic function of the ordering cost A. That is,

I(A) = ν ln
(
A0

A

)
for 0 < A ≤ A0, where ν = ξ−1. (2.2)

This function is consistent with the Japanese experience as reported in Hall [33], and
has been utilized in many articles (see [16, 17, 20–24, 34], etc.).

In this study, we relax the restriction about the form of the mixtures of d.f. of lead
time demand, that is, we assume here that the lead time demand X has the mixtures of d.f.
F∗ = pF1 + (1 − p)F2, where F1 has finite mean μ1L and standard deviation σ

√
L and F2 has

finite mean μ2L and standard deviation σ
√
L, μ1 − μ2 = ησ/

√
L, η ∈ R. Then the expected

shortage at the end of the cycle is defined by B(r) = E(X − r)+. Thus, the expected number of
backorders per cycle is βB(r) and the expected lost sales per cycle is (1 − β)B(r). Hence, the
expected annual stock-out cost is (D/Q)[πxβ + π0(1 − β)]B(r).

The expected net inventory level just before the order arrives is

E
[
(X − r)−I(0<X<r)

] − βB(r)

=
∫ r

0
(r − x)dF∗(x) − βB(r)

=
∫ r

0
(r − x)dF∗(x) −

∫∞

r

(x − r)dF∗(x) +
∫∞

r

(x − r)dF∗(x) − βB(r)

=
∫∞

0
(r − x)dF∗(x) + E[X − r]+ − βB(r)

= E
[
(r − x)I(0<x<∞)

]
+
(
1 − β

)
B(r)

= r − μ∗L +
(
1 − β

)
B(r),

(2.3)

and the expected net inventory level at the beginning of the cycle is

Q + r − μ∗L +
(
1 − β

)
B(r). (2.4)

Therefore, the expected annual holding cost is

h

{
Q

2
+ r − μ∗L +

(
1 − β

)
B(r)

}
. (2.5)
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Finally, the total expected annual cost (EAC) can be expressed as follows:

EAC
(
Q, β, L

)
= ordering cost + holding cost + stock-out cost

+ lead time crashing cost

= A
D

Q
+ h

{
Q

2
+ r − μ∗L +

(
1 − β

)
B(r)

}

+
D

Q

[
πxβ + π0

(
1 − β

)]
B(r) +

D

Q
R(L).

(2.6)

In practical situations, as shortage occurs, the longer the length of lead time is, the
larger the amount of shortage is, the smaller the proportion of customers can wait, and hence
the smaller the backorder rate would be; in addition, the larger backorder price discount is,
hence the larger the backorder rate would be. Therefore, we also consider the backorder rate
that is proposed by combining Ouyang and Chuang [13] (or Lee [14]) with Pan and Hsiao
[15] at the same time. Thus, we define β = β0πx/π0, where

β0 =
δ

1 + εE(X − r)+
, 0 ≤ δ ≤ 1, 0 ≤ ε < ∞. (2.7)

Hence, the total expected annual cost (2.6) reduces to

EAC(Q,πx, L) = A
D

Q
+ h

{
Q

2
+ r − μ∗L +

(
1 − πx

π0

δ

1 + εE(X − r)+

)
B(r)

}

+
D

Q
π0

[
1 − πx

π0

(
1 − πx

π0

)
δ

1 + εE(X − r)+

]
B(r) +

D

Q
R(L).

(2.8)

Besides, we also consider that the ordering cost can be reduced through capital investment
and the ordering costA as a decision variable. Hence, we seek to minimize the sum of capital
investment cost of reducing ordering cost A and the inventory costs (as expressed in (2.8))
by optimizing over Q, A, πx, and L constrained on 0 < A ≤ A0. That is, the objective of our
problem is to minimize the following total expected annual cost:

minEAC(Q,A,πx, L) = θI(A) + EAC(Q,πx, L) = θv ln
(
A0

A

)
+A

D

Q

+ h

{
Q

2
+ r − μ∗L +

(
1 − πx

π0

δ

1 + εE(X − r)+

)
B(r)

}

+
D

Q
π0

[
1 − πx

π0

(
1 − πx

π0

)
δ

1 + εE(X − r)+

]
B(r) +

D

Q
R(L),

(2.9)

subject to 0 < A ≤ A0.
Now, we attempt to use a minimax criterion to solve this problem. If we let Ω be the

class of all single c.d.f. (included F1 and F2)with finite mean and standard deviation, then the
minimax criterion for our problem is to find the most unfavorable c.d.f.s F1 and F2 in Ω for
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each decision variable and then to minimize over the decision variables; that is, our problem
is to solve

min
Q>0, 0<A≤A0, 0≤πx≤π0, L>0

max
F1,F2∈Ω

EAC(Q,A,πx, L). (2.10)

In addition, we also need the following Proposition which was asserted by Gallego
and Moon [35] to solve the above problem.

Proposition 2.1. For any F ∈ Ω,

E[X − r]+ ≤ 1
2

{√
σ2L +

(
r − μL

)2 − (r − μL
)}

. (2.11)

Moreover, the upper bound (2.11) is tight. In other words, we can always find a distribution in which
the above bound is satisfied with equality for every r.

Using the inequality (2.11) for F1 and F2, we obtain

B(r) = E(X − r)+

=
∫∞

r

(x − r)dF∗

=
∫∞

r

(x − r)d
(
pF1 +

(
1 − p

)
F2
)

= p

∫∞

r

(x − r)dF1 +
(
1 − p

)∫∞

r

(x − r)dF2

≤ p · 1
2
·
{√

σ2L +
(
r − μ1L

)2 − (r − μ1L
)}

+
(
1 − p

) · 1
2
·
{√

σ2L +
(
r − μ2L

)2 − (r − μ2L
)}

=
1
2
(
μ∗L − r

)
+
p

2

[√
σ2L +

(
r − μ1L

)2] +
(
1 − p

)
2

[√
σ2L +

(
r − μ2L

)2]
,

(2.12)

where

r − μ1L = r − μ∗L − (1 − p
)
ησ

√
L,

r − μ2L = r − μ∗L + pησ
√
L

(
∵ μ1 − μ2 =

ησ√
L

)
.

(2.13)
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Then, the problem (2.10) is equivalent to minimize

EAC(Q,A,πx, L) = θv ln
(
A0

A

)
+A

D

Q

+ h

{
Q

2
+ kσ∗

√
L +
(
1 − πx

π0

δ

1 + εE(X − r)+

)
B(r)

}

+
D

Q
π0

[
1 − πx

π0

(
1 − πx

π0

)
δ

1 + εE(X − r)+

]
B(r) +

D

Q
R(L),

(2.14)

where

B(r) = E(X − r)+ =
1
2

[
−k
√
1 + p

(
1 − p

)
η2σ

√
L

]

+
p

2
σ
√
L

⎡
⎣
√
1 +
[
k
√
1 + p

(
1 − p

)
η2 − (1 − p

)
η

]2⎤⎦

+

(
1 − p

)
2

σ
√
L

⎡
⎣
√
1 +
[
k
√
1 + p

(
1 − p

)
η2 + pη

]2⎤⎦,

(2.15)

subject to 0 < A ≤ A0.
In order to solve this nonlinear programming problem, we first ignore the restriction

0 < A ≤ A0 and take the first partial derivatives of EAC(Q,A,πx, L) with respect to Q, A, πx

and L ∈ (Li, Li−1), respectively. We can obtain

∂EAC(Q,A,πx, L)
∂Q

= −AD

Q2
+
h

2
− D

Q2
π0

(
1 − θ2

1 + Δ(L)

)
B(r) − D

Q2
R(L),

∂EAC(Q,A,πx, L)
∂A

= −θv
A

+
D

Q
,

∂EAC(Q,A,πx, L)
∂πx

= −
(

h

π0
+
D

Q

[
1 − 2

πx

π0

])
δ

1 + Δ(L)
× B(r),

(2.16)

∂EAC(Q,A,πx, L)
∂L

=
hk

2
√
L

[√
1 + p

(
1 − p

)
η2σ

]

+

{
h

(
1 − θ1

[1 + Δ(L)]2

)
+
D

Q
π0

(
1 − θ2

[1 + Δ(L)]2

)}
B(r)
2L

− D

Q
ci,

(2.17)

where θ1 = (πx/π0)δ, θ2 = (πx/π0)(1 − πx/π0)δ, Δ(L) = εE(X − r)+ = εB(r), and B(r) is
expressed as (2.15).

Since B(r) is the expected shortage quantity at the end of cycle, we know that B(r) > 0
if shortages occur; B(r) = 0, otherwise. It is clear that B(r) is positive. By examining the
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second-order sufficient conditions (SOSCs), it can be easily verified that EAC(Q,A,πx, L)
is not a convex function of (Q,A,πx, L). However, for fixed Q, A, and πx, EAC(Q,πx, L) is
concave in L ∈ (Li, Li−1) because

∂2EAC(Q,A,πx, L)
∂L2

= −1
4

hk

L3/2

[√
1 + p

(
1 − p

)
η2σ

]
− 1
4

σ

L3/2

×
{
h
(1 − θ1)[1 + 3Δ(L)] + [3 + Δ(L)][Δ(L)]2

[1 + Δ(L)]3

+
D

Q
π0

(1 − θ2)[1 + 3Δ(L)] + [3 + Δ(L)][Δ(L)]2

[1 + Δ(L)]3

}
× B(r)

σ
√
L
.

(2.18)

Therefore, for fixed Q, A, and πx, the minimum total EAC will occur at the end points
of the interval (Li, Li−1). On the other hand, for a given value of L ∈ (Li, Li−1), by setting (2.16)
equal to zero, we obtain

Q =

{
2D
h

(
A +

[
π2
x

π0
β0 + π0

(
1 − πx

π0
β0

)]
B(r) + R(L)

)}1/2

, (2.19)

A =
θvQ

D
, (2.20)

πx =
1
2

(
hQ

D
+ π0

)
, (2.21)

where β0 = δ/(1 + εE(X − r)+) and B(r) is expressed as (2.15).
Theoretically, for fixed L ∈ (Li, Li−1), from (2.19)–(2.21), we can get the values of Q, A,

and πx (we denote these values by Q∗, A∗, and π∗
x).

Moreover, it can be shown that the SOSCs are satisfied since the Hessian matrix is
positive definite at point (Q∗, A∗, π∗

x) (see the appendix for the proof). Hence, for a fixed
L ∈ (Li, Li−1), the point (Q∗, A∗, π∗

x) is the local optimal solution such that the total expected
annual cost has minimum value.

We now consider the constraint 0 < A ≤ A0. From (2.20), we note that A∗ is positive.
Also, if A∗ < A0, then (Q∗, A∗, π∗

x) is an interior optimal solution for given L ∈ (Li, Li−1).
However, if A∗ ≥ A0, then it is unrealistic to invest in changing the current ordering cost
level. For this special case, the optimal ordering cost is the original ordering cost, that is,
A∗ = A0, and our model reduces to (2.8) (i.e., the model of Lee et al. [36]with any mixture of
distribution functions, not just mixture of normal distributions).

Substituting (2.20) and (2.21) into (2.19), we get

Q =
θv +

√
(θv)2 + 2hD

[
1 − (hβ0/2Dπ0

)
B(r)

]{
π0
[
1 − (1/4)β0

]
B(r) + R(L)

}
h
[
1 − (hβ0/2Dπ0

)
B(r)

] , (2.22)

where β0 = δ/(1 + εE(X − r)+) and B(r) is expressed as (2.15).
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Theoretically, for fixed A0, D, h, π0, σ, η, δ, p, q, ε, θ, v and each Li (i = 1, 2, . . . , n),
the optimal (Qi,Ai, πxi , Li) pair given Li can be obtained by solving (2.22) iteratively until
convergence. The convergence of the procedure can be shown. Furthermore, using (2.9),
we can obtain the corresponding total expected annual cost EAC(Qi,Ai, πxi , Li). Hence, the
minimum total expected annual cost is mini=0,1,2,...,nEAC(Qi,Ai, πxi , Li). However, in practice,
since the p.d.f. fX of the lead time demand X is unknown, even if the value of q is given, we
cannot get the exact value of k. Thus, in order to find the value of k, we need the following
proposition.

Proposition 2.2. Let Y be a random variable which has a p.d.f. fY (y) with finite mean μL and
standard deviation σ

√
L(> 0), then for any real number c > μL,

P(X > c) ≤ σ2L

σ2L +
(
c − μL

)2 . (2.23)

So, by using F∗ = pF1+(1−p)F2, the recorder point r = μ∗L+kσ∗
√
L, and Proposition 2.2,

we get

P(X > r) ≤ p
σ2L

σ2L +
(
r − μ1L

)2 +
(
1 − p

) σ2L

σ2L +
(
r − μ2L

)2
= p

1

1 + (r − μ1L/σ
√
L)

2
+
(
1 − p

) 1

1 + (r − μ2L/σ
√
L)

2

=
p

1 +
[
k
√
1 + p

(
1 − p

)
η2 − (1 − p

)
η
]2 +

1 − p

1 +
[
k
√
1 + p

(
1 − p

)
η2 + pη

]2 .
(2.24)

Further, it is assumed that the allowable stock-out probability q during lead time is given,
that is, q = P(X > r), then from (2.24), we get 0 ≤ k ≤√(1/q) − 1 + |η|. It is easy to verify that
EAC(Q,A,πx, L) has a smooth curve for k ∈ [0,

√
(1/q) − 1+ |η|]. Hence, we can establish the

following algorithm to obtain the suitable k and hence the optimal Q, A, πx, and L.

Algorithm 2.3.

Step 1. Input the values of A0, D, h, η, σ, π0, θ, v, p, q, δ, ε, ai, bi, and ci, i = 1, 2, . . . , n.

Step 2. For a given q, we divide the interval [0,
√
(1/q) − 1 + |η|] into m equal subintervals,

wherem is large enough. And we let k0 = 0, kN =
√
(1/q) − 1+ |η| and kj = kj−1+(kN −k0)/m,

j = 1, 2, . . . , m − 1.

Step 3. Use the ai, bi, ci, to compute Li, i = 1, 2, . . . , n.

Step 4. For each Li, i = 1, 2, . . . , n, compute Qi by using (2.22) for given kj ∈ {k0, k1, . . . , km},
j = 1, 2, . . . , m. Then, compute Ai and πxi by using (2.20) and (2.21).

Step 5. Compare πxi and π0. If πxi < π0, then take πxi into Step 6; if πxi ≥ π0, then take πxi = π0

into Step 6. Compare Ai and A0. If Ai < A0, then take Ai into Step 6; if Ai ≥ A0, then take
Ai = A0 into Step 6.
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Table 1: Lead time data.

Lead time component Normal duration Minimum duration Unit crashing cost
i bi (days) ai (days) ci ($/day)
1 20 6 0.4
2 20 6 1.2
3 16 9 5.0

Step 6. For each pair (Qi,Ai, πxi , Li) and kj ∈ {k0, k1, . . . , km}, compute the corresponding
total expected annual cost EACkj (Qi, πxi , Li), i = 1, 2, . . . , n.

Step 7. Find minkj∈{k0,k1,...,km}EACkj (Qi,Ai, πxi , Li). If EACk∗
S
(Qi,Ai, πxi , Li) = minkj∈{k0,k1,...,km}

EACkj (Qi,Ai, πxiLi), then find mini=0,1,2,...,nEACk∗
S
(Qi,Ai, πxiLi). If EAC(Q∗, A∗, π∗

x, L
∗) =

mini=0,1,...,nEACk∗
S
(Qi,Ai, πxi , Li), then (Q∗, A∗, π∗

x, L
∗) is the optimal solution; the value of ks(i)

such that EAC(Q∗, A∗, π∗
x, L

∗) exists is the optimal safety factor, and we denote it by k∗.

Step 8. Stop.

3. A Numerical Example

In order to illustrate the above solution procedure, let us consider an inventory system with
the following data: D = 600 units/year, A0 = $200 per order, h = $20, π0 = $150, μ∗ = 11
units/week, σ = 7 units/week, and the lead time has three components with data shown in
Table 1. Besides, for ordering cost reduction, we take θ = 0.1 per dollar per year and v = 5800.

We assume here that the lead time demand follows a mixture of distribution functions
and want to solve the case when p = 0, 0.2, 0.4, 0.6, 0.8, 1, q = 0.2, δ = 0, 0.5, 1, η = 0.7, and
ε = 0, 0.5, 1, 10, 20, 40, 80, 100,∞.

If we knew the form of the c.d.f.s F1 and F2, we could solve the problem optimally
for that particular distribution. For example, if F∗ is c.d.f. of mixture of normal distributions,
then the total expected annual cost is

EACn(Q,A,πx, L)

= θv ln
(
A0

A

)
+A

D

Q
+ h

(
Q

2
+ σ

√
L

{
p

[
r1Φ

(
μ∗
√
L

σ
+
(
1 − p

)
η

)
− φ

(
μ∗
√
L

σ
+
(
1 − p

)
η

)]

+
(
1 − p

)[
r2Φ

(
μ∗
√
L

σ
− pη

)
− φ

(
μ∗
√
L

σ
− pη

)]}

+
(
1 − β

)
σ
√
LΨ
(
r1, r2, p

))

+
D

Q

[
πxβ + π0

(
1 − β

)]
σ
√
LΨ
(
r1, r2, p

)
+
D

Q
R(L).

(3.1)

We can obtain the optimal (Qn,An, πxn , Ln) by the standard procedure and incur an
expected cost EACn(Qn,An, πxn , Ln) (see Lee et al. [30]). For fixed δ, if we use (Q∗, A∗, π∗

x, L
∗)
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instead of the optimal (Qn,An, πxn , Ln) for mixture of normal distributions, then we can
get an expected cost EACn(Q∗, A∗, π∗

x, L
∗). Hence, as the c.d.f. F∗ is mixture cumulative of

normal distributions, the added cost by using the minimax mixture of distributions free
procedure instead of the standard procedure is EACn(Q∗, A∗, π∗

x, L
∗)−EACn(Qn,An, πxn , Ln).

This is the largest amount that we would be willing to pay for the knowledge of d.f. F∗.
This quantity can be regarded as the expected value of additional information (EVPI).
The results of the solution procedure are solved by using the subroutine ZREAL of IMSL
from the computer software Compaq Visual Fortran V6.0 (Inclusive of IMSL) [37] and
summarized in Table 2. From Table 2, we note that (i) the order quantity Q∗, the ordering
cost A∗, the backorder price discount π∗

x, and the minimum total expected annual costs
EAC(Q∗, A∗, π∗

x, L
∗) increase as ε increases (i.e., the back-order rate β decreases) for δ =

0.5, 1.0 and the fixed p; (ii) the minimum total expected annual cost EAC(Q∗, A∗, π∗
x, L

∗)
increase and then decrease as p increases for the fixed ε and δ, thus for δ = 0.5, 1.0
and the fixed ε, when p = 0 or 1, the model considers only one kind of customers’
demand; when 0 < p < 1, the model considers two kinds of customers’ demand.
It implies that EAC(Q∗, A∗, π∗

x, L
∗) of two kinds of customers’ demand are larger than

EAC(Q∗, A∗, π∗
x, L

∗) of one kind of customers’ demand, thus if the true distribution of
the lead time demand is a mixture of normal distributions, we use a single distribution
(such as [13]) to substitute the true distribution of the lead time demand then the
minimum expected total annual cost will be underestimated; (iii) the order quantity Q∗,
the ordering cost A∗, the backorder price discount π∗

x and the minimum total expected
annual cost EAC(Q∗, A∗, π∗

x, L
∗) decrease as δ increases for the fixed ε and p; (iv) no

matter what values of p, the optimal lead time L∗ is approached to a certain value (3
weeks) for δ = 0(0.5)1 and ε = 0, 0.5, 1, 10, 20, 40, 80, 100,∞; (v) while for the fixed p,
EVAI increases and then decreases as ε increases (i.e., the backorder rate β decreases)
for δ = 0.5 and fixed p; (vi) EVAI increases and then decreases as p increases except
ε = 0, when δ = 1.0; (vii) the cost penalty EAC

′
n/EACn of using the distribution

free operating policy instead of the optimal one is increasing and then decreasing as
ε increases (i.e., the backorder rate β decreases) for the fixed p except δ = 0.0 and
ε = 0, p = 0.6, 0.8, 1.0, when δ = 1.0. Conveniently, we organize the above (i)–(vii) in
Table 3.

4. Concluding Remarks

In this article, we consider that the backorder rate is dependent on the amount of the
shortages and the backorder price discount by using the idea of Ouyang and Chuang [13]
and Pan and Hsiao [15]. Hence, we regard the backorder rate as controllable variable. In
addition, the ordering cost can be controlled and reduced through various efforts such as
worker training, procedural changes, and specialized equipment acquisition. So, we also treat
the ordering cost as a decision variable. Moreover, we make no assumption about the form
of the mixtures of distribution functions of the lead time demand and apply the minimax
criterion to solve the problem. We also develop an algorithmic procedure to find the optimal
inventory policy.

In this study, we consider the service level constraint to satisfy the equation as P(X >

r) = q. But, the reorder point r is a controllable variable. Hence, it would be interesting to
treat the reorder point as a decision variable in future research.
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Table 2: Summary of the optimal solution procedure (Li in weeks and η = 0.7, δ = 0).

ε (Q∗, A∗, π∗
x, L

∗) EAC
′

EAC
′
n (Qn,An, πxn

, Ln) EACn EVAI EAC
′
n/EACn

p = 0.0

0 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

0.5 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

1 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

10 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

20 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

40 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

80 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

100 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

∞ (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133
p = 0.2

0 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

0.5 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

1 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

10 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

20 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

40 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

80 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

100 (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220

∞ (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220
p = 0.4
0 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

0.5 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

1 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

10 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

20 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

40 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

80 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

100 (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

∞ (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237
p = 0.6
0 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

0.5 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

1 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

10 (148,143, 77.463, 3) 3833.241 3590.772 (160,154., 77.659, 3) 3583.159 7.613 1.00212

20 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

40 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

80 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

100 (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212

∞ (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212
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Table 2: Continued.

ε (Q∗, A∗, π∗
x, L

∗) EAC
′

EAC
′
n (Qn,An, πxn

, Ln) EACn EVAI EAC
′
n/EACn

p = 0.8

0 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

0.5 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

1 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

10 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

20 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

40 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

80 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

100 (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

∞ (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171

p = 1.0
0 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

0.5 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

1 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

10 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

20 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

40 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

80 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

100 (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133

∞ (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133
p = 0.0
0 (145,140, 77.420, 3) 3731.388 3430.876 (151,146, 77.521, 3) 3428.830 2.046 1.00060

0.5 (145,141, 77.424, 3) 3765.760 3475.731 (154,149, 77.562, 3) 3471.910 3.821 1.00110

1 (146,141, 77.431, 3) 3781.284 3494.414 (155,150, 77.580, 3) 3490.019 4.395 1.00126

10 (148,143, 77.460, 3) 3816.667 3532.005 (157,152, 77.615, 3) 3527.263 4.741 1.00134

20 (148,143, 77.464, 3) 3820.227 3535.434 (157,152, 77.619, 3) 3530.709 4.725 1.00134

40 (148,143, 77.466, 3) 3822.125 3537.240 (157,152, 77.620, 3) 3532.524 4.716 1.00134

80 (148,143, 77.467, 3) 3823.105 3538.166 (157,152, 77.621, 3) 3533.456 4.710 1.00133

100 (148,143, 77.467, 3) 3823.303 3538.354 (157,152, 77.621, 3) 3533.644 4.710 1.00133

∞ (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133
p = 0.2
0 (145,140, 77.415, 3) 3739.222 3477.626 (154,148, 77.559, 3) 3473.490 4.136 1.00119

0.5 (145,140, 77.421, 3) 3773.282 3526.203 (156,151, 77.603, 3) 3519.557 6.646 1.00189

1 (146,141, 77.428, 3) 3788.724 3545.816 (157,152, 77.621, 3) 3538.347 7.469 1.00211

10 (147,142, 77.457, 3) 3824.042 3583.914 (159,154, 77.656, 3) 3575.973 7.940 1.00222

20 (148,143, 77.460, 3) 3827.606 3587.301 (160,154, 77.660, 3) 3579.386 7.914 1.00221

40 (148,143, 77.462, 3) 3829.505 3589.078 (160,154, 77.661, 3) 3581.180 7.898 1.00221

80 (148,143, 77.463, 3) 3830.487 3589.989 (160,154, 77.662, 3) 3582.100 7.889 1.00220

100 (148,143, 77.463, 3) 3830.686 3590.173 (160,154, 77.662, 3) 3582.286 7.887 1.00220

∞ (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220
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Table 2: Continued.

ε (Q∗, A∗, π∗
x, L

∗) EAC
′

EAC
′
n (Qn,An, πxn

, Ln) EACn EVAI EAC
′
n/EACn

p = 0.4

0 (145,140, 77.414, 3) 3741.923 3488.279 (154,149, 77.565, 3) 3483.682 4.597 1.00132

0.5 (145,140, 77.419, 3) 3775.915 3537.551 (157,151, 77.609, 3) 3530.245 7.306 1.00207

1 (146,141, 77.427, 3) 3791.338 3557.216 (158,152, 77.627, 3) 3549.144 8.072 1.00227

10 (147,142, 77.454, 3) 3826.641 3595.519 (160,154, 77.663, 3) 3586.828 8.691 1.00242

20 (148,143, 77.459, 3) 3830.205 3598.779 (160,155, 77.666, 3) 3590.237 8.542 1.00238

40 (148,143, 77.461, 3) 3832.105 3600.552 (160,155, 77.668, 3) 3592.027 8.525 1.00237

80 (148,143, 77.462, 3) 3833.087 3601.460 (160,155, 77.669, 3) 3592.945 8.515 1.00237

100 (148,143, 77.462, 3) 3833.286 3601.643 (160,155, 77.669, 3) 3593.130 8.513 1.00237

∞ (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237
p = 0.6

0 (145,140, 77.415, 3) 3740.986 3477.898 (153,148, 77.555, 3) 3473.982 3.916 1.00113

0.5 (145,140, 77.421, 3) 3775.037 3526.154 (156,151, 77.599, 3) 3519.769 6.385 1.00181

1 (146,141, 77.427, 3) 3790.476 3545.698 (157,152, 77.617, 3) 3538.497 7.200 1.00203

10 (147,142, 77.456, 3) 3825.792 3583.761 (159,154, 77.653, 3) 3576.090 7.671 1.00215

20 (148,143, 77.460, 3) 3829.356 3587.152 (159,154, 77.656, 3) 3579.506 7.646 1.00214

40 (148,143, 77.461, 3) 3831.256 3588.932 (159,154, 77.658, 3) 3581.302 7.630 1.00213

80 (148,143, 77.462, 3) 3832.237 3589.844 (160,154, 77.658, 3) 3582.222 7.622 1.00213

100 (148,143, 77.463, 3) 3832.436 3590.028 (160,154, 77.659, 3) 3582.409 7.620 1.00213

∞ (148,143, 77.463, 3) 3833.241 3590.772 (160,154, 77.659, 3) 3583.159 7.612 1.00212

p = 0.8

0 (145,140, 77.417, 3) 3737.285 3456.812 (152,147, 77.539, 3) 3453.849 2.963 1.00086

0.5 (145,140, 77.422, 3) 3771.472 3503.469 (155,150, 77.582, 3) 3498.346 5.123 1.00146

1 (146,141, 77.430, 3) 3786.948 3522.514 (156,151, 77.599, 3) 3516.783 5.731 1.00163

10 (147,143, 77.458, 3) 3822.291 3560.458 (158,153, 77.635, 3) 3554.216 6.243 1.00176

20 (148,143, 77.461, 3) 3825.854 3563.868 (158,153, 77.638, 3) 3557.646 6.222 1.00175

40 (148,143, 77.463, 3) 3827.753 3565.660 (158,153, 77.640, 3) 3559.451 6.209 1.00174

80 (148,143, 77.464, 3) 3828.734 3566.579 (158,153, 77.641, 3) 3560.377 6.202 1.00174

100 (148,143, 77.465, 3) 3828.933 3566.666 (158,153, 77.641, 3) 3560.564 6.102 1.00171

∞ (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171
p = 1.0

0 (145,140, 77.420, 3) 3731.388 3430.876 (151,146, 77.521, 3) 3428.831 2.046 1.00060

0.5 (145,141, 77.424, 3) 3765.760 3475.731 (154,149, 77.562, 3) 3471.910 3.821 1.00110

1 (146,141, 77.431, 3) 3781.284 3494.414 (155,150, 77.580, 3) 3490.020 4.394 1.00126

10 (148,143, 77.460, 3) 3816.667 3532.005 (157,152, 77.615, 3) 3527.264 4.741 1.00134

20 (148,143, 77.464, 3) 3820.227 3535.435 (157,152, 77.619, 3) 3530.709 4.726 1.00134

40 (148,143, 77.466, 3) 3822.125 3537.240 (157,152, 77.620, 3) 3532.524 4.716 1.00134

80 (148,143, 77.467, 3) 3823.105 3538.167 (157,152, 77.621, 3) 3533.456 4.711 1.00133

100 (148,143, 77.467, 3) 3823.303 3538.354 (157,152, 77.621, 3) 3533.645 4.709 1.00133

∞ (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133
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Table 2: Continued.

ε (Q∗, A∗, π∗
x, L

∗) EAC
′

EAC
′
n (Qn,An, πxn

, Ln) EACn EVAI EAC
′
n/EACn

p = 0.0

0 (142,137, 77.367, 3) 3630.318 3319.556 (142,137, 77.364, 4) 3306.329 13.227 1.00400

0.5 (143,138, 77.379, 3) 3705.659 3411.048 (150,145, 77.501, 3) 3408.019 3.029 1.00089

1 (144,139, 77.394, 3) 3737.691 3449.035 (152,147, 77.536, 3) 3444.940 4.095 1.00119

10 (147,142, 77.452, 3) 3809.204 3524.967 (157,151, 77.608, 3) 3520.104 4.862 1.00138

20 (148,143, 77.460, 3) 3816.342 3531.755 (157,152, 77.615, 3) 3527.009 4.746 1.00135

40 (148,143, 77.464, 3) 3820.141 3535.369 (157,152, 77.618, 3) 3530.642 4.727 1.00134

80 (148,143, 77.466, 3) 3822.103 3537.223 (157,152, 77.620, 3) 3532.507 4.716 1.00134

100 (148,143, 77.466, 3) 3822.500 3537.598 (157,152, 77.621, 3) 3532.884 4.714 1.00133

∞ (148,143, 77.468, 3) 3824.107 3539.109 (157,152, 77.622, 3) 3534.405 4.705 1.00133
p = 0.2

0 (142,137, 77.362, 3) 3638.703 3361.079 (144,139, 77.405, 4) 3354.245 6.834 1.00204

0.5 (142,138, 77.374, 3) 3713.324 3460.282 (152,147, 77.541, 3) 3454.668 5.613 1.00162

1 (143,139, 77.391, 3) 3745.187 3500.043 (155,149, 77.577, 3) 3492.971 7.072 1.00202

10 (147,142, 77.448, 3) 3816.571 3577.010 (159,154, 77.650, 3) 3568.894 8.116 1.00227

20 (147,142, 77.455, 3) 3823.715 3583.795 (159,154, 77.656, 3) 3575.733 8.062 1.00225

40 (148,143, 77.460, 3) 3827.519 3587.240 (160,154, 77.660, 3) 3579.324 7.916 1.00221

80 (148,143, 77.462, 3) 3829.483 3589.063 (160,154, 77.661, 3) 3581.164 7.898 1.00221

100 (148,143, 77.462, 3) 3829.881 3589.431 (160,154, 77.662, 3) 3581.536 7.895 1.00220

∞ (148,143, 77.464, 3) 3831.490 3590.915 (160,154, 77.663, 3) 3583.035 7.880 1.00220
p = 0.4

0 (142,137, 77.362, 3) 3641.520 3370.810 (145,140, 77.411, 4) 3365.724 5.085 1.00151

0.5 (142,138, 77.374, 3) 3715.988 3471.297 (153,148, 77.547, 3) 3465.200 6.097 1.00176

1 (143,139, 77.390, 3) 3747.813 3511.377 (155,150, 77.584, 3) 3503.724 7.653 1.00218

10 (147,142, 77.447, 3) 3819.167 3588.520 (159,154, 77.657, 3) 3579.762 8.758 1.00245

20 (147,142, 77.454, 3) 3826.313 3595.290 (160,154, 77.663, 3) 3586.591 8.699 1.00243

40 (148,143, 77.459, 3) 3830.118 3598.719 (160,155, 77.666, 3) 3590.174 8.545 1.00238

80 (148,143, 77.461, 3) 3832.083 3600.536 (160,155, 77.668, 3) 3592.011 8.526 1.00237

100 (148,143, 77.461, 3) 3832.481 3600.903 (160,155, 77.668, 3) 3592.382 8.522 1.00237

∞ (148,143, 77.463, 3) 3834.091 3602.383 (160,155, 77.670, 3) 3593.878 8.505 1.00237

p = 0.6

0 (142,137, 77.362, 3) 3640.473 3361.860 (144,139, 77.401, 4) 3355.785 6.075 1.00181

0.5 (142,138, 77.375, 3) 3715.083 3460.331 (152,147, 77.537, 3) 3454.970 5.361 1.00155

1 (143,139, 77.390, 3) 3746.940 3499.948 (154,149, 77.574, 3) 3493.147 6.802 1.00195

10 (147,142, 77.447, 3) 3818.320 3576.848 (159,153, 77.646, 3) 3569.003 7.845 1.00220

20 (147,142, 77.454, 3) 3825.465 3583.641 (159,154, 77.652, 3) 3575.848 7.792 1.00218

40 (148,143, 77.459, 3) 3829.269 3587.091 (159,154, 77.656, 3) 3579.443 7.648 1.00214

80 (148,143, 77.461, 3) 3831.233 3588.916 (159,154, 77.658, 3) 3581.285 7.631 1.00213

100 (148,143, 77.462, 3) 3831.631 3589.285 (159,154, 77.658, 3) 3581.658 7.627 1.00213

∞ (148,143, 77.463, 3) 3833.240 3590.772 (160,154, 77.659, 3) 3583.159 7.613 1.00212
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Table 2: Continued.

ε (Q∗, A∗, π∗
x, L

∗) EAC
′

EAC
′
n (Qn,An, πxn

, Ln) EACn EVAI EAC
′
n/EACn

p = 0.8
0 (142,137, 77.364, 3) 3636.534 3343.016 (143,138, 77.384, 4) 3334.111 8.905 1.00267
0.5 (143,138, 77.377, 3) 3711.456 3438.123 (151,146, 77.520, 3) 3433.970 4.153 1.00121
1 (143,139, 77.391, 3) 3743.388 3477.029 (153,148, 77.556, 3) 3471.557 5.472 1.00158
10 (147,142, 77.449, 3) 3814.824 3553.487 (158,152, 77.628, 3) 3547.095 6.392 1.00180
20 (147,143, 77.457, 3) 3821.965 3560.217 (158,153, 77.635, 3) 3553.968 6.249 1.00176
40 (148,143, 77.461, 3) 3825.767 3563.804 (158,153, 77.638, 3) 3557.581 6.223 1.00175
80 (148,143, 77.463, 3) 3827.731 3565.644 (158,153, 77.640, 3) 3559.434 6.209 1.00174
100 (148,143, 77.463, 3) 3828.128 3566.015 (158,153, 77.640, 3) 3559.808 6.207 1.00174
∞ (148,143, 77.466, 3) 3829.737 3567.416 (159,153, 77.642, 3) 3561.319 6.096 1.00171
p = 1.0
0 (142,137, 77.367, 3) 3630.318 3319.556 (142,137, 77.364, 4) 3306.329 13.227 1.00400
0.5 (143,138, 77.379, 3) 3705.659 3411.049 (150,145, 77.501, 3) 3408.019 3.029 1.00089
1 (144,139, 77.394, 3) 3737.691 3449.036 (152,147, 77.536, 3) 3444.940 4.095 1.00119
10 (147,142, 77.452, 3) 3809.204 3524.967 (157,151, 77.608, 3) 3520.105 4.862 1.00138
20 (148,143, 77.460, 3) 3816.342 3531.755 (157,152, 77.615, 3) 3527.009 4.746 1.00135
40 (148,143, 77.464, 3) 3820.141 3535.369 (157,152, 77.618, 3) 3530.642 4.727 1.00134
80 (148,143, 77.466, 3) 3822.102 3537.223 (157,152, 77.620, 3) 3532.507 4.716 1.00134
100 (148,143, 77.466, 3) 3822.500 3537.598 (157,152, 77.621, 3) 3532.884 4.714 1.00133
∞ (148,143, 77.468, 3) 3824.107 3539.110 (157,152, 77.622, 3) 3534.405 4.705 1.00133
Note: we obtain the optimal (Qn,An, πxn

, Ln) by the standard procedure, F∗ is mixture of normal distribution, and incur
an expected annual cost EACn(Qn,An, πxn

, Ln). (Q∗, A∗, π∗
x, L

∗) stands for the optimal order quantity, the ordering cost,
the back-order price discount, and the optimal lead time, respectively, that the demand in the lead time is mixture of free
distribution; EAC(Q∗, A∗, π∗

x, L
∗) is the minimum total expected annual cost. We use (Q∗, A∗, π∗

x, L
∗) instead of the optimal

(Qn,An, πxn
, Ln) for EACn(Q∗, A∗, π∗

x, L
∗). In other word, EAC′ = EAC(Q∗, A∗, π∗

x, L
∗), EAC′

n = EACn(Q∗, A∗, π∗
x, L

∗), and
EACn = EACn(Qn,An, πxn

, Ln).

Table 3: The relationships among variables, objectives and parameters.

Fixed parameter Variable parameters Outcomes
Decision variables Objective

p, δ = 0.5, 1.0 ε ↑ (Q∗, A∗, π∗
x) ↑ EAC ↑

δ, ε p ↑ EAC ↗↘
p, ε δ ↑ (Q∗, A∗, π∗

x) ↓ EAC ↓
δ, p, ε L∗ = 3
p, δ = 0.5 ε ↑ EVAI↗↘
δ = 1.0, ε /= 0 p ↑ EVAI↗↘

Appendix

For a given value of L, we first obtain the Hessian matrix H as follows:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2EAC(Q,A,πx, L)
∂Q2

∂2EAC(Q,A,πx, L)
∂Q∂A

∂2EAC(Q,A,πx, L)
∂Q∂πx

∂2EAC(Q,A,πx, L)
∂A∂Q

∂2EAC(Q,A,πx, L)
∂A2

∂2EAC(Q,A,πx, L)
∂A∂πx

∂2EAC(Q,A,πx, L)
∂πx∂Q

∂2EAC(Q,A,πx, L)
∂πx∂A

∂2EAC(Q,A,πx, L)
∂π2

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.1)
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where

∂2EAC(Q,A,πx, L)
∂Q2

= 2
AD

Q3
+ 2

D

Q3
π0

(
1 − θ2

1 + Δ(L)

)
Δ(L)
ε

+
2D
Q3

R(L) > 0,

∂2EAC(Q,A,πx, L)
∂A2

=
θv

A2
> 0,

∂2EAC(Q,A,πx, L)
∂π2

x

= 2
D

Q

δ/π0

1 + Δ(L)
Δ(L)
ε

> 0,

∂2EAC(Q,A,πx, L)
∂Q∂A

=
∂2EAC(Q,A,πx, L)

∂A∂Q
= − D

Q2
,

∂2EAC(Q,A,πx, L)
∂Q∂πx

=
∂2EAC(Q,A,πx, L)

∂πx∂Q
=

D

Q2

[
1 − 2

πx

π0

]
δ

1 + Δ(L)
Δ(L)
ε

,

∂2EAC(Q,A,πx, L)
∂A∂πx

=
∂2EAC(Q,A,πx, L)

∂πx∂A
= 0.

(A.2)

Then we proceed by evaluating the principal minor of H at point (Q∗, A∗, π∗
x). The first

principal minor of H is

|H11| =
∂2EAC(Q∗, A∗, π∗

x, L)
∂Q∗2 > 0. (A.3)

The second principal minor ofH is (note that from (2.16) D/Q∗ = θν/A∗)

|H22| =
∂2EAC(Q∗, A∗, π∗

x, L)
∂Q∗2 · ∂

2EAC(Q∗, A∗, π∗
x, L)

∂A∗2 −
[
∂2EAC(Q∗, A∗, π∗

x, L)
∂Q∗∂A∗

]2

=
{
2A∗D
Q∗3 +

2D
Q∗3π0

[
1 − θ∗

2

1 + Δ(L)

]
Δ(L)
ε

+
2D
Q∗3R(L)

}
× θv

A∗2 −
(
− D

Q∗2

)2

=
D

Q∗3

{
θv

A∗ +
2θv
A∗2

(
π0

[
1 − θ∗

2

1 + Δ(L)

]
Δ(L)
ε

+ R(L)
)}

> 0.

(A.4)

The third principal minor ofH is

|H33| =
∂2EAC(Q∗, A∗, π∗

x, L)
∂π∗2

x

· |H22| −
[
∂2EAC(Q∗, A∗, π∗

x, L)
∂Q∗∂π∗

x

]2
· ∂

2EAC(Q∗, A∗, π∗
x, L)

∂A∗2

= 2
D2

Q∗4

[
θv

A∗ +
2θv
A∗2 R(L)

]
δ/π0

1 + Δ(L)
Δ(L)
ε

+
D2

Q∗4
θv

A∗2
δ

1 + Δ(L)

(
Δ(L)
ε

)2[
4 − δ

1 + Δ(L)

]
> 0,

(A.5)

where θ∗
2 = (π∗

x/π0)(1 − π∗
x/π0)δ, Δ(L) = εB(r).

Therefore, from (A.3)–(A.5), it is clearly seen that the Hessian matrix H is positive
definite at point (Q∗, A∗, π∗

x).
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