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1. Introduction

In 1963, Gähler [1] introduced the notion of a 2-metric, real-valued function of pointtriples
on a set X, whose abstract properties were suggested by the area function for a triangle
determined by a triple in Euclidean space. A related concept in the category of linear spaces,
the theory of 2-norm on a linear space, was also investigated by Gähler in [2]. Since these
were studied in many papers, we mention [3–5].

Also, due to vagueness about the distance between points in a metric space,
probabilistic metric spaces were introduced by Menger [6] as a generalization of metric
spaces. From the vantage point of a sixty-year history, it is safe to say that the probabilistic
approach on deterministic results of linear normed spaces is playing an important role in
applied mathematics.

In this paper, we first investigate compact operators between 2-normed spaces. Then,
according to Menger’s probabilistic approach, we discuss on 2-probabilistic normed spaces
and extend the main ideas given in first section to operators defined between 2-probabilistic
normed spaces.
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2. 2-Normed Spaces

In this section, after providing the required preliminaries, we discuss on compact operators
between 2-normed spaces.

In the sequel of this paper, it is always assumed that all vector spaces are real with the
dimension greater than one.

Definition 2.1 ([7]). Let X be a real linear space. A function ‖·, ·‖ : X2 → R is called a 2-norm
on X if it satisfies the following conditions, for every α ∈ R and x, y, z ∈ X:

(a) ‖x, y‖ = 0 ⇔ x and y are linearly dependent,

(b) ‖x, y‖ = ‖y, x‖,
(c) ‖αx, y‖ = |α|‖x, y‖,
(d) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖.

Then the pair (X, ‖·, ·‖) is said to be a linear 2-normed space.
A most standard example of a 2-normed space is X = R

2 equipped with the following
2-norm (the absolute value of the determinant):

‖x1, x2‖E = abs
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where xi = (xi1, xi2) for i = 1, 2.

Definition 2.2. Let X and Y be two 2-normed spaces, and let T : X → Y be a linear operator.
For any e ∈ X, we say that the operator T is e-bounded if there exists Me > 0 such that
‖T(x), T(e)‖ ≤ Me‖x, e‖ for all x ∈ X. An e-bounded operator T , for every e, will be called
bounded.

For example, the operator T(x) = cx, where c ∈ R defined on any 2-normed space X is
a bounded operator. More examples are the followings.

Example 2.3. The operator T : (R2, ‖·, ·‖E) → (R2, ‖·, ·‖E) defined by

T(x1, x2) = (x1,−x1 − x2) (2.2)

is a bounded linear operator. In fact, for each e, x ∈ X, we have

‖T(x), T(e)‖E = abs

∣
∣
∣
∣
∣

x1 −x1 −x2

e1 −e1 −e2

∣
∣
∣
∣
∣
= abs

∣
∣
∣
∣
∣

x1 x2

e1 e2

∣
∣
∣
∣
∣
= ‖x, e‖E. (2.3)

Example 2.4. Consider the real vector space P of all real polynomials on the interval [0, 1].
Define

∥
∥f, g

∥
∥ = sup

0≤t≤1
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dt, (2.4)
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for all f, g ∈ P , where the prime denotes differentiation with respect to t. The operator T :
P → P defined by

Tf(t) = tf(t) (2.5)

is a bounded operator. Indeed,
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∥Tf, Tg
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(2.6)

for all f, g ∈ P .

Example 2.5. Let (X, ‖ · ‖) be a normed space. Whereas any normed space may be realized as
a function space on the closed unit ball of the dual space X∗, one can define a 2-norm onX by

∥
∥x, y

∥
∥ = sup

{∣
∣f(x)g

(

y
) − g(x)f

(

y
)∣
∣ : f, g ∈ Ball (X∗)

}

,
(

x, y ∈ X
)

. (2.7)

Now suppose that T is a bounded linear operator on (X, ‖ · ‖) in the usual sense. It can be
easily seen that T is bounded on (X, ‖·, ·‖).

We are interested in calling the 2-norm given in Example 2.5 the 2-norm induced by
(ordinary) norm.

Definition 2.6. A sequence {xn} of X is said to be convergent if there exists an element a ∈ X
such that limn→∞‖xn − a, x‖ = 0, for all x ∈ X.

Evidently the limit of any convergent sequence is unique.

Definition 2.7. Let X and Y be two 2-normed spaces, and let T : X → Y be a linear operator.
The operator T is said to be sequentially continuous at x ∈ X if for any sequence {xn} of X
converging to x we have T(xn) → T(x).

Definition 2.8. The closure of a subset E of a 2-normed space X is denoted by E and defined
by the set of all x ∈ X such that there is a sequence {xn} of E converging to x. We say that E
is closed if E = E.

For a 2-normed space X, consider the subsets,

Be(a, r) = {x : ‖x − a, e‖ < r},
Be[a, r] = {x : ‖x − a, e‖ ≤ r}, (2.8)

of X. It is clear that Be[a, r] is closed.
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Definition 2.9. A subset A of a 2-normed space X is said to be locally bounded if there exist
e ∈ X \ {0}, and r > 0 such that A ⊆ Be(0, r).

Example 2.10. Every bounded set in R
2 is a locally bounded set in (R2, ‖·, ·‖E). In fact, assume

that A is a bounded set in R
2. There exists an M > 0 such that for every (x, y) ∈ A, ‖(x, y)‖ <

M. Putting e = (1, 0), we obtain A ⊆ Be(0,M).

Example 2.11. For a normed space (X, ‖ · ‖) consider the 2-norm induced by its norm as given
in Example 2.5. Suppose that A is a bounded set in (X, ‖ · ‖) and e ∈ X \ {0}. It can be easily
seen that A lies in Be(0, r), for some r > 0.

Definition 2.12. A subset B of a 2-normed space X is said to be compact if every sequence {xn}
of B has a convergent subsequence in B.

It is clear that every compact set of a normed space X is also compact in its 2-norm
induced by norm.

Lemma 2.13. Every compact subsetM of a 2-normed space is closed and locally bounded.

Proof. The proof of closedness is trivial. If M were not locally bounded, it would contain a
sequence {yn} such that ‖yn, e‖ > n, for any nonzero fixed element e. Now this sequence
could not have a convergent subsequence because if {ynk} were a convergent subsequence
to y0, then ‖ynk − y0, e‖ → 0. And for ε there would exist a positive integer N such that
‖ynk , e‖ − ‖y0, e‖ ≤ ‖ynk − y0, e‖ < ε, for each k > N which is a contradiction.

The following example shows that the converse of Lemma 2.13 is false in general.

Example 2.14. The subset B(1,0)[0, 1] of (R2, ‖·, ·‖E) is not a compact set. Because the sequence
{(n, 0)} of B(1,0)[0, 1] has no convergent subsequence. Suppose on the contrary that (nk, 0) →
(a, b). Hence, for e = (0, 1), we have ‖(nk, 0) − (a, b), (0, 1)‖E → 0. That is, |nk − a| → 0 which
is impossible.

Lemma 2.15. Let X be a 2-normed space. Then X is of finite dimension if Be[a, r] is a compact set in
X, for some a, e ∈ X, and r > 0.

Proof. Suppose that Be[a, r] is compact. Consider the normed spaceX/〈e〉 equipped with the
norm:

‖x + 〈e〉‖ =
‖x, e‖
‖e, e′‖ , (2.9)

where {e, e′} is a linearly independent set. The subset,

A =
{

x + 〈e〉 : ‖x − a + 〈e〉‖ ≤ r

‖e, e′‖
}

, (2.10)

is a closed ball in the usual sense of the normed space X/〈e〉. We aim to show that A is
a compact set in the normed space X/〈e〉. Choose the sequence {xn + 〈e〉} of A. Since, for
every n,

‖xn + 〈e〉 − (a + 〈e〉)‖ =
‖xn − a, e‖
‖e, e′‖ ≤ r

‖e, e′‖ , (2.11)
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and therefore {xn} is a sequence in Be[a, r]. Hence {xn} has a convergent subsequence {xnk}
to a point x0. We have

lim
n→∞

‖xnk + 〈e〉 − (x0 + 〈e〉)‖ = lim
n→∞

‖xnk − x0, e‖
‖e, e′‖ = 0. (2.12)

Hence {xnk + 〈e〉}∞k=1 is a convergent subsequence of {xn+〈e〉}. This implies thatA is compact.
Therefore X is of finite dimension.

In the rest of this section, the space X/〈e〉 will denote the normed space given in the
proof of Lemma 2.15.

It is well known that if {x1, . . . , xn} is a linear independent set of vectors in a normed
space X (of any dimension), then there is a number c > 0 such that for all scalars α1, . . . , αn

we have

‖α1x1 + · · · + αnxn‖ ≥ c(|α1| + · · · + |αn|). (2.13)

The next lemma gives a similar assertion in 2-normed spaces.

Lemma 2.16. Let {x1, . . . , xn, e} be a linearly independent set of vectors in a 2-normed space X (of
any dimension). Then, there is a positive number c such that for any choice of scalars α1, . . . , αn we
have

‖α1x1 + · · · + αnxn, e‖ ≥ c(|α1| + · · · + |αn|). (2.14)

Proof. Consider the normed space X/〈e〉 and put λ = ‖e, e′‖ > 0. Since {x1, . . . , xn, e} is
linearly independent in X, so is {λx1 + 〈e〉, . . . , λxn + 〈e〉} in X/〈e〉. Thus, there exists c > 0
such that for every choice of scalar α1, . . . , αn we have

‖α1(λx1 + 〈e〉) + · · · + αn(λxn + 〈e〉)‖ ≥ c(|α1| + · · · + |αn|). (2.15)

Therefore ‖α1x1 + . . . + αnxn, e‖ ≥ c(|α1| + . . . + |αn|). This completes the proof.

Definition 2.17. Let X and Y be two 2-normed spaces. A linear operator T : X → Y is called a
compact operator if it maps every locally bounded sequence {xn} inX onto a sequence {T(xn)}
in Y which has a convergent subsequence.

Lemma 2.18. Let X and Y be two 2-normed spaces, and let T : X → Y be a compact operator.
Then for every e ∈ X, T induces the ordinary compact operator T ′ : X/〈e〉 → Y/〈T(e)〉 defined by
T ′(x + 〈e〉) = T(x) + 〈T(e)〉, for all x ∈ X.

Proof. Suppose e ∈ X, and {xn + 〈e〉} is a bounded sequence in the normed space X/〈e〉.
There existsM > 0 such that every ‖xn +〈e〉‖ < M and so ‖xn, e‖ < M‖e, e′‖, for all n. Since T
is compact, the sequence {T(xn)} has a convergent subsequence {T(xnk)} to a point y0. Thus,
limn→∞‖T(xnk)−y0, y‖ = 0, for all y ∈ Yor limn→∞‖T(xnk)−y0 +〈T(e)〉‖ = 0. This shows that
T ′ is a compact operator.
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Lemma 2.19. Let X and Y be two 2-normed spaces. If T : X → Y is a surjective bounded linear
operator, then it is sequentially continuous.

Proof. If xn → a, then ‖xn − a, e‖ → 0, for each e ∈ X. Since T is bounded for every e ∈
X, there exists Me such that ‖T(xn) − T(a), T(e)‖ ≤ Me‖xn − a, e‖ for all n. Thus T(xn) →
T(a).

Corollary 2.20. Let X and Y be two 2-normed spaces. Then

(a) every compact operator T : X → Y is bounded;

(b) if dim X = ∞, then the identity operator I : X → X is not a compact operator.

Proof. (a) Choose e ∈ X. Let T ′ be the compact operator induced by T(as explained in
Lemma 2.18). Since T ′ is a compact operator, there exists Me > 0 such that

‖T(x) + 〈T(e)〉‖ ≤ Me‖x + 〈e〉‖, (2.16)

for all x ∈ X. That is, for all x ∈ X

‖T(x), T(e)‖
∥
∥T(e), y0

∥
∥

≤ Me
‖x, e‖
‖e, e′‖ , (2.17)

where {y0, T(e)} and {e, e′} are linearly independent sets. This implies that T is bounded.
(b) Choose e ∈ X. The identity operator I maps Be[0, 1] to itself. Suppose on the

contrary that I is a compact operator. Let {xn} be a sequence of Be[0, 1]. Because {xn} is a
locally bounded sequence, it has a convergent subsequence. Hence Be[0, 1] is compact and
therefore X is of finite dimension by Lemma 2.15, which is a contradiction.

Remark 2.21. SupposeX and Yare two 2-normed spaces, T1 and T2 are compact operators from
X into Y , and c ∈ R. Then cT1 + T2 is a compact operator. To see this, let {xn} be any locally
bounded sequence in X. The sequence {T1(xn)} has a convergent subsequence {T1(xnk)}. The
sequence {T2(xnk)} has a convergent subsequence T2(zn). Let T1(zn) → u, and let T2(zn) →
v. If y ∈ Y , c ∈ R, we have

lim
n→∞

∥
∥(cT1 + T2)(zn) − cu − v, y

∥
∥ ≤ lim

n→∞
|c|∥∥T1(zn) − u, y

∥
∥ + lim

n→∞
∥
∥T2(zn) − v, y

∥
∥. (2.18)

Thus limn→∞‖cT1 +T2(zn)−cu−v, y‖ = 0, for all y ∈ Y . This implies that cT1 +T2 is a compact
operator.

Theorem 2.22. LetX be a 2-normed space, let T : X → X be a compact operator, and let S : X → X
be a bijective bounded operator. Then ST and TS are compact operators.

Proof. Let {xn} be any locally bounded sequence in X. Then {T(xn)} has a convergent
subsequence {T(xnk)}. Put limn→∞T(xnk) = y0. Since S is bijective and bounded, by
Lemma 2.19, we have S(T(xnk)) → S(y0). Hence S(T(xn)) has a convergent subsequence.
This proves ST is compact. Now, to show that TS is compact, for any locally bounded
sequence {xn}, there exist e ∈ X and M > 0 such that xn ∈ Be(0,M) for all n, that is,
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‖xn, e‖ < M, for all n ≥ 1. Since S is bounded, the sequence {S(xn)} is a locally bounded
sequence in X. Because T is compact, {T(S(xn))} has a convergent subsequence. This
completes the proof.

Theorem 2.23. Let X and Y be two 2-normed spaces. If T : X → Y is a linear operator where
dim X < ∞, then T is bounded.

Proof. Choose e ∈ X. Since dimX < ∞, so dimX/〈e〉 < ∞. Therefore the operator T ′ :
X/〈e〉 → Y/〈T(e)〉 definedby T ′(x + 〈e〉) = T(x) + 〈Te〉, for all x ∈ X, is a bounded operator.
Thus, for every e ∈ X there exists Me > 0 such that ‖T(x) + 〈T(e)〉‖ ≤ Me‖x + 〈e〉‖, for all
x ∈ X. Therefore

‖T(x), T(e)‖
∥
∥T(e), y0

∥
∥

≤ Me
‖x, e‖
‖e, e′‖ , (2.19)

where {y0, T(e)} and {e, e′} are linearly independent subsets. Thus T is bounded.

Theorem 2.24. Let T : X → X be a compact operator on a 2-normed space X. Then for every λ/= 0,
the null space N(Tλ) of Tλ = T − λI is of finite dimension.

Proof. Consider the subset M = Be[a, r] of N(Tλ). We show that M is compact, then apply
Lemma 2.15. If {xn} is a sequence in M, then {xn} is locally bounded and {T(xn)} has a
convergent subsequence {T(xnk)}. Now xn ∈ M ⊂ N(Tλ) implies Tλ(xn) = T(xn)−λxn = 0, so
that xn = λ−1T(xn) because λ/= 0. Consequently, {λ−1T(xnk)}will be a convergent subsequence
of {xn} in M. Hence M is compact, because {xn} was arbitrary in M. This shows that
dimN(Tλ) < ∞.

Definition 2.25. A sequence {xn} of 2-normed space X is called a Cauchy sequence if
limm,n→∞‖xn − xm, x‖ = 0, for all x ∈ X.

We will say that the 2-normed space X is a 2-Banach space if every Cauchy sequence in
X is a convergent sequence in X.

Theorem 2.26. Let X,Y , and Z be 2-normed spaces, let T : Z ⊂ X → Y be a surjective bounded
operator, and let Y is a 2-Banach space. Then T has an extension T : Z → Y , where T is an e-bounded
operator for each e ∈ Z.

Proof. We consider any x ∈ Z. There is a sequence {xn} in Z such that xn → x. Since T is
linear and bounded for every e ∈ Z, there exists Me > 0 such that

‖T(xn) − T(xm), T(e)‖ ≤ Me‖xn − xm, e‖, (2.20)

for all n,m. This shows that {T(xn)} is Cauchy in Y , because {xn} is convergent. By
assumption, Y is a 2-Banach space, so that {T(xn)} converges in Y say T(xn) → y.We define
T by T(x) = y. This definition is independent of the particular choice of a sequence in Z
converging to x. Because suppose that xn → x and zn → x. Then vm → x, where {vm} is the
sequence {x1, z1, x2, z2, . . .}. Hence {T(vm)} is convergent and the two subsequences {T(xn)}
and {T(zn)} of {T(vm)} must have the same limit. This proves that T is uniquely defined at
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every x ∈ Z. Clearly T is linear and T(x) = T(x) for every x ∈ Z, so that T is an extension of
T . On the other hand,

‖T(x), T(e)‖ ≤ Me‖x, e‖ (2.21)

for all x. Thus,

∥
∥
∥T(x), T(e)

∥
∥
∥ ≤

∥
∥
∥T(x) − T(xn), T(e)

∥
∥
∥ + ‖T(xn), T(e)‖. (2.22)

When n → ∞, ‖T(x), T(e)‖ ≤ Me‖x, e‖. Therefore T is an e-bounded linear operator for each
e ∈ Z.

3. 2-Probabilistic Normed Spaces

In this section, we aim to consider compact operators between 2-probabilistic normed spaces.
We need some preliminaries which are given first.

Definition 3.1. A function f : R → [0,∞) is called a distribution function if it is nondecreasing
and right-continuous with inft∈Rf(t) = 0, and supt∈R

f(t) = 1.
We will denote the set of all distribution functions by D.

Definition 3.2. A pair (X,N) is called a 2-probabilistic normed space (briefly, a 2PN-space) if X
is a real vector space with dimX > 1, N is a mapping from X × X into D (for x ∈ X, the
distribution function N(x, y) is denoted by Nx,y, and Nx,y(t) is the value Nx,y at t ∈ R)
satisfyingthe following conditions:

(2PN-I) Nx,y(0) = 0, for all x, y ∈ X,

(2PN-II) Nx,y(t) = 1 for all t > 0 if and only if x and y are linearly dependent,

(2PN-III) Nx,y(t) = Ny,x(t), for all x, y ∈ X,

(2PN-IV) Nαx,y(t) = Nx,y(t/|α|), for all α ∈ R \ {0}, and for all x, y ∈ X,

(2PN-V) Nx+y,z(s + t) ≥ min{Nx,z(s),Ny,z(t)} for all x, y, z ∈ X, and s, t ∈ R.

We call the mapping (x, y) → Nx,y a 2-probabilistic norm (2P -norm) on X.

Example 3.3. Let (X, ‖·, ·‖) be a 2-normed space. Every 2-norm induces a 2P -norm on X as
follows:

Nx,y(t) =

⎧

⎪⎨

⎪⎩

t

t +
∥
∥x, y

∥
∥
, t > 0,

0, t ≤ 0.
(3.1)

This 2-probabilistic norm is called the standard 2P -norm.

Theorem 3.4 ([8]). Let (X,N) be a 2PN-space. Assume that the condition (2PN-V I) Nx,y(t) > 0,
for all t ∈ (0,∞) implies that {x, y} is linearly dependent. For α ∈ (0, 1), define

∥
∥x, y

∥
∥
α = inf

{

t : Nx,y(t) ≥ α
}

. (3.2)
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Then {‖·, ·‖α : α ∈ (0, 1)} is an ascending family of 2-norms onX. These 2-norms are called α-2-norms
on X corresponding to (or induced by) the 2-probabilistic norm N on X.

The following example gives us a 2PN-space satisfying condition (2PN-V I).

Example 3.5. Suppose that (X, ‖·, ·‖) is a 2-normed space. Define

Nx,y(t) =

⎧

⎨

⎩

0, t ≤ ∥
∥x, y

∥
∥,

1, t >
∥
∥x, y

∥
∥,

(3.3)

where x, y ∈ X, and t ∈ R. Then the 2PN-space (X,N) satisfies (2PN-V I).

Definition 3.6. Let (X,N) be a 2PN-space, and let {xn} be a sequence ofX. Then the sequence
{xn} is said to be convergent to x0 ∈ X and denoted by xn → x0 if limn→∞Nxn−x0,x(t) = 1 for
all x ∈ X and t > 0.

Definition 3.7. Let T : (X,N) → (Y,N ′) be a linear operator, where (X,N) and (Y,N ′) are
2PN-spaces. For an element e ∈ X,

( 1 ) the operator T is called e-2-probabilistic continuous (e-2-PC) at z ∈ X if for any ε > 0,
and α ∈ (0, 1) there exists δ > 0 such that

Nx−z,e(δ) ≥ α =⇒ N ′
T(x)−T(z),T(e)(ε) ≥ α, (3.4)

for all x ∈ X.

If T is e-2-PC at each point of X, then T is said to be e-2-PC on X. If T is e-2-PC on X for each
e ∈ X, then T is said to be 2-probabilistic continuous (2-PC) on X.

( 2 ) the linear operator T is called e-2-probabilistic bounded (e-2-PB) for e ∈ X on X if for
every α ∈ (0, 1) there exists me,α > 0 such that

Nx,e

(
t

me,α

)

≥ α =⇒ N ′
T(x),T(e)(t) ≥ α, (3.5)

for all x ∈ X and t ∈ R.

If T is e-2-PB on X for each e ∈ X, then T is said to be 2-probabilistic bounded (2-PB) on X.

Example 3.8. Suppose that X is a 2PN-space and that T : X → X is a linear operator defined
by T(x) = cx, c ∈ R. Then T is a 2-PC operator. Because, for any e ∈ X, ε > 0, and α ∈ (0, 1) it
suffices to choose δ = ε/c2. Now, for x ∈ X if Nx−z,e(δ) ≥ α, then N ′

T(x)−T(z),T(e)(ε) ≥ α.

Theorem 3.9. Let (X,N) and (Y,N ′) be two 2PN-spaces, and let T : (X,N) → (Y,N ′) be a linear
operator.

(a) If T is e-2-PC for e ∈ X at x0 ∈ X, then T is e-2-PC on X.

(b) T is 2-PC on X if and only if T is 2-PB on X.



10 Mathematical Problems in Engineering

Proof. (a) Since T is e-2-PC at x0, for each ε > 0, and α ∈ (0, 1), there exists δ > 0 such that

Nx−x0,e(δ) ≥ α =⇒ N ′
T(x)−T(x0),T(e)(ε) ≥ α, (3.6)

for all x ∈ X. Taking y ∈ X, and x ∈ X such that Nx−y,e(δ) ≥ α we get

N ′
T(x+x0−y)−T(x0),T(e)

(ε) ≥ α, (3.7)

or

N ′
T(x)−T(y),T(e)(ε) ≥ α. (3.8)

Since y is arbitrary, it follows that T is e-2-PC on X.
(b) First we suppose that T is 2-PB onX. Choose e ∈ X, α ∈ (0, 1), and ε > 0 arbitrarily.

There exists me,α > 0 such that

Nx,e

(
ε

me,α

)

≥ α =⇒ N ′
T(x),T(e)(ε) ≥ α, (3.9)

for all x ∈ X. This shows that T is e-2-PC at zero and by part (a) it is e-2-PC on X.
Conversely, suppose that T is 2-PC at 0. Using e-2P continuity of T at 0 and taking

ε = 1, and α ∈ (0, 1), there exists δ > 0 such that

Nx−0,e(δ) ≥ α =⇒ N ′
T(x)−T(0),T(e)(1) ≥ α, (3.10)

or

Nx,e(δ) ≥ α =⇒ N ′
T(x),T(e)(1) ≥ α, (3.11)

for all x ∈ X. Choose me,α = 1/δ. Then

Nx,e

(
t

me,α

)

= Nx/t,e(δ) ≥ α =⇒ N ′
T(x/t),T(e)(1) = N ′

T(x),T(e)(t) ≥ α, (3.12)

for all x /= 0 and t > 0. This implies that T is e-2-PB on X. Because e was arbitrary, T is 2-
PB.

Theorem 3.10. Let (X,N) and (Y,N ′) be two 2PN-spaces satisfying (2PN-V I). If the linear
operator T : (X, ‖·, ·‖α) → (Y, ‖·, ·‖′α) is bounded with respect to α-2-norms corresponding to N
and N ′ for each α ∈ (0, 1), then T : (X,N) → (Y,N ′) is 2-PB.

Proof. Fix e ∈ X. For any α ∈ (0, 1), there exists me,α such that for all x ∈ X,

‖T(x), T(e)‖α ≤ me,α‖x, e‖α. (3.13)
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Then for x /= 0, and t > 0,

‖me,αx, e‖α ≤ t =⇒ ‖T(x), T(e)‖α ≤ t. (3.14)

On the other hand,

inf
{

s : Nme,αx,e(s) ≥ α
} ≤ t =⇒ inf

{

s : N ′
T(x),T(e)(s) ≥ α

}

≤ t. (3.15)

It is clear that

inf
{

s : Nme,αx,e(s) ≥ α
} ≤ t ⇐⇒ Nme,αx,e(t) ≥ α,

inf
{

s : N ′
T(x),T(e)(s) ≥ α

}

≤ t ⇐⇒ N ′
T(x),T(e)(t) ≥ α.

(3.16)

Thus, for any α ∈ (0, 1), there exists me,α > 0 such that for all t ∈ R, x ∈ X,

Nx,e

(
t

me,α

)

≥ α =⇒ N ′
T(x),T(e)(t) ≥ α, (3.17)

that is, T is 2-PB.

Theorem 3.11. Let T : (X,N) → (Y,N ′) be a linear surjective operator, where (X,N) and (Y,N ′)
are 2PN-spaces. If T is 2-PC on X, then T is sequentially continuous, that is, for any sequence {xn}
converging to x, T(xn) → T(x).

Proof. If xn → x, then limn→∞Nxn−x,e(t) = 1, for each e ∈ X, and t > 0. Since T is 2-PC, it is 2-
PB by Theorem 3.9. Thus, for each α ∈ (0, 1) there exists me,α such that if Nxn−x,e(t/me,α) ≥ α,
thenN ′

T(xn)−T(x),T(e)(t) ≥ α, for all n ∈ N, and t ∈ R. Hence, T(xn) → T(x).

Definition 3.12. A subset B in a 2PN-space (X,N) is called compact if each sequence of B has
a convergent subsequence in B.

Definition 3.13. Let (X,N) be a 2PN-space. For e, x ∈ X, α ∈ (0, 1), and r > 0 we define the
locally ball Be,α[x, r] by {y ∈ X : Nx−y,e(r) ≥ α}.

It is clear that every locally ball is a closed set.

Definition 3.14. A subset B of a 2PN-space (X,N) is said to be 2-probabilistic locally bounded
(2-PLB), if there are t > 0, e ∈ X \ {0}, and 0 < r < 1 such that Nx,e(t) > 1 − r, for all x ∈ B.

Example 3.15. The subset C = {(x, y) : y = arcsinx} is a 2-PLB set in (R2,N), where N is
the standard 2-probabilistic norm. In fact, C ⊆ B(1,0),1/2((0, 0), 1). Since, if (x, y) ∈ C, then
‖(x, y), (1, 0)‖E = |y| < 1. That is, (x, y) ∈ B(1,0)((0, 0), 1).

Definition 3.16. The closure of a subset E of a 2PN-space (X,N) is denoted by E and defined
by the set of all x ∈ X such that there is a sequence {xn} of E converging to x. We say that E
is closed if E = E.



12 Mathematical Problems in Engineering

Definition 3.17. Let (X,N) and (Y,N ′) be 2PN-spaces. A linear operator T : (X,N) → (Y,N ′)
is called a compact operator if it maps every 2-PLB sequence {xn} inX onto a sequence {T(xn)}
in Y which has a convergent subsequence.

Example 3.18. Let ‖·, ·‖1 and ‖·, ·‖2 be two 2-norms, and let T : (X, ‖·, ·‖1) → (Y, ‖·, ·‖2) be a
compact operator. Then T : (X,N1) → (Y,N2) is a compact operator, where N1 and N2 are
2-probabilistic norms defined by

Nix,y(t) =

⎧

⎪⎨

⎪⎩

t

t +
∥
∥x, y

∥
∥
i

, t > 0,

0, t ≤ 0,
(3.18)

for i = 1, 2. To see this, let {xn} be a 2-PLB-sequence in (X,N1). There exist t0 > 0, e ∈ X, and
α ∈ (0, 1) such that for all n ∈ N,

N1xn,e(t0) > α. (3.19)

Therefore t0/(t0 + ‖xn, e‖1) > α, and this implies that {xn} is a locally bounded sequence in
(X, ‖·, ·‖1). Now, the compactness of T : (X, ‖·, ·‖1) → (Y, ‖·, ·‖2) implies that the sequence
{T(xn)} has a convergent subsequence {T(xnk)}; that is, there exists a b ∈ Y such that

lim
nk →∞

‖T(xnk) − b, v‖2 = 0, (3.20)

for all v ∈ Y . Hence,

lim
nk →∞

N2T(xnk )−b,v(t) = 1, (3.21)

for all v ∈ Y and t > 0. Thus T : (X,N1) → (Y,N2) is a compact operator.

Lemma 3.19. Let (X,N) be a 2PN-space satisfying (2PN-V I), and let {xn} be a sequence in X.
Then xn → x0 in (X,N) if and only if xn → x0 in (X, ‖·, ·‖α) for each α ∈ (0, 1).

Proof. Suppose that xn → x0 in (X,N). Choose α ∈ (0, 1), x ∈ X, and t > 0. There exists k ∈ N

such thatNxn−x0,x(t) > 1 − α, for all n ≥ k. It follows that ‖xn − x0, x‖1−α ≤ t, for all n ≥ k. Thus
‖xn − x0, x‖1−α → 0. Conversely, choose x ∈ X. Let ‖xn − x0, x‖α → 0, for every α ∈ (0, 1). Fix
α ∈ (0, 1), and t > 0. There exists k ∈ N such that

∧{r > 0 : Nxn−x0,x(r) ≥ 1 − α} < t, (3.22)

for all n ≥ k. Hence, for every n ≥ k there is 0 < tn < t such that

Nxn−x0,x(tn) ≥ 1 − α. (3.23)
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It implies that

Nxn−x0,x(t) ≥ 1 − α, (3.24)

for all n ≥ k, that is, xn → x0 in (X,N).

Lemma 3.20. Let (X,N) be a 2PN-space satisfying (2PN-V I). Then X is of finite dimension if the
locally ball Be,α[x, r] is a compact set in (X,N).

Proof. Let ‖·, ·‖α be the α-2-norm induced by N. To show that X is of finite dimension, it
suffices to prove that by Lemma 2.15, the subset

Be[x, r] =
{

y ∈ X :
∥
∥x − y, e

∥
∥
α ≤ r

}

(3.25)

is a compact set in (X, ‖·, ·‖α). It is clear that Be[x, r] = Be,α[x, r]. Choose a sequence {xn}
of Be[x, r]. Since Be,α[x, r] is compact, it has a convergent subsequence {xnk}. Lemma 3.19
implies that {xnk} is convergent in ‖·, ·‖α. Thus Be[x, r] is compact in (X, ‖·, ·‖α), and
consequently X is of finite dimension.

Remark 3.21. The converse of Lemma 3.20 generally is not true. For example, consider
B(1,0),1/2[0, 1] in (R2,N), where N is a standard 2PN-norm. Clearly,

B(1,0),1/2[0, 1] = B(1,0)[0, 1], (3.26)

where B(1,0)[0, 1] is the subset of standard 2-normed space R
2. On the contrary, if B(1,0),1/2[0, 1]

were a compact set, then for each {xn} ∈ B(1,0),1/2[0, 1] = B(1,0)[0, 1] there would exist a
converging subsequence {xnk}. Say xnk → a, where a ∈ B(1,0),1/2[0, 1]. Thus

lim
n→∞

Nxnk
−a,e(t) = lim

n→∞
t

t + ‖xnk − a, e‖ = 1, (3.27)

for all e ∈ X, t > 0. This implies that

lim
n→∞

‖xnk − a, e‖ = 0, (3.28)

for all e. Therefore B(1,0)[0, 1] is a compact set which is a contradiction by Example 2.14.

Lemma 3.22. Let T : (X,N) → (Y,N ′) be a compact operator, where (X,N) and (Y,N ′) are
2PN-spaces satisfying (2PN-V I). If the 2-norms ‖·, ·‖α, ‖·, ·‖′α are α-2-norms induced byN andN ′,
respectively, then T : (X, ‖·, ·‖α) → (Y, ‖·, ·‖′α) is a compact operator for all α ∈ (0, 1).

Proof. Let α ∈ (0, 1). We show that for each locally bounded sequence {xn} in (X, ‖·, ·‖α), the
sequence {T(xn)} has a convergent subsequence in (Y, ‖·, ·‖′α). Let {xn} be a locally bounded
sequence in (X, ‖·, ·‖α). There exist e ∈ X and M > 0 such that

‖xn, e‖α < M, (3.29)
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for all n ∈ N. By the definition of ‖·, ·‖α, for every n ≥ 1 there exists tn > 0 such that tn < M
and Nxn,e(tn) ≥ α for all n. Because N is nondecreasing, α ≤ Nxn,e(tn) ≤ Nxn,e(M). Hence

Nxn,e(M) ≥ α, (3.30)

for all n. That is, {xn} is 2-PLB in (X,N). Thus {T(xn)} has a convergent subsequence
{T(xnk)} in (Y,N ′). By Lemma 3.19, {T(xnk)} is convergent in ‖·, ·‖′α.

Theorem 3.23. Let (X,N) and (Y,N ′) be two 2PN-spaces satisfying (2PN-V I). Then

(a) every compact operator T : (X,N) → (Y,N ′) is 2-PC;

(b) if dimX = ∞, then the identity operator I : (X,N) → (X,N) is not a compact operator.

Proof. (a) Choose α ∈ (0, 1) and e ∈ X. By Lemma 3.22, T : (X, ‖·, ·‖α) → (Y, ‖·, ·‖′α) is
a compact operator between 2-α-normed spaces (X, ‖·, ·‖α) and (Y, ‖·, ·‖′α), where ‖·, ·‖α and
‖·, ·‖′α are induced 2-norms. Therefore T is bounded by Corollary 2.20. There exists me,α > 0
such that

‖T(x), T(e)‖′α ≤ me,α‖x, e‖α, (3.31)

for all x ∈ X. Hence T is 2-PB by Theorem 3.10. Now Theorem 3.9 implies that T is 2-PC.
(b) Choose e ∈ X and α ∈ (0, 1). The identity operator I maps the locally ball Be,α[0, 1]
to itself. Suppose on the contrary that I is a compact operator. Let {xn} be a sequence
in Be,α[0, 1]. Because I is a compact operator, the 2-PLB sequence {xn} has a convergent
subsequence. Hence Be,α[0, 1] is compact. ThusX is of finite dimension by Lemma 3.20, which
is a contradiction.

Remark 3.24. Let (X,N) and (Y,N ′) be two 2PN-spaces. If T1 and T2 are compact operators
from X into Y , and α ∈ R, then αT1 + T2 is a compact operator. Because, for each {xn} that is
a 2-PLB sequence in X, the sequence {T1(xn)} has a convergent subsequence {T1(xnk)}, and
the sequence {T2(xnk)} has a convergent subsequence {T2(zn)}. Hence, {T1(zn)} and {T2(zn)}
are convergent sequences. Let T1(zn) → u and T2(zn) → v, where u, v ∈ Y . We have

lim
n→∞

N ′
(T1+T2)(zn)−u−v,y(t) ≥ lim

n→∞
min

{

N ′
T1(zn)−u,y

(
t

2

)

,N ′
T2(zn)−v,y

(
t

2

)}

, (3.32)

for all y ∈ Y and t > 0. Thus

lim
n→∞

N ′
T1+T2(zn)−u−v,y(t) = 1, (3.33)

for all y ∈ Y , and t > 0. This implies that T1 + T2 is a compact operator. Now for all α ∈ R \ {0}
if T(xnk) → y0, then

lim
n→∞

N ′
αT1(xnk

)−αy0,y
(t) = lim

n→∞
N ′

T1(xnk
)−y0,y

(
t

|α|
)

= 1, (3.34)

for all y ∈ Y and t > 0. Hence αT1 is also a compact operator.
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Theorem 3.25. Let (X,N) be a 2PN-space, let T : (X,N) → (X,N) be a compact operator, let and
that S : (X,N) → (X,N) be a bijective 2-PC operator. Then ST and TS are compact operators.

Proof. Let {xn} be a 2-PLB sequence in X. Then {T(xn)} has a convergent subsequence
{T(xnk)}. Let limn→∞T(xnk) = y. Since S is 2-PC, by Theorem 3.11 we have S(T(xnk)) →
S(y). Hence ST(xn) has a convergent subsequence and this shows that ST is compact. Now,
we show that TS is compact. There are t0 > 0, e ∈ X, and r0 ∈ (0, 1) such thatNxn,e(t0) > 1−r0
for all n ≥ 1 since {xn} is a 2-PLB sequence. The operator S is 2-PB by Theorem 3.9 and so
there is me,1−r0 > 0 such that

Nxn,e

(
t0

me,1−r0

)

≥ 1 − r0 =⇒ N ′
S(xn),S(e)(t0) ≥ 1 − r0, (3.35)

for all n. It follows that {S(xn)} is a 2-PLB sequence in X. Because T is a compact operator,
{T(S(xn))} has a convergent subsequence. This completes the proof.

Theorem 3.26. Let T : X → X be a compact operator on a 2PN-space X. Then for every λ/= 0, the
null spaceN(Tλ) of Tλ = T − λI is of finite dimension.

Proof. We choose a locally ball M in N(Tλ) and show that it is compact, then apply
Lemma 3.20. Let {xn} be a sequence in M. Then {xn} is locally bounded, and {T(xn)} has
a convergent subsequence {T(xnk)}. Now xn ∈ M ⊂ N(Tλ) implies Tλ(xn) = T(xn) − λxn = 0,
so that xn = λ−1T(xn). Consequently, xnk = λ−1T(xnk) is convergent. Now, the closedness of
M implies that the limit of {xnk} belongs toM. This proves that dim N(Tλ) < ∞.

Definition 3.27. Let (X,N) be a 2PN-space. A sequence {xn} in X is called a Cauchy sequence
if limn→∞Nxn+p−xn,x(t) = 1 for all x ∈ X, t > 0, and p ∈ N.

We say that a 2PN-space (X,N) is complete if every Cauchy sequence in X is
convergent to a point of X.

Theorem 3.28. Let X,Y, and Z be two 2PN-spaces, let T : Z ⊂ X → Y be a surjective 2-PB
operator, and let Y be a complete space. Then T has an extension

T : Z −→ Y, (3.36)

where T is an e-2-PB operator for each e ∈ Z.

Proof. We consider any x ∈ Z. There is a sequence {xn} in Z such that xn → x. Since T is
linear and 2-PB, for every α ∈ (0, 1) and e ∈ Z there exists me,α > 0 such that

Nxm−xn,e

(
t

me,α

)

≥ α =⇒ N ′
T(xm)−T(xn),T(e)(t) ≥ α, (3.37)

for all t > 0 andm,n ∈ N. But the sequence {xn} is Cauchy, thus for all t > 0, there exists k ∈ N

such that for all m,n > k we have

Nxm−xn,e

(
t

me,α

)

≥ α. (3.38)
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Therefore, for m,n > k,

N ′
T(xm)−T(xn),T(e)(t) ≥ α. (3.39)

This shows that {T(xn)} is Cauchy in Y . Thus {T(xn)} is convergent to an element y ∈ Y .
Now, we define T by T(x) = y. In exactly the same way as presented in the proof of
Theorem 2.26 we see that this definition is independent of the particular choice of a sequence
in Z converging to x. Clearly T is linear and T(x) = T(x) for every x ∈ Z, so that T is an
extension of T . We now use the 2-probabilistic boundedness of T on Z. Let α ∈ (0, 1) and
e ∈ Z. There exists me,α > 0 such that

Nx,e

(
t

me,α

)

≥ α =⇒ N ′
T(x),T(e)(t) ≥ α, (∗)

for all t > 0 and x ∈ Z. Choose t > 0 and x ∈ Z such that

Nx,e

(
t

4me,α

)

≥ α. (3.40)

Now, we show that N ′
T(x),T(e)

(t) ≥ α. Because x ∈ Z, there exists {xn} ⊆ Z such that xn → x.

Therefore, for n ∈ N sufficiently large, we have

Nxn,e

(
t

2me,α

)

≥ min
{

Nxn−x,e

(
t

4me,α

)

,Nx,e

(
t

4me,α

)}

≥ α. (3.41)

By (∗), N ′
T(xn),T(e)

(t/2) ≥ α, and since limn→∞T(xn) = T(x), we obtain

N ′
T(xn)−T(x),T(e)

(
t

2

)

≥ α. (3.42)

Hence

N ′
T(x),T(e)

(t) ≥ min
{

N ′
T(x)−T(xn),T(e)

(
t

2

)

,N ′
T(xn),T(e)

(
t

2

)}

≥ α. (3.43)

Therefore T is a 2-PB linear operator on Z.
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