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The quasistatic bending response is presented for a simply supported functionally graded
rectangular plate subjected to a through-the-thickness temperature field under the effect of various
theories of generalized thermoelasticity, namely, classical dynamical coupled theory, Lord and
Shulman’s theory with one relaxation time, and Green and Lindsay’s theory with two relaxation
times. The generalized shear deformation theory obtained by the first author is used. Material
properties of the plate are assumed to be graded in the thickness direction according to a simple
exponential law distribution in terms of the volume fractions of the constituents. The numerical
illustrations concern quasistatic bending response of functionally graded square plates with two
constituent materials are studied using the different theories of generalized thermoelasticity
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Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

In the recent years, functionally graded materials (FGMs) have gained considerable attention
in many engineering applications. FGMs are considered as a potential structural material
for future high-speed spacecraft and power generation industries. FGMs are new materials,
microscopically inhomogeneous, in which the mechanical properties vary smoothly and
continuously from one surface to the other [1-7].

The effect of thermal loading on the displacement and stress fields for FGM plates
and shells has been studied by a number of authors. For example, Wetherhold et al. [5]
have considered the use of functionally graded materials to eliminate or control thermal
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deformation in beams and plates. Suresh and Mortensen [6] have discussed the large
deformation of graded multilayered composites under mechanical and thermal loads.
Praveen and Reddy [7] have investigated the response of functionally graded ceramic-metal
plates using a finite element that accounts for the transverse shear strains, rotary inertia, and
moderately large rotations in the von Karman sense.

The theory of thermoelasticity that includes the effect of temperature change has
been well established. According to this theory, the temperature field is coupled with the
elastic strain field. This theory covers a wide range of extensions of classical dynamical
coupled thermoelasticity. Lord and Shulman [8] and Green and Lindsay [9] have extended
the coupled theory of thermoelasticity by introducing the thermal relaxation times in
the constitutive equations. Additional thermoelasticity theories have been presented and
investigated by other researchers [10-22].

Lord and Shulman [8] have considered isotropic solids and introduced one relaxation
time parameter into the Fourier heat conduction equation; that is, both the heat flux and its
time derivative are considered in the heat conduction equation. The heat equation associated
with this theory is thus hyperbolic. A direct consequence is that the paradox of infinite
speed of propagation inherent in both the uncoupled and coupled theories of classical
thermoelasticity is eliminated and the heat wave feature can be modeled by the generalized
thermoelasticity. The Green and Lindsay’s theory [9] does not violate the Fourier’s law of
heat conduction when the body under consideration has a center of symmetry. In this theory,
both the equations of motion and heat conduction are hyperbolic but the equation of motion
is modified and differs from that of classical coupled thermoelasticity theory.

In this paper, a generalized nonclassical dynamic coupled thermoelasticity analysis
is carried out on a functionally graded material plate. Through-the-thickness temperature
distribution varying according to exponential law is considered and then temperature and
stress behavior are presented for the mentioned plate. The governing equations of FGM plate
for two-dimensional generalized thermoelastic problems are derived within the framework
of the classical coupled theory, Lord and Shulman’s theory, and Green and Lindsay’s theory.
The material properties of the functionally graded plate are assumed to vary continuously
through the thickness according to an exponential law distribution of the volume fraction of
the constituents. A generalized shear deformation theory is presented to obtain the governing
equations. An exact solution for the coupled governing equations under simply supported
boundary conditions is obtained. Numerical results are provided to show the influence of the
material properties, and a temperature field on the displacement and stresses.

2. Formulation of the Problem

We consider a solid rectangular plate of length a, width b, and thickness h, made of
functionally graded materials. The material properties of the FGM plate are assumed to be
function of the volume fraction of the constituent materials. Using the rectangular Cartesian
coordinates (x, y, z) we take the functional graded between the physical properties and z for
ceramic and metal FGM plate

m

where P and P, are the corresponding properties of ceramic (top surface) and metal (bottom
surface), respectively.
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The displacements of a material point located at (x, y, z) in the plate may be written as

ux(x,y,2,t) = u—z0,w + ¥,
uy(x,y,2,t) =v—-z0,w+ ¥y, (2.2)

u(x,y,z,t) =w,

where ¥ = hsin(rz/h), h = h/x, and 0, 0, represent the differentiation with respect to
x and y. (uy,uy, u.) are the displacements corresponding to the co-ordinate system and are
functions of the spatial co-ordinates, (1, v, w) are the displacements along the axes x, y, and
z, respectively, and ¢, and ¢, are the rotations about the y- and x-axes.

The strain components will be

£x = €2 + zel + We2,

0

_ 1 2

Ey =€, + 26, + ‘ng,
(2.3)

0 1 2

Exy = Exy + 26y, + Vey,,
£, =0, Eyz = 1P‘,(Py/ Exz = 1P’,‘Px,
where
52 = 0,1, sg = 0yv, sgy = 0,0 + 0y,

E}C = —éﬁw, s}/ = —6iw, s}cy = —20,0,w, (2.4)

&7 = Ox(py, 5; = 0yQy, Eiy = Ox(py + Oy(px.

3. Theories of Thermoelasticity

In addition, the stress-strain-temperature relations for the linear thermoelastic materials are
given, according to the generalized theories of thermoelasticity, by

0ij = cijuiext — Pij (T + 1T = To), (3.1)

where T, To, €ij, fij, cijui, and t; are the absolute temperature, reference temperature, strain
tensor components, components of tensor of stress-temperature moduli, components of
tensor of elastic moduli, and the first relaxation time of Green and Lindsay’s theory,
respectively.
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In details, we can rewrite the stress components in the deferent theories of generalized
thermoelasticity as follows:

ox = E'ex + B¢, - p(T + hT - Tp),

oy =E'e, + B - (T +HT - Tp), (3.2)
_ R ) ) _ 13
Oz = 0/ Gyz =E Eyz, Oxz = E Exz, Oxy =E Exyr
where
E Ev E
1 2 3

- - B=-_- 3.3
1-v2 1-v2 2(1+0) (3.3)

and the material properties E and v are functions of z. In the absence of body forces and
internal heat generation, the heat conduction equation will be in the form

(KT'j),j - pC(T + tQT) - ﬂTo (u] + tgil]'),]. = 0, (34)

where t; and #3 are additional relaxation times. A comma followed by index j denotes partial
differentiation with respect to the position x; of a material particle. A superimposed dot
indicates partial derivative with respect to time ¢. In addition to the elastic coefficients E,
and v, the material properties x, p, ¢, and f are also functions of z.

Itis clear that, by setting t; = 0in (3.2) and ¢, = 3 = 0in (3.4), we get the field equations
for the conventional coupled theory of thermoelasticity; whereas when t; = 0 and t, = t3 #£0,
the equations reduce to the Lord and Shulman’s theory and when t; = 0 and ¢; and ¢, are
nonvanishing, the equations reduce to the Green and Lindsay’s theory.

Note that the stress-temperature modulus f is given in terms of Young’s modulus E,
Poisson’s ratio v, and the thermal expansion coefficient a by the relation

(3.5)

Generally, this study assumes that Young’s modulus E, Poisson’s ratio v, material density p,
thermal expansion coefficient a, specific heat capacity ¢, and thermal conductivity coefficient
x of the FGM change continuously through the thickness direction of the plate and obey the
gradation relation given in (2.1).

4. Solution of the Problem

To solve the problem, we obtain the stress and moment resultants for the FGM plate by
integrating the stress components given in (3.2) over the thickness and written as
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N, = Ale) + Aley + Aje, + AJe, + Ajes + Aje, - B (T + 1T - T,),
Ny, = A%gg + A2l + A%s}/ + Adel + Aési + A3e2 - Bi(T + 1T -T,),
Nyy = A?sgy + Ags}cy + Ags,zcy,
M, = AJel + AJey + Ayey + Ajey + Abes + Alel - Boy(T+ 1T - To),
My = Ajey + AZel + Aje, + Aje, + Aey + Asey — By(T+ 1T - T,), W
3.0 3.1 3.2 ’
My = Ajey, + Ayex, + Asexy,
Sy = Ajel + Aje) + Aley + Adey + Aper + Age, — Bs(T+ 1T -T,),
Sy = Ajey + AJel + Aley, + Afel + Apey + Ager — By(T + hT - T,),
Sxy = Ajeq, + Adey, + Ader,,

sz = A;‘Px, Qyz = A;‘Py

Here, the coefficients A}, A? (i=1,...,6), A? (j=1,...,7),and Bi (k = 1,2,3) are defined
by

+h/2

AL AL AL AL AL ALY = EY1,z ¥, 22, 2%, W2 dz,

1 2 3 4 5 6

-h/2
+h/2

{A%,Aﬁ, A3 AL A, Aé} = f Ez{ 1,2,¥,2% 2%, 1I‘z}dz,
-h/2

(4.2)
+h/2
{4 43, 43 A}, 42, 43, 43} =f E1,2,%, 22,29, %2, ¥ | dz,
-h/2
+h/2
{B1,Ba, B3} = B{1,z,¥}dz.

-h/2

By using Hamilton’s principle, the governing equations can be obtained in the form

9xNy + 0y Ny, =0,
9xNyy +0yN, =0,
03 My + 20,0y My, + 07 M, = 0, (4.3)
OxSx + 0y Sxy — Qxz =0,
OxSaxy +0ySy — Qyz =0.
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The edges of the plate are assumed to be simply supported and maintained at the reference
temperature. That is,

w:v:(py:Nx:Mx:Sx:T:O, atx=0,aqa,
(4.4)
w=u=¢,=N,=M,=5,=T=0, aty=0,b,

For the present problem, the solution for the change in temperature is sought in the form

Twt

T(x,y,zt) =e“'7(z)sin(\x) sin(uy), (4.5)

where A = xr/a, p=m/b,and I = v/-1. This temperature identically satisfies the boundary
conditions given in (4.4) at the edges of the plate. The function 7(z) will be obtained from the
solution of the heat equation (3.4). In addition, we assume the following solution form for
(u,v,w, ¢x, py) that satisfies the boundary conditions:

u (U cos(Ax) sin(py) )
v V sin(Ax) cos(py)

3w ¢ =4 Wsin(\x)sin(py) ¢e'™, (4.6)

g

Px X cos(Ax) sin(py)
L ¢y | [ Y sin(Ax) cos(uy)

where U, V, W, X, and Y are arbitrary parameters. Finally, we get the stress components

Oy = —eI“’t{E1 [)Ll,l - zZ\’W + ‘P/\X] +E? [yV - )W + ‘P,uY] + ﬁT} sin(Ax) sin(py) + BT,
0y = " [ E2[\U = z02W + WAX| + E'[uV - 2p®W + Wpay| + pr | sin(dx) sin(uy) + BT.,
oy= = Ee""W'Y sin(\x) cos(puy),

Oxz = E2e"™"W'X cos(Ax) sin(uy),

Oxy = E>e"' [ul + AV = 2zApuW + ¥ (uX + AY)] cos(Ax) cos (uy).
(4.7)

Substitution for T from (4.5) into (3.4), with aid of (4.6), gives the following partial differential
equation with variable coefficients:

dzT 1drdr [)tz
dz2 " xdzdz

%(1 - tzw)] T
(4.8)

o ARO[ 4y = 2(07 42 )W + B (X 1) =0
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Inserting into the above ordinary differential equation the material properties x, p, ¢, and
from (2.1), we obtain

d’r i dT 2 > Ipmemw
-+ = — |\ + + 4 (1 -t (Tlpc—ﬂx)((22+h)/2h)
dz?2 h dz # K (1-wi)e T

TewB, To(1+1t
+ wpmTo(1+ 3w)e(”ﬁ”l“)((22”’)/2;’) [.)LU+#V—Z(.)LZ+ﬂ2>W+jl—TSin(%)(.)kx+/1¥)] =0,

Km
(4.9)
where
—1n<ﬁ> —1n<ﬂ> —ln<&> (4.10)
T Km/)' Tpe PmCm ’ e P ' .
The exact closed form solution of (4.9) is given by
7(z) = e /2" [Br(=¢,4)C1 + B (¢,6)Ca + wTofnF(2)], (4.11)

where C; and C; are the integration constants, and the functions B; and By are the modified
Bessel’s functions of the first and second kinds, respectively, in which

Vi B )

|1pe = 11|
(4.12)
¢= 2UNVywltow = 1) o)z /am|
M = Mpe
Note that the term
mCm 2
Y= P . (4.13)

represents the characteristic time of heat conduction through length h. The function F(z) is
given by

P& = Bed) [ 25z - b0 [ 25 s, @14)



8 Mathematical Problems in Engineering

where

A= xm{ Bi(&,8)Bi(1 - & O\ yw(taw - 1)
Bi(~,0) [\/Yw(tzw “D)Br(1+¢,8) — I (e — 1)) @A By (¢ g)] }

O = —he 21 —pe)+ h2np—r1x—pc)) /Ah PuﬁuV—z()LZ +”2> W +hsin <¥> ()LX+;¢Y)] (1+Itzw).
(4.15)

Note that the constants C; and C; are given from the temperature boundary conditions at the
lower and upper surfaces of the plate

Ty, atz= _E’
T(z) = (4.16)

T atz—+h
1, - 2

5. Numerical Results and Discussion

We present exact results for a simply supported FG square plate subjected to a transient
thermal load. Since it is common in high-temperature applications to employ a ceramic
top layer as a thermal barrier to a metallic structure, we choose the constituent materials
of the FG plate to be Aluminum (Al) and Silicon (SiC) having the following material
properties:

Al: E,, =70GPa, ©v,=03,  a,=234x10°/K,
Km=233W/mk, ¢, =896]/kgK,  pn=2707kg/m?,
(5.1)

SiC: E. =427GPa, v, =0.17, a.=43x107°/K,

ke=65W/mK, ¢, =670]/kgK,  p.=3100kg/m".

The dimensions of the simply supported FG plate are a = b = 0.25m. In addition, the values
of different parameters are used as follows:

To=1, =0, =1, w=5%x10"*1/s. (5.2)
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Table 1: Dimensionless results for FGM square plates according to various theories of thermoelasticity
with different time parameters.

t Theory

T

w o1 O5 O
C-T 0.333122102 0.383966985 0.569639832 0.393610131 —0.404103471
0.05 L-S 0.333122105 0.383966988 0.569639832 0.393610133 —0.404103471
G-L 0.333122105 0.383966675 0.569639365 0.393609811 —0.404103139
C-T 0.319915220 0.368744318 0.546983655 0.377986612 —0.388031140
0.10 L-S 0.319915222 0.368744321 0.546983655 0.377986614 —0.388031140
G-L 0.319915222 0.368743701 0.546982732 0.377985978 —0.388030485
C-T 0.268738109 0.309755974 0.459333491 0.317481666 -0.325851963
0.20 L-S 0.268738111 0.309755977 0.459333491 0.317481667 -0.325851963
G-L 0.268738111 0.309754800 0.459331743 0.317480460 -0.325850723
C-T -0.018542705  -0.021372904  -0.032152421  -0.022023521 0.022808982
0.50 LS -0.018542705  —0.021372904  -0.032152421  —0.022023521 0.022808982
G-L —0.018542705  —0.021374846  -0.032155303  —0.022025512 0.022811027
C-T -0.289521187  -0.333711203  -0.495370643  —0.342166120 0.351416781
0.80 L-S -0.289521189  -0.333711205  -0.495370643  —0.342166122 0.351416781
G-L —-0.289521189  —0.333712205  —0.495372125  —0.342167146 0.351417832
C-T —0.335469789  —0.386673003  —0.573677254  —0.396389968 0.406967624
1.00 L-S -0.335469792  -0.386673006  —0.573677254  —0.396389970 0.406967624
G-L -0.335469792  -0.386672791  —0.573676933  —0.396389749 0.406967397

Numerical results are presented in terms of the nondimensional variables defined as

t 1 ab 1 ab
t:_r T=—-T _/_/Z/t 7 =TT _/_/Z/t ’
10% 7 (2 2 ) “ hamn”3<2 2 >

1 ab a b
= N7 _/Z/t ’ = 0/ _/Z/t ’
@Mm%<2z ) % h%%m%4 2 )

1
- 7t
Op EmamTl Oxy (0/ 0/ 7 )/

(5.3)

z
Z ==
h 7
The results of the classical coupled theory (C-T), Lord and Shulman’s theory (L-S), and Green

and Lindsay’s theory (G-L) for various values of time parameter t are listed in Table 1. The
relaxation times for these theories are chosen to be

C—T2t1=t2=t3=0,

LS:t1=0, fr=t;=0.02s, (5.4)

G-L: tl =0.01 S, t2 = 2t1, t3 =0.

The dimensionless temperature T, displacement w, longitudinal stress oy, transverse shear
stress 05, and in-plane shear stress o, are given at z = 0,0,1/2,1/4, and 1/2, respectively.
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Figure 1: Through-the-thickness variation of dimensionless temperature T of FGM square plate for
different values of the time parameter t.
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Figure 2: Through-the-thickness variation of dimensionless longitudinal stress o; of FGM square plate for
different values of the time parameter t.

It can be found from Table 1 that the results obtained by the L-S model agree well with
those obtained by C-T whereas the G-L model gives an accurate prediction of the results
that slightly differ from the above two models. The temperature given in the context of all
theories may be unchanged.

It is well known that G-L theory is accurate to predict temperature, displacement,
and stresses, so some results have been plotted in Figures 1-8. The through-the-thickness
variation of the temperature and stresses is plotted in Figures 1, 2, 3, and 4 for different
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Figure 3: Through-the-thickness variation of dimensionless transverse shear stress o5 of FGM square plate
for different values of the time parameter t.
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Figure 4: Through-the-thickness variation of dimensionless in-plane shear stress o, of FGM square plate
for different values of the time parameter t.

values of the time parameter t. The through-the-thickness variation of the longitudinal stress
01, transverse shear stress o5, and in-plane shear stress o, changes significantly as a function
of time. For example, at t = 0 the magnitude of the temperature and longitudinal stress is
maximum at a point on the top surface of the plate. However at the maximum values of the
transverse shear stress occur at z = 0.298 for lower values of t. The magnitude of the in-plane
stress is maximum at a point on the top surface of the plate and it increases as f increases. Since
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— t*=001 t* =600
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Figure 5: Dimensionless displacement w versus time parameter t of FGM square plate for different values
of relaxation time t*.

Longitudinal stress oy
.IO o o
—_ —_ w

|
vt
w

|
e
o

-0.7

—t=001 t* =600
--- =100 -—— t* =1000

Figure 6: Dimensionless longitudinal stress oy versus time parameter t of FGM square plate for different
values of relaxation time t*.

material properties and the temperature change vary through the thickness, then the through-
the-thickness variation of the longitudinal stress is nonlinear and the maximum values of the
transverse shear stress dose not occur at the center of the plate.
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Figure 7: Dimensionless transverse shear stress os versus time parameter t of FGM square plate for
different values of relaxation time t*.

In-plane shear stress o
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Figure 8: Dimensionless in-plane shear stress o, versus time parameter t of FGM square plate for different
values of relaxation time t*.

Now, we discuss the effect of relaxation times in G-L model. Let the first relaxation
time t; = t* and the second relaxation time be double of it. Figures 5, 6, 7, and 8 present the
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displacement and stresses versus the time parameter using different values of the relaxation
time #*. It is clear that all results are very sensitive to the variation of the relaxation time. The
results may be inaccurate for higher values of t*.

6. Conclusion

In this paper, the numerical illustrations concern quasistatic bending response of FG square
plates are studied in the context of the generalized thermoelasticity theories. A refined shear
deformation theory is used for this purpose. Material properties of the plate are assumed to
be graded in the thickness direction according to a simple exponential law distribution in
terms of the volume fractions of the constituents. An exact solution for the present problem
is obtained. Numerical results are provided to show the influence of the material properties,
and a temperature field on the displacement and stresses.
From these results, we can conclude that

(1) the results of G-L model give an accurate prediction comparing with those obtained
by the other two models;

(2) the results of L-S model agree well with those obtained by C-T model;

(3) the temperature may be independent of the parameters used in the different
theories;

(4) for higher values of the relaxation times, L-S and G-L models may be failed to get
accurate solution comparing with the C-T model.
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