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The unsteady heat, mass, and fluid transfer over a horizontal stretching sheet has been numerically
investigated. Using a similarity transformation the governing time-dependent boundary layer
equations for the momentum, heat, and mass transfer were reduced to a sets of ordinary
differential equations. These set of ordinary differential equations were then solved using the
Chebyshev pseudo-spectral collocation method, and a parametric analysis was carried out. The
study observed, among other observations that the local Sherwood number increases as the values
of the stretching parameter A and the Schmidt number Sc increase. Also the fluid temperature
was found to be significantly reduced by increases in the values of the Prandtl number Pr, the
unsteadiness parameter A, and the radiation parameter R. The velocity and concentration profiles
were found to be reduced by increasing values of the unsteadiness parameter A.
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1. Introduction

The continuous surface heat and mass transfer problem has many practical applications
in industrial manufacturing processes. The knowledge of flow and heat and mass transfer
within a thin liquid film is crucial in understanding the coating process and design of heat
exchangers and chemical processing equipments. This phenomenon is also applied in wire
and fibre coatings, food stuff processing reactor fluidization, and transpiration cooling. The
prime aim in almost every extrusion is to maintain the surface quality of the extrudate. The
problem of extrusion of thin surface layers needs special attention to gain some knowledge
for controlling the coating efficiently. In the pioneering work of Crane [1], the flow of
Newtonian fluid over a linearly stretching surface was studied. Subsequently, the pioneering
works of Crane are extended by many authors to explore various aspects of the flow and heat
transfer occurring in an infinite domain of the fluid surrounding the stretching sheet (see [2—
8]). However, these studies dealt with a steady flow only. In some cases the flow field and
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heat transfer can be unsteady due to a sudden stretching of the flat sheet or by a steep change
of the temperature of the sheet.

Hossain et al. [9] determined the effect of radiation on natural convection flow of an
optically thick viscous incompressible flow past a heated vertical porous plate with a uniform
surface temperature and a uniform rate of suction where radiation is included by assuming
the Rosseland discussion approximation.

Andersson et al. [10] investigated using a similarity transformation the flow of a thin
liquid film of a power-law fluid by unsteady stretching of a surface. Later on, Andersson et
al. [11] analyzed the momentum and heat transfer in a laminar liquid film on a horizontal
stretching sheet governed by time-dependent boundary layer equations. Dandapat et al. [12]
explored how the hydrodynamics and heat transfer in a liquid film on unsteady stretching
surface are affected by thermo-capillarity. Tsai et al. [13] studied the non-uniform heat
source/sink effect on the flow and heat transfer from an unsteady stretching sheet through a
quiescent fluid medium extending to infinity.

Liu and Andersson [14] generalized the analysis by Andersson et al. [11] of the
thermal characteristics of a liquid film driven by an unsteady stretching surface. Here, they
considered a more general form of the prescribed temperature variation of the stretching
sheet than that considered in Andersson et al. [11].

Elbashbeshy and Bazid [15] presented similarity solutions of the boundary layer
equations, which describe the unsteady flow and heat transfer over an unsteady stretching
sheet. However, as was to be later discovered by Abd El-Aziz [16], some physically unrealistic
phenomena are encountered for specific values of the unsteadiness parameter. To that end,
Abd El-Aziz [16] was concerned with correcting the similarity transformation introduced
by Elbashbeshy and Bazid [15] and extended their analysis to include the effect of thermal
radiation. Thermal radiation plays a very significant role in controlling heat transfer in
polymer processing industry. The quality of the final product depends to a great extend on
the heat controlling factors, and the knowledge of radiative heat transfer in the system can
perhaps lead to a desired product with sought qualities.

In this paper, we extend the work of Abd El-Aziz [16] to include mass transfer. This
problem arises in a number of industrial manufacturing processes such as polymer extrusion,
wire drawing, metal and plastic extrusion, continuous casting, glass fibre production, crystal
growing and paper production. The physical and thermal characteristics of such unsteady
process are investigated in the boundary layer approximation, assuming variation of the
surface temperature and concentration with the horizontal coordinate x and time, t. The main
objective of this work is to try to solve this type of model using Chebyshev pseudospectral
collocation method. In previous studies finite-difference, Runge-Kutta integration schemes
were used. However, it is now known that Chebyshev pseudospectral collocation method
gives better approximations than most of these numerical methods. Our main focus is on
the comparison of the results obtained by Chebyshev pseudospectral collocation method
and those obtained by Abd El-Aziz [16]. We also look at the effects of the unsteadiness
parameter on the concentration characteristics of the overlying above the stretching
surface.

2. Problem Formulation

We consider the flow of a viscous and incompressible fluid on a horizontal sheet, which comes
through a slot at the origin. We are considering a gray, absorbing-emitting radiation fluid but
nonscattering medium, and the Rosseland approximation is used to describe the radiative
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heat flux in the energy equation. The radiative heat flux in the x-direction is negligible in
comparison with that in the y-direction. The fluid flow over the unsteady stretching sheet
is composed of a reacting chemical species. The fluid motion arises due to the stretching of
the elastic sheet. The continuous sheet aligned with the x-axis at y = 0 moves in its own
plane with a velocity U (x,t), the temperature distribution T, (x,t) and the concentration
distribution C,(x, t) vary both along the sheet and with time. The velocity, temperature, and
concentration fields in the boundary layer are governed by the two-dimensional boundary
layer equations for mass, momentum, thermal energy, and chemical species given by:
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where 1 and v are the velocity components along the x- and y-axes, respectively, T is the fluid,
temperature, C is the concentration, v is the kinematic coefficient of viscosity, ap = k/pcp, is
the thermal diffusivity with k as the fluid thermal conductivity, p the fluid density, c, the
specific heat at constant pressure, D the mass diffusivity, and g, as the radiative heat flux.

By using the Rosseland diffusion approximation (Hossain et al. [9]) and following
Raptis [17] among other researchers, the radiative heat flux, g, is given by

40* OT*
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where o* and k; are the Stefan-Boltzman constant and the Roseland mean absorption
coefficient, respectively. We assume that the temperature differences within the flow are
sufficiently small such that T may be expressed as a linear function of temperature

T* = 4T3 T - 3T, (2.6)
Using (2.5) and (2.6) in the last term of (2.3), we obtain

oqr _ 160"T5, 0°T
oy  3kipcy, Oy?’

2.7)



4 Mathematical Problems in Engineering

The associated boundary conditions for the model are

u(x,0) = Uy(x,t), v(x,0) =0, T(x,0) = Ty(x,t), C(x,0) = Cy(x,t), (2.8)
u(x,) =0, T(x,0) =Ty, C(x,0) = Ce. (2.9)

Following Andersson et al. [10], the stretching velocity U, (x, f) is assumed U, = bx/(1-at),
where both b and «a are positive constants with dimension reciprocal time. We have b as the
initial stretching rate b/ (1 — at) is increasing with time. In the context of polymer extrusion,
the material properties and in particular the elasticity of the extruded sheet may vary with
time even though the sheet is being pulled by a constant force.

With unsteady stretching, however, ™! becomes the representative time scale of the
resulting unsteady boundary layer problem. We assume both the surface temperature T, (x, t)
and the surface concentration Cy, (x, t) of the stretching sheet to vary with the distance x along
the sheet and time in the following form:

2

Tw(x,t) = Toy + Tp [b%] (1-at)™/?, (2.10)
2

Co(x,t) = Co + Co [b%] (1-at)™?, (2.11)

where Ty is a heating or cooling reference temperature and Cj is a positive concentration
reference. The equation for the temperature increases (reduces) if Ty is positive (negative)
from T at the leading edge in proportion to x?> and such that the amount of temperature
increase (reduction) along the sheet increases with time. The equation for the concentration
C(x,t) of the sheet also represents a situation in which the sheet species increases if Cy
is positive from Cj at the leading edge in proportion to x? and such that the amount of
concentration increase along the sheet increases with time. In order to reduce (2.1)—(2.4) into
a set of convenient ordinary differential equations, we introduce the similarity variable # and
the dimensionless variables f, 6, and ¢ (Abd El-Aziz [16]) as:

b 1/2
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(2.12)
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where ¢ (x,y) is the physical stream function which automatically satisfies the continuity
equation. The velocity components are then derived from the stream function expression and
obtained as

3 3
‘e % =Uof'(n),  0=-50= =000 -a) 2 (). (2.13)
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Governing equations are then transformed into a set of differential equations and associated
boundary conditions as given below:

m " N2 ! M

[ ff = () - A(f +§f)=0, (2.14)
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where the prime indicates differentiation with respect to 17, A = a/b is the unsteady
parameter, 0 = (T — To,) /(T — Ty,) is the non-dimensional temperature, ¢ = (C - Cq,)/(Cy —
C.) is the non-dimensional concentration, R = kk;/30*TS, is the radiation parameter,

Pr = v/ay is the Prandtl number and Sc = v/ D is the Schmidt number. We note that equations
(2.15) and (2.16) are equivalent if Sc in equation (2.16) is replaced by 3RPr/ (3R + 4). In view
of equations (2.12), the boundary conditions from (2.8) to (2.10), transform into

fO=0,  f(O)=1,  6(0)=¢(0) =1, (2.17)
fl(©)=0, 0(x0)=0,  ¢(c0)=0. (2.18)

3. Method of Solution

To solve the governing equations (2.14)-(2.17), we use the Chebyshev pseudospectral
collocation method. The domain in the 7 direction is approximated by [0, L], where L is the
edge of the boundary layer. We use the algebraic mapping 7 = (Y +1)L/2 to map the physical
region into the Chebyshev spectral method computation domain of [-1,1]. The unknown
variables f,0, and ¢ in (2.14)-(2.17) are approximated by the following truncated series of
polynomials:

N N N
fY)= kaTk(Y)r o(Y) = Zeka(Y), oY) = Z(;kak(Y), (3.1)
k=0 k=0

k=0

where the values fk, ék, and $k are the coefficients of the series to be determined, Ty is the
Chebyshev polynomial of degree k which is defined on the interval Y € [-1,1] as

Ti(Y) = cos(k cos-ly), k=0,1,.... (3.2)

We use the Gauss-Lobatto collocation points to define the Chebyshev nodes in [-1,1],
namely;

Yi=cos L -1<¥<1,j=01,..,N. (3.3)
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Derivatives of the functions f, 8, and ¢ at the collocation points are represented as

af 2 o 2 - d¢ 2 ¥
an LZD]kfk/ %:EkZ:()Dikek, LZD]k(,bk/ (3.4)

where D is the Chebyshev spectral method differentiation matrix (see, e.g., Canuto et. al [18]
for details). Higher order derivatives are computed as multiple powers of D, that is, (with f
as an example)

dl

( )ZDkfk/ k=0,1,2...,N, (3.5)

where i is the order of the derivative.
Substituting (3.1)—(3.5) into the governing equations and boundary conditions (2.14)-
(2.17), we obtain the following equations:

DF+FDF- (DF) (DF) - A(DF + gﬁzF> 0, (3.6)
(3R +4)D°© + 3RPr [Fﬁe — 20DF - ? (3@ + 115@)] -0, (3.7)
D'® +Sc [Fﬁqa _ 2ODF - ? (30+ qﬁcb)] -0, (3.8)

Whereﬁ = (Z/L)D/F = {fblﬁl . fN ’ 90/ 911 GN ’ ¢0/¢1/--'1$N}T and the
superscript T denotes Transpose. The boundary conchtlons become

N N

fn=0, >Dnifk=1 D Dofr=0, (3.9)
k=0 k=0

On=¢n=1, 6p=¢o=0. (3.10)

We note that (3.6) can be solved separately because it depends on F only. To solve the
system of equations we start by solving (3.6) subject to the boundary conditions (3.9) is
a MATLAB nonlinear equation solver fzero which is based on the quasi-Newton method.
Once the solution for F is obtained, it is then substituted into equation (3.7) to get:

BO =K, then ®=BK, (3.11)
where

_ _  _ A _
=(3R+4)D2+3RP1:[FD—2DF—§<3I+11D>], K=[00 --- 01, (312



Mathematical Problems in Engineering 7

Table 1: Comparison of the values of —f"(0), —6'(0) and the maximum error between the exact solution
and the Chebyshev spectral method.

Method ~£"(0) -0'(0) ehr =S
Exact 1.0000000000 2.0000000000
Numerical 1.0000000003 1.9999999998 2.0613826646 x 10~ 1.1308017023 x 1010

Table 2: Comparison of the Chebyshev solution for —6'(0) with the results of El-Aziz [16].

A Pr El-Aziz (2009) Present Results
0.8 0.1 0.4517 0.45149
0.8 1.0 1.6728 1.67285
0.8 10 5.70503 5.70598
1.2 0.1 0.5087 0.50850
1.2 1.0 1.818 1.81801
1.2 10 6.12067 6.12102
2 0.1 0.606013 0.60352
2 1.0 2.07841 2.07841
2 10 6.88506 6.88615

and I is an identity matrix of size N + 1. The boundary conditions are imposed by setting the
first and last row of Btobe [1 O .- 0 OJand [0 O --- O 1], respectively. The solution
for (3.8) is obtained in a similar manner.

4. Results and Discussion

The nonlinear ordinary equations (2.14)—(2.16) (in the case when A = 0, Sc = 2, and Pr set to
be Pr = 2(3R +4) /3R) together with the associated boundary conditions have exact solutions
in the form

f)y=1-¢em, 0(n)=e?,  $(n) =€ (4.1)

To validate out numerical method of solution, we compared our numerical results to exact
solution (4.1). Table 1 presents the comparison between the exact solution and the Chebyshev
spectral method of the skin friction —f”(0) and the Nusselt number —6'(0). The table also

gives the maximum errors (st/L and (SGN/L)) which refer to the maximum difference between
the approximated and exact values of f and 6 at the Gauss-Lobatto collocation points. In
computing the numerical results, we used L = 20 and N = 100.

From Table 1 it can be seen that the Chebyshev spectral method is in good agreement
with the exact solution for the skin friction, Nusselt number, and the values of f and 6.
Figure 1 shows the numerical solutions for the velocity and temperature profiles compared
against the exact solutions (4.1). As depicted in this figure, Chebyshev spectral method gives
excellent approximations to the model under consideration.

The present numerical results were also compared with results of El-Aziz [16] (see
Table 2).

In Table 2, we have the data comparisons with the previous published paper and the
results are found to be in excellent agreement. It is clearly seen in this table that for given
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Figure 1: Graph of the velocity f’ and temperature 6 profiles plotted against the exact solutions with A =1,
R=1,Pr=0.7,5c=0.2.

values of A, the local Nusselt number is increased as the Prandtl number increases. Also,
when all other parameters are kept constant, higher local Nusselt number are observed at
larger values of Pr. This can be elucidated from the fact that as the Prandtl number increases,
the thermal boundary layer thickness decreases and the wall gradient increases. We can also
observe in this table that for fixed values of Pr, the local Nusselt number increases as the
unsteadiness parameter A increases.

Figure 2 illustrates the concentration profile for Sc = 0.2 and varying unsteadiness
parameters A = 0, 0.5, and 2.0. The results show that the concentration ¢(7) decreases with
increases in the values of the unsteadiness parameter.

In Figure 3, we have the local Sherwood number in terms of —¢'(0) as a function of
the unsteadiness parameter A for some typical Schmidt number values. It can be clearly
seen from this figure that the Sherwood number is increased as the values of the Schmidt
number increase. We can also see that, for a given value of A, higher Sherwood number values
are observed at large values of Sc. This can be explained from the fact that as the Schmidt
increases, the concentration boundary layer thickness decreases and the wall concentration
gradient increases.

In Figure 4, we show the effect of the Schmidt number on the concentration
distributions. The Schmidt number represents the relative ease of molecular momentum and
mass transfer and is very important in calculations of binary mass transfer in multiphase
flows. The effect of an increase in the Schmidt number values is to reduce the momentum
boundary layer and this leads to the thinning of the diffusion layer. Diffusing chemical species
of most interest in air have Schmidt numbers in the range from 0.1 to 10 (Hussain and Hossain
(19]).

In Figure 5, we elucidate the effect of the unsteadiness parameter A on the typical
temperature profiles. At fixed values of other parameters, increasing A values, decreases the
temperature with an accompanying decreases in the boundary layer thickness.
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Figure 3: Local Sherwood number —-¢’'(0) versus A for various values of Sc with R=1, Pr=0.7.

The effects of the Prandtl number on the temperature distributions in the boundary
layer are illustrated in Figure 6. We observe that the thermal boundary layer is reduced by
increasing the Prandtl number values thereby reducing the fluid temperature. The effects
of thermal radiation parameter R on the temperature profiles in the boundary layer are
illustrated in Figure 7. We observe in this figure that increasing the thermal radiation
parameter produces significant decrease in the thermal condition of fluid and its boundary
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Figure 4: Effect of varying the Schmidt number Sc on the concentration profiles with Pr=0.7, A=1,R=1.

20

Figure 5: Effect of various values of unsteadiness parameter A on on the temperature profiles with Pr = 0.7,
Sc=02,R=1.

layer. This can be explained by the fact that a decrease in the values of R(= kk;/30T3) for
the given values of k and T,, means a decrease in the Rosseland radiation absorptivity k;. We
can deduce in equations (2.3) and (2.5) that the divergence of the radiative heat flux dg, /0y
increases as k; decreases the rate of radiative heat transferred to the fluid and consequently
the fluid temperature increases. It is shown in Figure 7 the effect of thermal radiation becomes
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Figure 7: The variation of the temperature distribution profiles with increasing thermal radiation
parameter.

more significantas R — 0 though not equals to zero and R = oo corresponds to non-radiating
case so the effects of radiation can be neglected when R — oo.

In Figure 8, we present velocity profiles when all other parameters are kept constant
for different values of the unsteadiness parameter A. We observe in this figure that the
velocity decreases with the distance from the stretching sheet for all A. Also, increasing the
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6 8 10

Figure 8: Effect of various values of unsteadiness parameter A on on the velocity profiles.

values of A decreases the velocity in the boundary layer. When A = 0, we have a steady state
flow and for A > 0, we have an unsteady flow. As can be seen in Figures 2, 5, and 8, increasing
the unsteadiness parameter A reduces the flow properties such as velocity, temperature and
concentration. When A values are increased in the system, the boundary layer thicknesses
are reduced and this inhibits the development of transition of laminar to turbulent flow. This
shows that stretching of surfaces can be used as a flow stabilizing mechanism.

5. Conclusion

The unsteady heat, mass, and fluid transfer over a horizontal stretching sheet has been
investigated in this study. The study put much emphasis on the numerical method used
to solve the set of non-linear ordinary differential equations and on how the concentration
distribution and mass transfer change due to stretching of the sheet. The study found out that
the Nusselt number increases with the increase of the unsteadiness parameter and Prandtl
number. The fluid temperature was found to be reduced by increases in the values of the
unsteadiness parameter, Prandtl number and the radiation parameter. We also observed that
the velocity profiles and the concentration distributions were reduced as the values of the
unsteadiness parameter A were increased. The local Sherwood number was found to be
increased by the increased values of A and the Schmidt number.
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